\documentclass{article} % set up telugu \usepackage{fontspec} \newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu] \usepackage{polyglossia} \setdefaultlanguage{english} \setotherlanguage{telugu} %other packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{physics} \usepackage[binary-units=true]{siunitx} \usepackage{todonotes} \usepackage{luacode} \usepackage{titling} \usepackage{enumerate} % custom deepak packages \usepackage{luatrivially} \usepackage{subtitling} \usepackage{cleveref} \begin{luacode*} math.randomseed(31415926) \end{luacode*} \newcommand{\kb}{k_{\mathrm{B}}} \title{Problem 7.12} \subtitle{Semiconductors} \author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}} % want empty date \predate{} \date{} \postdate{} % !TeX spellcheck = en_GB \begin{document} \maketitle We're looking at an example of a doped superconductor. We have $N - M$ atoms of silicon, and $M$ atoms of phosphorus. Each Si atom contributes one electron, and two states (at $\pm \flatfrac{\Delta}{2}$). We'll take the energy gap $\Delta = \SI{1.16}{\eV}$ for example. The phosphorous atoms contribute \emph{two} electrons and two states, at $-\flatfrac{\Delta}{2}$ and $\flatfrac{\Delta}{2} - \epsilon$. The impurity energy guy $\epsilon = \SI{0.044}{\eV}$, and is much smaller than the energy gap. So the ground state here has $N + M$ electrons, so the $N$ valence bands at $-\flatfrac{\Delta}{2}$ and $M$ impurity band states at $-\flatfrac{\Delta}{2} - \epsilon$ are filled, and the $N - M$ conduction band states at $\flatfrac{\Delta}{2}$ are empty. \subsection*{(a)} Derive a formula for the number of electrons as a function of temperature $T$ and chemical potential $\mu$ for the energy levels of our system. \section{Solution} \label{sec:solution} \subsection*{(a)} So we have $N + M$ electrons. Easy. Sethna probably wants us to write the right hand side of this too. For each energy $E$, the single electron occupation is our Fermi distribution: \begin{equation} f(T) = \frac{1}{e^{\beta \left(E - \mu \right)} + 1} \end{equation} So if we add this up by the number of electrons and number of available states, we get \begin{equation} N + M = \frac{N}{e^{\beta \left(-\flatfrac{\Delta}{2} - \mu \right)} + 1} + \frac{M}{e^{\beta \left(\flatfrac{\Delta}{2} - \epsilon - \mu \right)} + 1} + \frac{N - M}{e^{\beta \left(\flatfrac{\Delta}{2} - \mu \right)} + 1}. \end{equation} What this really gives us is an implicit relationship for $\mu(T)$, because those are the two undetermined quantities. \newpage \listoftodos \end{document}