diff --git a/tex/3.19.tex b/tex/3.19.tex index 8c5e509..44021e2 100644 --- a/tex/3.19.tex +++ b/tex/3.19.tex @@ -62,9 +62,57 @@ (Hint: as $N$ grows, the probability density $P(N \epsilon)$ decreases exponentially, which the total number of states $2^N$ grows exponentially. Which one wins?) - \section{Solution} \label{sec:solution} - + \subsubsection*{(b) Entropy} + What does an exponentially growing number of states mean? + Let the entropy per particle be $s(\epsilon) = \flatfrac{S(N\epsilon)}{N}$. + Then (setting $\kb = 1$) $\Omega(E) = \exp(S(E)) = \exp(N s(\epsilon))$ grows exponentially whenever the entropy per particle is positive. + How do we calculate the entropy per particle $s(\epsilon)$ of a typical REM? + Can we just use the annealed average + \begin{equation} + s_{\mathrm{annealed}}(\epsilon) = \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log \left<\Omega(N \epsilon) \right>_{\mathrm{REM}}? + \end{equation} + + Show that $s_{\mathrm{annealed}} = \log2 - \epsilon^2$. + + \subsubsection*{Not a part just an answer to that question} + Sethna says no, because that limit doesn't work in the glassy state below $\epsilon_\ast$. + + \section{Solution} \label{sec:solution} + + \subsection*{(a)} + We want $\left< \Omega(N\epsilon) \right>_{REM}$. + + Pretty simply, $\Omega(N \epsilon)$ is the total number of states with a given energy, and the average of that over possible configurations is just the number of possible states $M$ times the probability of any individual state having energy $N \epsilon$, $P(N \epsilon)$: + \begin{align} + \left< \Omega(N\epsilon) \right>_{REM} &= M P(N \epsilon) \\ + &= 2^N \frac{1}{\sqrt{\pi N}} e^{\flatfrac{-(N \epsilon)^2}{N}} \\ + &= \frac{1}{\sqrt{\pi N}} e^{N \log 2} e^{\flatfrac{-(N \epsilon)^2}{N}} \\ + &= \frac{1}{\sqrt{\pi N}} e^{N \log 2 - \flatfrac{(N \epsilon)^2}{N}} + \end{align} + This grows exponentially if the argument of the exponential is positive, so + \begin{align} + N \log 2 &> \frac{(N \epsilon)^2}{N} \\ + N^2 \log 2 &> N^2 \epsilon^2 \\ + \sqrt{\log 2} &> \abs{\epsilon} + \end{align} + This is the condition we were asked to show. + + \subsection*{(b)} + We can just jump straight in. + + \begin{align} + s_{\mathrm{annealed}}(\epsilon) &= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log \left<\Omega(N \epsilon) \right>_{\mathrm{REM}} \\ + &= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log(\frac{1}{\sqrt{\pi N}} e^{N \log 2 - \flatfrac{(N \epsilon)^2}{N}}) \\ + &= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \left( \log \frac{1}{\sqrt{\pi N}} + N \log 2 - \flatfrac{(N \epsilon)^2}{N} \right) \\ + &= \lim_{N \rightarrow \infty} \frac{1}{N} \log \frac{1}{\sqrt{\pi N}} + \log 2 - \epsilon^2 \\ + \end{align} + + The first term clearly goes to $0$ for $N \rightarrow \infty$, because it ends up proportional to $\flatfrac{\log{N}}{N}$. + So that just leaves the last two terms which are $N$-independent, giving us + \begin{equation} + s_{\mathrm{annealed}} = \log2 - \epsilon^2. + \end{equation} \newpage \listoftodos