From e9cee5abf62ebe5d00ad6aba1185af5eb4ea3d73 Mon Sep 17 00:00:00 2001 From: Deepak Mallubhotla Date: Wed, 9 Mar 2022 19:28:52 -0600 Subject: [PATCH] feat: adds full text to maxwell relation problem statement --- tex/3.11.tex | 37 ++++++++++++++++++++++++++++++++++++- 1 file changed, 36 insertions(+), 1 deletion(-) diff --git a/tex/3.11.tex b/tex/3.11.tex index b16e852..3d6349d 100644 --- a/tex/3.11.tex +++ b/tex/3.11.tex @@ -62,7 +62,22 @@ \left. \pdv{C_P}{P} \right|_{T} = - T \left. \pdv[2]{V}{T} \right|_{P} \end{equation} \item \begin{equation} - \left. \pdv{E}{T} \right|_{P} = - \frac{T}{C_P} \left. \pdv{S}{P} \right|_{T} + \left. \pdv{E}{P} \right|_{T} = - T \left. \pdv{V}{T} \right|_{P} - P \left. \pdv{V}{P} \right|_T + \end{equation} + \item \begin{equation} + \left. \pdv{E}{T} \right|_{P} = C_P - P \left. \pdv{V}{T} \right|_P + \end{equation} + \item \begin{equation} + \left. \pdv{T}{V} \right|_{S} = - \frac{T}{C_V} \left. \pdv{S}{V} \right|_T + \end{equation} + \item \begin{equation} + \left. \pdv{T}{P} \right|_{S} = - \frac{T}{C_P} \left. \pdv{S}{P} \right|_{T} + \end{equation} + \item \begin{equation} + \left. \pdv{V}{T} \right|_{P} = - \frac{C_P}{T} \left. \pdv{T}{V} \right|_{S} \left. \pdv{V}{P} \right|_S + \end{equation} + \item \begin{equation} + \left. \pdv{P}{V} \right|_{S} = \left. \pdv{P}{V} \right|_{T} - \frac{T}{C_V} \left( \left. \pdv{P}{T} \right|_V \right)^2 \end{equation} \end{enumerate} @@ -124,7 +139,27 @@ \begin{equation} \left. \pdv{C_P}{P} \right|_{T} = - T \left. \pdv[2]{V}{T} \right|_{P} \end{equation} + + By definition: + \begin{equation} + C_P = T \left. \pdv{S}{T} \right|_{P} + \end{equation} + + Let's start by looking at the expression and do the commutativity of derivatives thing (again subscripting for what we're holding constant). + \begin{align} + T \pdv[2]{S}{P_T}{T_P} &= T \pdv[2]{S}{T_P}{P_T} \\ + \pdv{C_P}{P_T} &= T \pdv[2]{S}{T_P}{P_T} \\ + \pdv{C_P}{P_T} &= - T \pdv[2]{V}{T_P} + \end{align} + where on the right hand side we've used our result from part (a). + \subsection{(c)} + + Want + \begin{equation} + \left. \pdv{E}{T} \right|_{P} = - \frac{T}{C_P} \left. \pdv{S}{P} \right|_{T} + \end{equation} + \newpage \listoftodos