\documentclass{article} % set up telugu \usepackage{fontspec} \newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu] \usepackage{polyglossia} \setdefaultlanguage{english} \setotherlanguage{telugu} %other packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{physics} \usepackage{siunitx} \usepackage{todonotes} \usepackage[plain]{fancyref} \usepackage{luacode} \usepackage{titling} \usepackage{enumitem} % custom deepak packages \usepackage{luatrivially} \usepackage{subtitling} \begin{luacode*} math.randomseed(31415926) \end{luacode*} \title{Problem 1.6} \subtitle{Random matrix theory} \author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}} % want empty date \predate{} \date{} \postdate{} % !TeX spellcheck = en_GB \begin{document} \maketitle Gaussian orthogonal ensemble: $N \times N$ matrix, all elements are random numbers with Gaussian distributions of mean zero and $\sigma = 1$. So each member from \begin{equation} \rho_g(x) = \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{x^2}{2}} \end{equation} Then add with its transpose to make symmetric. Let's look at $N = 2$, so $M = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ \begin{enumerate}[label=(\alph*), start=2] \item Show that the eigenvalue difference for $M$ is $\lambda = \sqrt{\left(c - a\right)^2 + 4 b^2} = 2 \sqrt{d^2 + b^2}$, where $d = \flatfrac{\left(c-a\right)}{2}$ \item Calculate analytically the standard deviation of a diagonal and off-diagonal element of the GOE matrix. Calculate the standard deviation of $d = \flatfrac{\left(c - a\right)}{2}$ of $N = 2$ ensemble, and show it equals standard deviation of $b$. \end{enumerate} \section{Solution} \label{sec:solution} \subsection{(b) Eigenvalue differences} \label{subsec:solb} The eigenvalues $\nu_{\pm}$ are easy to find. Set up the characteristic equation. \begin{align} 0 &= \left(a - \nu\right)\left(c - \nu\right) - b^2 \\ &= (ac - b^2) - \left(a + c\right) \nu + \nu^2. \end{align} Therefore \begin{align} \nu_\pm &= \frac{\left(a + c \right) \pm \sqrt{\left(a + c\right)^2 - 4 \left(ac -b^2\right)}}{2} \\ \nu_\pm &= \frac{\left(a + c \right) \pm \sqrt{\left(c - a\right)^2 + 4 b^2}}{2} \end{align} So the difference is $\sqrt{\left(c - a\right)^2 + 4 b^2}$. We have thus $\flatfrac{\lambda^2}{4} = d^2 + b^2$, so the region of between fixed $\lambda$ and $\lambda + \Delta$ is an annulus, around the circle with radius $\flatfrac{\lambda}{2}$. We see that \begin{align} \rho(\lambda) &= \int_{(d, b)} \rho(d, b) \dd{d} \dd{b} \\ &\propto \int_{(d, b)} \rho(d, b) \lambda \dd{\lambda} \dd{\phi} \\ &\propto 2 \pi \int_{(d, b)} \rho(d, b) \lambda \dd{\lambda} \end{align} The $\propto$ is because some factors of $2$. Important point is that as long as the probability $\rho_M$ is well-enough behaved, then as $\lambda \rightarrow 0$, $\rho(\lambda) \rightarrow 0$. Basically because the phase space is shaped like that. \subsection{(c) Standard Deviations} \subsubsection{diagonal elements} For the diagonal elements, say $a$, we have a double of a Gaussian variable. Therefore for instance $\rho(a) = \rho_g(\flatfrac{a}{2})$. \begin{align} \rho(a) &\propto \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{a^2}{8}}, \end{align} which means that $\sigma_a = 2$. \subsubsection{off-diagonal} \label{subsec:offdiag} For off diagonal elements, say $b$, we have two independent Gaussians being summed. \begin{align} \rho(b) &= \int_{-\infty}^\infty \dd{x} \rho_g(x) \rho_g(b - x) \\ \rho(b) &= \int_{-\infty}^\infty \dd{x} \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{x^2}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{(b -x)^2}{2}} \\ \rho(b) &= \frac{1}{2 \pi} \int_{-\infty}^\infty \dd{x} e^{-\flatfrac{x^2}{2}} e^{-\flatfrac{(b -x)^2}{2}} \\ \rho(b) &= \frac{1}{2 \pi} \int_{-\infty}^\infty \dd{x} e^{-\flatfrac{\left(x^2 + \left(b - x\right)^2\right)}{2}} \\ \rho(b) &= \frac{1}{2 \pi} \int_{-\infty}^\infty \dd{x} e^{-\flatfrac{\left(2 x^2 + b^2 - 2 b x\right)}{2}} \\ \rho(b) &= \frac{1}{2 \pi} e^{- \flatfrac{b^2}{4}} \sqrt{\pi} \\ \rho(b) &= \frac{1}{\sqrt{2 \pi} \sqrt{2}} e^{- \flatfrac{b^2}{2 \sqrt{2}^2}}, \end{align} which means $\sigma_b = \sqrt{2}$. \subsubsection{standard deviation of difference} We want to show that the standard deviation of $d = \flatfrac{\left(c - a\right)}{2}$ is equal to the standard deviation of $b$, $\sqrt{2}$. As we see, the numerator gets added in quadrature, $\sigma_d \propto \sqrt{2} \sigma_a$, denominator rescales by $\frac12$, becomes $\sqrt{2}$. This exactly parallels the derivation in \cref{subsec:offdiag}. In fact, you can pretty easily set up a homomorphism between sums and differences of variables with distributions of Gaussians of other means and standard deviations and distributions that sum in the ways implied by these expressions.\todo{What's the nice categorical view of this stuff? Morphisms of the category of probability spaces to some measurable space.} \subsection{(d) Find the formula for probability distirbution of $\lambda$} The two boys $d$ and $b$ are independent Gaussians, with standard deviations $\sqrt{2}$. Remember that $\lambda^2 = 4 d^2 + 4 b^2$, and that $\dd{d} \dd{b} = \frac12 \lambda \dd{\lambda} \dd{\phi}$. \begin{align} \rho_\lambda &= \int_M \dd{d} \dd{b} \rho_M \delta(\lambda^2 - 4b^2 - 4d^2) \\ \rho_\lambda &= \pi \int_M \dd{\lambda} \lambda \rho_M \delta(\lambda^2 - 4b^2 - 4d^2) \\ \rho_\lambda &= 2 \pi \frac{1}{\sqrt{4 \pi}} \frac{1}{\sqrt{4 \pi}} \int_M \dd{\lambda} e^{-\flatfrac{d^2}{4}} e^{-\flatfrac{b^2}{4}} \delta(\lambda^2 - 4b^2 - 4d^2) \\ \rho_\lambda &= 2 \pi \frac{1}{\sqrt{4 \pi}} \frac{1}{\sqrt{4 \pi}} \frac{1}{4} \int_M \dd{\lambda} \lambda e^{-\flatfrac{\lambda^2}{16}} \delta(\lambda^2 - 4b^2 - 4d^2) \end{align} And our integrand is as expected. \newpage \listoftodos \end{document}