\documentclass{article} % set up telugu \usepackage{fontspec} \newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu] \usepackage{polyglossia} \setdefaultlanguage{english} \setotherlanguage{telugu} %other packages \usepackage{amsmath} \usepackage{amssymb} \usepackage{physics} \usepackage{siunitx} \usepackage{todonotes} \usepackage{luacode} \usepackage{titling} \usepackage{enumerate} % custom deepak packages \usepackage{luatrivially} \usepackage{subtitling} \usepackage{cleveref} \begin{luacode*} math.randomseed(31415926) \end{luacode*} \newcommand{\kb}{k_{\mathrm{B}}} \title{Problem 3.19} \subtitle{Random energy model} \author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}} % want empty date \predate{} \date{} \postdate{} % !TeX spellcheck = en_GB \begin{document} \maketitle Given $N$ spins (so $M = 2^N$ possible states), assign a random energy to each. Given $j \in \left{1, 2, \ldots, 2^N \right}$, assume each energy $E_j$ is selected with probability $P(E) = \frac{1}{\sqrt{\pi N}} e^{\flatfrac{-E^2}{N}}$. Gaussian with mean $0$ and standard deviation $\sqrt{\flatfrac{N}{2}}$ \subsubsection*{(a) Microcanonical ensemble} Consider the states in a small range $E < E_j < E+\deltaE$. Let the number of such states in this range be $\Omega(E) \delta E$. Calculate the average \begin{equation} \left< \Omega(N\epsilon) \right>_{REM} \end{equation} over the ensemble of REM systems, in terms of energy per particle $\epsilon$. For energies per particle near zero, show that this average density of states grows exponentially as the system size $N$ grows. In contrast, show that $\left< \Omega(N\epsilon) \right>_{REM}$ decreases exponentially for $\epsilon = \flatfrac{E}{N} < -\epsilon_\ast$ and for $\epsilon > \epsilon_\ast$, where the limiting energy per particle \begin{equation} \epsilon_\ast = \sqrt{\log 2}. \end{equation} (Hint: as $N$ grows, the probability density $P(N \epsilon)$ decreases exponentially, which the total number of states $2^N$ grows exponentially. Which one wins?) \subsubsection*{(b) Entropy} What does an exponentially growing number of states mean? Let the entropy per particle be $s(\epsilon) = \flatfrac{S(N\epsilon)}{N}$. Then (setting $\kb = 1$) $\Omega(E) = \exp(S(E)) = \exp(N s(\epsilon))$ grows exponentially whenever the entropy per particle is positive. How do we calculate the entropy per particle $s(\epsilon)$ of a typical REM? Can we just use the annealed average \begin{equation} s_{\mathrm{annealed}}(\epsilon) = \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log \left<\Omega(N \epsilon) \right>_{\mathrm{REM}}? \end{equation} Show that $s_{\mathrm{annealed}} = \log2 - \epsilon^2$. \subsubsection*{Not a part just an answer to that question} Sethna says no, because that limit doesn't work in the glassy state below $\epsilon_\ast$. \section{Solution} \label{sec:solution} \subsection*{(a)} We want $\left< \Omega(N\epsilon) \right>_{REM}$. Pretty simply, $\Omega(N \epsilon)$ is the total number of states with a given energy, and the average of that over possible configurations is just the number of possible states $M$ times the probability of any individual state having energy $N \epsilon$, $P(N \epsilon)$: \begin{align} \left< \Omega(N\epsilon) \right>_{REM} &= M P(N \epsilon) \\ &= 2^N \frac{1}{\sqrt{\pi N}} e^{\flatfrac{-(N \epsilon)^2}{N}} \\ &= \frac{1}{\sqrt{\pi N}} e^{N \log 2} e^{\flatfrac{-(N \epsilon)^2}{N}} \\ &= \frac{1}{\sqrt{\pi N}} e^{N \log 2 - \flatfrac{(N \epsilon)^2}{N}} \end{align} This grows exponentially if the argument of the exponential is positive, so \begin{align} N \log 2 &> \frac{(N \epsilon)^2}{N} \\ N^2 \log 2 &> N^2 \epsilon^2 \\ \sqrt{\log 2} &> \abs{\epsilon} \end{align} This is the condition we were asked to show. \subsection*{(b)} We can just jump straight in. \begin{align} s_{\mathrm{annealed}}(\epsilon) &= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log \left<\Omega(N \epsilon) \right>_{\mathrm{REM}} \\ &= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log(\frac{1}{\sqrt{\pi N}} e^{N \log 2 - \flatfrac{(N \epsilon)^2}{N}}) \\ &= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \left( \log \frac{1}{\sqrt{\pi N}} + N \log 2 - \flatfrac{(N \epsilon)^2}{N} \right) \\ &= \lim_{N \rightarrow \infty} \frac{1}{N} \log \frac{1}{\sqrt{\pi N}} + \log 2 - \epsilon^2 \\ \end{align} The first term clearly goes to $0$ for $N \rightarrow \infty$, because it ends up proportional to $\flatfrac{\log{N}}{N}$. So that just leaves the last two terms which are $N$-independent, giving us \begin{equation} s_{\mathrm{annealed}} = \log2 - \epsilon^2. \end{equation} \newpage \listoftodos \end{document}