126 lines
5.8 KiB
TeX
126 lines
5.8 KiB
TeX
\documentclass{article}
|
|
|
|
% set up telugu
|
|
\usepackage{fontspec}
|
|
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
|
|
\usepackage{polyglossia}
|
|
\setdefaultlanguage{english}
|
|
\setotherlanguage{telugu}
|
|
|
|
%other packages
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{physics}
|
|
\usepackage{siunitx}
|
|
\usepackage{todonotes}
|
|
\usepackage[plain]{fancyref}
|
|
\usepackage{luacode}
|
|
\usepackage{titling}
|
|
\usepackage{enumitem}
|
|
|
|
% custom deepak packages
|
|
\usepackage{luatrivially}
|
|
\usepackage{subtitling}
|
|
|
|
\begin{luacode*}
|
|
math.randomseed(31415926)
|
|
\end{luacode*}
|
|
|
|
\title{Problem 1.6}
|
|
\subtitle{Random matrix theory}
|
|
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
|
|
% want empty date
|
|
\predate{}
|
|
\date{}
|
|
\postdate{}
|
|
|
|
% !TeX spellcheck = en_GB
|
|
\begin{document}
|
|
\maketitle
|
|
Gaussian orthogonal ensemble: $N \times N$ matrix, all elements are random numbers with Gaussian distributions of mean zero and $\sigma = 1$.
|
|
So each member from
|
|
\begin{equation}
|
|
\rho_g(x) = \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{x^2}{2}}
|
|
\end{equation}
|
|
Then add with its transpose to make symmetric.
|
|
Let's look at $N = 2$, so $M = \begin{pmatrix}
|
|
a & b \\
|
|
b & c
|
|
\end{pmatrix}$
|
|
\begin{enumerate}[label=(\alph*), start=2]
|
|
\item Show that the eigenvalue difference for $M$ is $\lambda = \sqrt{\left(c - a\right)^2 + 4 b^2} = 2 \sqrt{d^2 + b^2}$, where $d = \flatfrac{\left(c-a\right)}{2}$
|
|
\item Calculate analytically the standard deviation of a diagonal and off-diagonal element of the GOE matrix.
|
|
Calculate the standard deviation of $d = \flatfrac{\left(c - a\right)}{2}$ of $N = 2$ ensemble, and show it equals standard deviation of $b$.
|
|
\end{enumerate}
|
|
\section{Solution} \label{sec:solution}
|
|
\subsection{(b) Eigenvalue differences} \label{subsec:solb}
|
|
The eigenvalues $\nu_{\pm}$ are easy to find.
|
|
Set up the characteristic equation.
|
|
\begin{align}
|
|
0 &= \left(a - \nu\right)\left(c - \nu\right) - b^2 \\
|
|
&= (ac - b^2) - \left(a + c\right) \nu + \nu^2.
|
|
\end{align}
|
|
Therefore
|
|
\begin{align}
|
|
\nu_\pm &= \frac{\left(a + c \right) \pm \sqrt{\left(a + c\right)^2 - 4 \left(ac -b^2\right)}}{2} \\
|
|
\nu_\pm &= \frac{\left(a + c \right) \pm \sqrt{\left(c - a\right)^2 + 4 b^2}}{2}
|
|
\end{align}
|
|
So the difference is $\sqrt{\left(c - a\right)^2 + 4 b^2}$.
|
|
|
|
We have thus $\flatfrac{\lambda^2}{4} = d^2 + b^2$, so the region of between fixed $\lambda$ and $\lambda + \Delta$ is an annulus, around the circle with radius $\flatfrac{\lambda}{2}$.
|
|
|
|
We see that \begin{align}
|
|
\rho(\lambda) &= \int_{(d, b)} \rho(d, b) \dd{d} \dd{b} \\
|
|
&\propto \int_{(d, b)} \rho(d, b) \lambda \dd{\lambda} \dd{\phi} \\
|
|
&\propto 2 \pi \int_{(d, b)} \rho(d, b) \lambda \dd{\lambda}
|
|
\end{align}
|
|
The $\propto$ is because some factors of $2$.
|
|
Important point is that as long as the probability $\rho_M$ is well-enough behaved, then as $\lambda \rightarrow 0$, $\rho(\lambda) \rightarrow 0$.
|
|
Basically because the phase space is shaped like that.
