\documentclass{article} % set up telugu \usepackage{fontspec} \newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu] \usepackage{polyglossia} \setdefaultlanguage{english} \setotherlanguage{telugu} %other packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{physics} \usepackage[binary-units=true]{siunitx} \usepackage{todonotes} \usepackage{luacode} \usepackage{titling} \usepackage{enumerate} % custom deepak packages \usepackage{luatrivially} \usepackage{subtitling} \usepackage{cleveref} \begin{luacode*} math.randomseed(31415926) \end{luacode*} \newcommand{\kb}{k_{\mathrm{B}}} \title{Problem 5.4} \subtitle{Black hole thermodynamics} \author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}} % want empty date \predate{} \date{} \postdate{} % !TeX spellcheck = en_GB \begin{document} \maketitle A black hole of mass $M$ has radius \begin{equation} R_s = G \frac{2M}{c^2}. \end{equation} Hawking calculated that blackbody radiation emitted from black hole is at temperature: \begin{equation} T_{bh} = \frac{\hbar c^3}{8 \pi G M \kb} \end{equation} And use $E = M c^2$ as needed. \subsubsection*{(a) Specific heat} Calculate the specific heat of the black hole. \subsubsection*{(b)} Calculate the entropy of the black hole, by using the definition of temperature $\flatfrac{1}{T} = \pdv*{S}{E}$ and assuming the entropy is zero at mass $M = 0$. Express your result in terms of the surface area $A = 4 \pi R_s^2$, measured in units of the Planck length $L^\ast = \sqrt{\flatfrac{\hbar G}{c^3}}$. \subsubsection*{(c)} Calculate the maximum number of bits that can be stored in a sphere of radius one centimeter, in terabytes. The Planck length $L^\ast = \sqrt{\flatfrac{\hbar G}{c^3}} \approx \SI{1.6e-35}{\m}$. \section{Solution} \label{sec:solution} \subsection*{(a)} Ultimately we're going to want $C = \pdv{E}{T}$. To start let's get $T_{bh}$ out of massland. \begin{align} T_{bh} &= \frac{\hbar c^3}{8 \pi G M \kb} \\ T_{bh} &= \frac{\hbar c^3}{8 \pi G \frac{E}{c^2} \kb} \\ E &= \frac{\hbar c^5}{8 \pi G T_{bh} \kb} \\ E &= \frac{\hbar c^5}{8 \pi G \kb} \frac{1}{T_{bh}} \label{eq:tempdepe} \\ \pdv{E}{T} &= \frac{\hbar c^5}{8 \pi G \kb} \pdv{}{T} \frac{1}{T_{bh}} \\ \pdv{E}{T} &= -\frac{\hbar c^5}{8 \pi G \kb} \frac{1}{T_{bh}^2} \end{align} This is negative, as we were told to expect. \subsection*{(b)} Our definiton of temperature is $\flatfrac{1}{T} = \pdv*{S}{E}$, so presumable we want to do some kind of guy like \begin{equation} S(E) - S(E = 0) = \int_{0}^{E} \dd{E'} \frac{1}{T(E')} \end{equation} We know that $S = 0$ when $M = 0$, which is the same as $E = 0$, so then \begin{equation} S(E) = \int_{0}^{E} \dd{E'} \frac{1}{T(E')} \end{equation} and for $T(E)$ we just plug in an inversion of \cref{eq:tempdepe}. \begin{align} \frac{1}{T_{bh}} &= \frac{8 \pi G \kb}{\hbar c^5} E \\ \int_{0}^{E} \dd{E'} \frac{1}{T(E')} &= \int_{0}^{E} \dd{E'} \frac{8 \pi G \kb}{\hbar c^5} E' \\ S(E) &= \frac{4 \pi G \kb}{\hbar c^5} E^2 \label{eq:entropyunsimple} \end{align} Now we want to write this in better units. The Schwarzschild radius is \begin{equation} R_s = G \frac{2 E}{c^4}, \end{equation} so the surface area $A$ follows \begin{align} A &= 4 \pi \left(G \frac{2 E}{c^4}, \right)^2 \\ A &= 16 \pi G^2 \frac{E^2}{c^8} \end{align} We're told we want this in units of Planck lengths, so \begin{align} \frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{1}{(L^\ast)^2} \\ \frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{1}{\flatfrac{\hbar G}{c^3}} \\ \frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{c^3}{\hbar G} \\ A_\ast &= 16 \pi G \frac{E^2}{\hbar c^5} \end{align} Plug this in our $S(E)$ from \cref{eq:entropyunsimple}: \begin{align} S(E) &= \frac{4 \pi G \kb}{\hbar c^5} E^2 \\ S(E) &= 16 \pi G \frac{E^2}{\hbar c^5} \frac{\kb}{4} \\ S(E) &= A_\ast \frac{\kb}{4} \end{align} and that's a pretty simple result. Neato. \subsection*{(c)} A bit has two states, so its entropy is $\kb \log 2$. And if we have a sphere of radius $\SI{1}{\cm}$, that can be written in Planck lengths as $\SI{1}{\cm} \approx 6.25 \times 10^{32} L^\ast$. So the area is $4 \pi$ times that radius squared, and then we divide by 4, then by $\kb \log 2$, we get our answer: \begin{equation} \frac{S_{\mathrm{black hole}}}{S_{\mathrm{bit}}} \approx \SI{1.77e66}{\bit} = \SI{2.21e53}{\tera\byte} \end{equation} \newpage \listoftodos \end{document}