138 lines
4.4 KiB
TeX
138 lines
4.4 KiB
TeX
\documentclass{article}
|
|
|
|
% set up telugu
|
|
\usepackage{fontspec}
|
|
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
|
|
\usepackage{polyglossia}
|
|
\setdefaultlanguage{english}
|
|
\setotherlanguage{telugu}
|
|
|
|
%other packages
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{physics}
|
|
\usepackage[binary-units=true]{siunitx}
|
|
\usepackage{todonotes}
|
|
\usepackage{luacode}
|
|
\usepackage{titling}
|
|
\usepackage{enumerate}
|
|
|
|
% custom deepak packages
|
|
\usepackage{luatrivially}
|
|
\usepackage{subtitling}
|
|
|
|
\usepackage{cleveref}
|
|
|
|
\begin{luacode*}
|
|
math.randomseed(31415926)
|
|
\end{luacode*}
|
|
|
|
\newcommand{\kb}{k_{\mathrm{B}}}
|
|
|
|
\title{Problem 5.4}
|
|
\subtitle{Black hole thermodynamics}
|
|
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
|
|
% want empty date
|
|
\predate{}
|
|
\date{}
|
|
\postdate{}
|
|
|
|
% !TeX spellcheck = en_GB
|
|
\begin{document}
|
|
\maketitle
|
|
|
|
A black hole of mass $M$ has radius
|
|
\begin{equation}
|
|
R_s = G \frac{2M}{c^2}.
|
|
\end{equation}
|
|
|
|
Hawking calculated that blackbody radiation emitted from black hole is at temperature:
|
|
\begin{equation}
|
|
T_{bh} = \frac{\hbar c^3}{8 \pi G M \kb}
|
|
\end{equation}
|
|
And use $E = M c^2$ as needed.
|
|
|
|
\subsubsection*{(a) Specific heat}
|
|
Calculate the specific heat of the black hole.
|
|
|
|
\subsubsection*{(b)}
|
|
Calculate the entropy of the black hole, by using the definition of temperature $\flatfrac{1}{T} = \pdv*{S}{E}$ and assuming the entropy is zero at mass $M = 0$.
|
|
Express your result in terms of the surface area $A = 4 \pi R_s^2$, measured in units of the Planck length $L^\ast = \sqrt{\flatfrac{\hbar G}{c^3}}$.
|
|
|
|
\subsubsection*{(c)}
|
|
Calculate the maximum number of bits that can be stored in a sphere of radius one centimeter, in terabytes.
|
|
The Planck length $L^\ast = \sqrt{\flatfrac{\hbar G}{c^3}} \approx \SI{1.6e-35}{\m}$.
|
|
|
|
\section{Solution} \label{sec:solution}
|
|
|
|
\subsection*{(a)}
|
|
|
|
Ultimately we're going to want $C = \pdv{E}{T}$.
|
|
To start let's get $T_{bh}$ out of massland.
|
|
\begin{align}
|
|
T_{bh} &= \frac{\hbar c^3}{8 \pi G M \kb} \\
|
|
T_{bh} &= \frac{\hbar c^3}{8 \pi G \frac{E}{c^2} \kb} \\
|
|
E &= \frac{\hbar c^5}{8 \pi G T_{bh} \kb} \\
|
|
E &= \frac{\hbar c^5}{8 \pi G \kb} \frac{1}{T_{bh}} \label{eq:tempdepe} \\
|
|
\pdv{E}{T} &= \frac{\hbar c^5}{8 \pi G \kb} \pdv{}{T} \frac{1}{T_{bh}} \\
|
|
\pdv{E}{T} &= -\frac{\hbar c^5}{8 \pi G \kb} \frac{1}{T_{bh}^2}
|
|
\end{align}
|
|
|
|
This is negative, as we were told to expect.
|
|
|
|
\subsection*{(b)}
|
|
Our definiton of temperature is $\flatfrac{1}{T} = \pdv*{S}{E}$, so presumable we want to do some kind of guy like
|
|
\begin{equation}
|
|
S(E) - S(E = 0) = \int_{0}^{E} \dd{E'} \frac{1}{T(E')}
|
|
\end{equation}
|
|
We know that $S = 0$ when $M = 0$, which is the same as $E = 0$, so then
|
|
|
|
\begin{equation}
|
|
S(E) = \int_{0}^{E} \dd{E'} \frac{1}{T(E')}
|
|
\end{equation}
|
|
and for $T(E)$ we just plug in an inversion of \cref{eq:tempdepe}.
|
|
|
|
\begin{align}
|
|
\frac{1}{T_{bh}} &= \frac{8 \pi G \kb}{\hbar c^5} E \\
|
|
\int_{0}^{E} \dd{E'} \frac{1}{T(E')} &= \int_{0}^{E} \dd{E'} \frac{8 \pi G \kb}{\hbar c^5} E' \\
|
|
S(E) &= \frac{4 \pi G \kb}{\hbar c^5} E^2 \label{eq:entropyunsimple}
|
|
\end{align}
|
|
|
|
Now we want to write this in better units.
|
|
The Schwarzschild radius is
|
|
\begin{equation}
|
|
R_s = G \frac{2 E}{c^4},
|
|
\end{equation}
|
|
so the surface area $A$ follows
|
|
\begin{align}
|
|
A &= 4 \pi \left(G \frac{2 E}{c^4}, \right)^2 \\
|
|
A &= 16 \pi G^2 \frac{E^2}{c^8}
|
|
\end{align}
|
|
We're told we want this in units of Planck lengths, so
|
|
\begin{align}
|
|
\frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{1}{(L^\ast)^2} \\
|
|
\frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{1}{\flatfrac{\hbar G}{c^3}} \\
|
|
\frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{c^3}{\hbar G} \\
|
|
A_\ast &= 16 \pi G \frac{E^2}{\hbar c^5}
|
|
\end{align}
|
|
Plug this in our $S(E)$ from \cref{eq:entropyunsimple}:
|
|
\begin{align}
|
|
S(E) &= \frac{4 \pi G \kb}{\hbar c^5} E^2 \\
|
|
S(E) &= 16 \pi G \frac{E^2}{\hbar c^5} \frac{\kb}{4} \\
|
|
S(E) &= A_\ast \frac{\kb}{4}
|
|
\end{align}
|
|
and that's a pretty simple result.
|
|
Neato.
|
|
|
|
\subsection*{(c)}
|
|
A bit has two states, so its entropy is $\kb \log 2$.
|
|
And if we have a sphere of radius $\SI{1}{\cm}$, that can be written in Planck lengths as $\SI{1}{\cm} \approx 6.25 \times 10^{32} L^\ast$.
|
|
So the area is $4 \pi$ times that radius squared, and then we divide by 4, then by $\kb \log 2$, we get our answer:
|
|
\begin{equation}
|
|
\frac{S_{\mathrm{black hole}}}{S_{\mathrm{bit}}} \approx \SI{1.77e66}{\bit} = \SI{2.21e53}{\tera\byte}
|
|
\end{equation}
|
|
\newpage
|
|
\listoftodos
|
|
|
|
\end{document}
|