diff --git a/tex/3.8.tex b/tex/3.8.tex new file mode 100644 index 0000000..1f6e82a --- /dev/null +++ b/tex/3.8.tex @@ -0,0 +1,80 @@ +\documentclass{article} + +% set up telugu +\usepackage{fontspec} +\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu] +\usepackage{polyglossia} +\setdefaultlanguage{english} +\setotherlanguage{telugu} + +%other packages +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{physics} +\usepackage{siunitx} +\usepackage{todonotes} +\usepackage[plain]{fancyref} +\usepackage{luacode} +\usepackage{titling} +\usepackage{enumerate} + +% custom deepak packages +\usepackage{luatrivially} +\usepackage{subtitling} + +\begin{luacode*} + math.randomseed(31415926) +\end{luacode*} + +\newcommand{\kb}{k_{\mathrm{B}}} + +\title{Problem 3.8} +\subtitle{Microcanonical energy fluctuations} +\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}} +% want empty date +\predate{} +\date{} +\postdate{} + +% !TeX spellcheck = en_GB +\begin{document} + \maketitle + + This problem talks about about weakly coupling subsystems and looking at fluctuations. + An earlier result is that + \begin{equation} + \sigma_{E_1}^2 = - \flatfrac{\kb}{\left(\pdv[2]{S_1}{E_1} + \pdv[2]{S_2}{E_2}\right)} + \end{equation} + + \begin{enumerate}[(a)] + \item Show that + \begin{equation} + \frac{1}{\kb} \pdv[2]{S}{E} = - \frac{1}{\kb T} \frac{1}{N c_v T}, + \end{equation} + where $c_v$ is the inverse of the total specific heat at constant volume. + The specific heat $c_v$ is the energy needed per particle to change the temperature by one unit: + \begin{equation} + N c_v = \left.\left(\pdv{E}{T}\right)\right|_{V, N} + \end{equation} + \end{enumerate} + + \section{Solution} \label{sec:solution} + \subsection*{(a)} + We start with the general case, keeping volume and particle number constant. + To start, we use $\frac{1}{T} = \left. \pdv{S}{E} \right|_{V, N}$, so + \begin{align} + \frac{1}{\kb} \left.\pdv[2]{S}{E} \right|_{V, N} &= \frac{1}{\kb} \left. \pdv{}{E} \frac{1}{T} \right|_{V, N} \\ + &= \frac{1}{\kb} \left. \pdv{}{E} \frac{1}{T} \right|_{V, N} \\ + &= - \frac{1}{\kb} \left. \frac{1}{T^2} \pdv{T}{E} \right|_{V, N}, + \end{align} + and we use the Physicist's Theorem to invert the derivative, giving us $\flatfrac{1}{N c_v} = \left.\left(\pdv{T}{E}\right)\right|_{V, N}$, so + \begin{align} + \frac{1}{\kb} \left.\pdv[2]{S}{E} \right|_{V, N} &= - \frac{1}{\kb} \frac{1}{T^2} \frac{1}{N c_v} \\ + \frac{1}{\kb} \left.\pdv[2]{S}{E} \right|_{V, N} &= - \frac{1}{\kb T} \frac{1}{N c_v T}, + \end{align} + as desired. + + \newpage + \listoftodos + +\end{document}