\documentclass{article} % set up telugu \usepackage{fontspec} \newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu] \usepackage{polyglossia} \setdefaultlanguage{english} \setotherlanguage{telugu} %other packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{physics} \usepackage{siunitx} \usepackage{todonotes} \usepackage{luacode} \usepackage{titling} \usepackage{enumerate} % custom deepak packages \usepackage{luatrivially} \usepackage{subtitling} \usepackage{cleveref} \begin{luacode*} math.randomseed(31415926) \end{luacode*} \newcommand{\kb}{k_{\mathrm{B}}} \title{Problem 3.15} \subtitle{Entropy maximum and temperature} \author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}} % want empty date \predate{} \date{} \postdate{} % !TeX spellcheck = en_GB \begin{document} \maketitle Explain in words why, for two weakly coupled systems \begin{equation} \rho(E_1) = \flatfrac{\Omega_1(E_1) \Omega_2(E - E_1)}{\Omega(E)} \end{equation} is intuitive for a system where all states of energy $E$ have equal probability density. Using $S = \kb \log(\Omega)$, show in one step that maximising the probability of $E_1$ makes the two temperatures $\frac{1}{T} = \pdv{S}{E}$ the same, and hence that maximising $\rho(E_1)$ maximises the total entropy. \section{Solution} \label{sec:solution} Basically just a probability calculation of independent stuff, so it's intuitive. Derivative is easy enough. \newpage \listoftodos \end{document}