|
|
|
|
\subsection{(c) Standard Deviations}
|
|
|
|
\subsubsection{diagonal elements}
|
|
For the diagonal elements, say $a$, we have a double of a Gaussian variable.
|
|
Therefore for instance $\rho(a) = \rho_g(\flatfrac{a}{2})$.
|
|
\begin{align}
|
|
\rho(a) &\propto \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{a^2}{8}},
|
|
\end{align}
|
|
which means that $\sigma_a = 2$.
|
|
|
|
\subsubsection{off-diagonal} \label{subsec:offdiag}
|
|
For off diagonal elements, say $b$, we have two independent Gaussians being summed.
|
|
\begin{align}
|
|
\rho(b) &= \int_{-\infty}^\infty \dd{x} \rho_g(x) \rho_g(b - x) \\
|
|
\rho(b) &= \int_{-\infty}^\infty \dd{x} \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{x^2}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\flatfrac{(b -x)^2}{2}} \\
|
|
\rho(b) &= \frac{1}{2 \pi} \int_{-\infty}^\infty \dd{x} e^{-\flatfrac{x^2}{2}} e^{-\flatfrac{(b -x)^2}{2}} \\
|
|
\rho(b) &= \frac{1}{2 \pi} \int_{-\infty}^\infty \dd{x} e^{-\flatfrac{\left(x^2 + \left(b - x\right)^2\right)}{2}} \\
|
|
\rho(b) &= \frac{1}{2 \pi} \int_{-\infty}^\infty \dd{x} e^{-\flatfrac{\left(2 x^2 + b^2 - 2 b x\right)}{2}} \\
|
|
\rho(b) &= \frac{1}{2 \pi} e^{- \flatfrac{b^2}{4}} \sqrt{\pi} \\
|
|
\rho(b) &= \frac{1}{\sqrt{2 \pi} \sqrt{2}} e^{- \flatfrac{b^2}{2 \sqrt{2}^2}},
|
|
\end{align}
|
|
which means $\sigma_b = \sqrt{2}$.
|
|
|
|
\subsubsection{standard deviation of difference}
|
|
We want to show that the standard deviation of $d = \flatfrac{\left(c - a\right)}{2}$ is equal to the standard deviation of $b$, $\sqrt{2}$.
|
|
As we see, the numerator gets added in quadrature, $\sigma_d \propto \sqrt{2} \sigma_a$, denominator rescales by $\frac12$, becomes $\sqrt{2}$.
|
|
This exactly parallels the derivation in \cref{subsec:offdiag}.
|
|
In fact, you can pretty easily set up a homomorphism between sums and differences of variables with distributions of Gaussians of other means and standard deviations and distributions that sum in the ways implied by these expressions.\todo{What's the nice categorical view of this stuff? Morphisms of the category of probability spaces to some measurable space.}
|
|
|
|
\subsection{(d) Find the formula for probability distirbution of $\lambda$}
|
|
|
|
The two boys $d$ and $b$ are independent Gaussians, with standard deviations $\sqrt{2}$.
|
|
Remember that $\lambda^2 = 4 d^2 + 4 b^2$, and that $\dd{d} \dd{b} = \frac12 \lambda \dd{\lambda} \dd{\phi}$.
|
|
\begin{align}
|
|
\rho_\lambda &= \int_M \dd{d} \dd{b} \rho_M \delta(\lambda^2 - 4b^2 - 4d^2) \\
|
|
\rho_\lambda &= \pi \int_M \dd{\lambda} \lambda \rho_M \delta(\lambda^2 - 4b^2 - 4d^2) \\
|
|
\rho_\lambda &= 2 \pi \frac{1}{\sqrt{4 \pi}} \frac{1}{\sqrt{4 \pi}} \int_M \dd{\lambda} e^{-\flatfrac{d^2}{4}} e^{-\flatfrac{b^2}{4}} \delta(\lambda^2 - 4b^2 - 4d^2) \\
|
|
\rho_\lambda &= 2 \pi \frac{1}{\sqrt{4 \pi}} \frac{1}{\sqrt{4 \pi}} \frac{1}{4} \int_M \dd{\lambda} \lambda e^{-\flatfrac{\lambda^2}{16}} \delta(\lambda^2 - 4b^2 - 4d^2)
|
|
\end{align}
|
|
And our integrand is as expected.
|
|
|
|
\newpage
|
|
\listoftodos
|
|
|
|
\end{document}
|