\documentclass{article} % set up telugu \usepackage{fontspec} \newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu] \usepackage{polyglossia} \setdefaultlanguage{english} \setotherlanguage{telugu} %other packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{physics} \usepackage{siunitx} \usepackage{todonotes} \usepackage[plain]{fancyref} \usepackage{luacode} \usepackage{titling} \usepackage{enumerate} % custom deepak packages % \usepackage{luatrivially} \usepackage{subtitling} \begin{luacode*} math.randomseed(31415926) \end{luacode*} \title{Problem 1.2} \subtitle{Probability distributions} \author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}} % want empty date \predate{} \date{} \postdate{} % !TeX spellcheck = en_GB \begin{document} \maketitle Three distributions: \begin{enumerate}[(i)] \item Uniform distribution, $\rho_{uniform}(x) = 1$ \item Exponential distribution, $\rho_{exponential}(t) = e^{-\flatfrac{t}{\tau}}$ \item Gaussian distribution, $\rho_{gaussian}(v) = \flatfrac{e^{\flatfrac{-v^2}{2\sigma^2}}}{\left( \sqrt{2\pi} \sigma \right)}$ \end{enumerate} \begin{enumerate}[(a)] \item Likelihoods \begin{enumerate}[(i)] \item What is the probabliity that a random number uniform on $\left[0, 1\right)$ will lie between $x = 0.7$ and $x = 0.75$. \item That the waiting time for radioactive decay will be more than twice exponential decay time $\tau$? \item That your score will be above $2 \sigma$ above the mean? \end{enumerate} \item Normalization, mean and standard deviation. \begin{enumerate}[(I)] \item Show that these probability distributions are normalised. \item What is the mean $x_0$ of each distribution? \item The standard deviation $\sqrt{\int \dd{x} \left( x - x_0 \right)^2 \rho(x)}$? \end{enumerate} \item Sums of variables \begin{enumerate} \item Draw a graph of the probability distribution of the sum $x + y$ for two random variables drawn from a uniform distribution. \item Argue that in general the sum $z = x+y$ of two random variables with distributions $\rho_1(x)$ and $\rho_2(y)$ will have a distribution given by $\rho(z) = \int \rho_1(x) \rho_2(z-x)$. \end{enumerate} \item Multidimensional probability distributions Given $\rho(v_x, v_y, v_z)$ is the big expression in Sethna $\prod_{i=(x, y, z)} \sqrt{\frac{M}{2\pi k T}} \exp(\frac{-Mv_i^2}{2 kT})$. \begin{enumerate} \item Show that the mean kinetic energy is $\frac{kT}{2}$. \item Show that the probability that the speed is $\abs{v}$ is given by the distribution \begin{equation} \rho_{Maxwell}(v) = \sqrt{\frac{2}{\pi}}\frac{v^2}{\sigma^3} \exp(\frac{-v^2}{2 \sigma^2}) \end{equation} \end{enumerate} \end{enumerate} \section{Solution} \label{sec:solution} \subsection{Likelihoods} \label{subsec:sola} These are quite simple, straightforward integrals, so avoiding the details here. \begin{enumerate}[(i)] \item $\frac12$ \item $\frac{1}{e^2}$ \item $\flatfrac{(1 - \erf(\sqrt{2}))}{2} \approx 0.023$. Sethna really seems to give this one to the solver. \end{enumerate} \subsection{Standard Deviations} Normalisation is quite simple. Means are \begin{enumerate}[(i)] \item $\frac12$ \item $\tau$ \item $0$ \end{enumerate} Standard deviations are \begin{enumerate}[(i)] \item \begin{align} \sigma_{uniform} &= \sqrt{\int_0^1 \dd{x} \left( x - \frac12 \right)^2} \\ &= \sqrt{\left. \frac13 \left( x - \frac12 \right)^3 \right|_0^1} \\ &= \sqrt{\frac13 \left(\frac14 \right)} \\ \sigma_{uniform} &= \frac{1}{\sqrt{12}} \end{align} \item \begin{align} \sigma_{exponential} &= \sqrt{\int_0^\infty \dd{t} \left(t - \tau \right)^2 e^{\flatfrac{-t}{\tau}}} \\ &= \tau \end{align} \item \begin{align} \sigma_{Gaussian} &= \sqrt{\int_{-\infty}^\infty \dd{v} \left(v\right)^2 \flatfrac{e^{\flatfrac{-v^2}{2\sigma^2}}}{\left( \sqrt{2\pi} \sigma \right)} } \\ &= \sigma \end{align} \end{enumerate} \newpage \listoftodos \end{document}