sethna/tex/5.4.tex

138 lines
4.4 KiB
TeX

\documentclass{article}
% set up telugu
\usepackage{fontspec}
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
\usepackage{polyglossia}
\setdefaultlanguage{english}
\setotherlanguage{telugu}
%other packages
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{physics}
\usepackage[binary-units=true]{siunitx}
\usepackage{todonotes}
\usepackage{luacode}
\usepackage{titling}
\usepackage{enumerate}
% custom deepak packages
\usepackage{luatrivially}
\usepackage{subtitling}
\usepackage{cleveref}
\begin{luacode*}
math.randomseed(31415926)
\end{luacode*}
\newcommand{\kb}{k_{\mathrm{B}}}
\title{Problem 5.4}
\subtitle{Black hole thermodynamics}
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
% want empty date
\predate{}
\date{}
\postdate{}
% !TeX spellcheck = en_GB
\begin{document}
\maketitle
A black hole of mass $M$ has radius
\begin{equation}
R_s = G \frac{2M}{c^2}.
\end{equation}
Hawking calculated that blackbody radiation emitted from black hole is at temperature:
\begin{equation}
T_{bh} = \frac{\hbar c^3}{8 \pi G M \kb}
\end{equation}
And use $E = M c^2$ as needed.
\subsubsection*{(a) Specific heat}
Calculate the specific heat of the black hole.
\subsubsection*{(b)}
Calculate the entropy of the black hole, by using the definition of temperature $\flatfrac{1}{T} = \pdv*{S}{E}$ and assuming the entropy is zero at mass $M = 0$.
Express your result in terms of the surface area $A = 4 \pi R_s^2$, measured in units of the Planck length $L^\ast = \sqrt{\flatfrac{\hbar G}{c^3}}$.
\subsubsection*{(c)}
Calculate the maximum number of bits that can be stored in a sphere of radius one centimeter, in terabytes.
The Planck length $L^\ast = \sqrt{\flatfrac{\hbar G}{c^3}} \approx \SI{1.6e-35}{\m}$.
\section{Solution} \label{sec:solution}
\subsection*{(a)}
Ultimately we're going to want $C = \pdv{E}{T}$.
To start let's get $T_{bh}$ out of massland.
\begin{align}
T_{bh} &= \frac{\hbar c^3}{8 \pi G M \kb} \\
T_{bh} &= \frac{\hbar c^3}{8 \pi G \frac{E}{c^2} \kb} \\
E &= \frac{\hbar c^5}{8 \pi G T_{bh} \kb} \\
E &= \frac{\hbar c^5}{8 \pi G \kb} \frac{1}{T_{bh}} \label{eq:tempdepe} \\
\pdv{E}{T} &= \frac{\hbar c^5}{8 \pi G \kb} \pdv{}{T} \frac{1}{T_{bh}} \\
\pdv{E}{T} &= -\frac{\hbar c^5}{8 \pi G \kb} \frac{1}{T_{bh}^2}
\end{align}
This is negative, as we were told to expect.
\subsection*{(b)}
Our definiton of temperature is $\flatfrac{1}{T} = \pdv*{S}{E}$, so presumable we want to do some kind of guy like
\begin{equation}
S(E) - S(E = 0) = \int_{0}^{E} \dd{E'} \frac{1}{T(E')}
\end{equation}
We know that $S = 0$ when $M = 0$, which is the same as $E = 0$, so then
\begin{equation}
S(E) = \int_{0}^{E} \dd{E'} \frac{1}{T(E')}
\end{equation}
and for $T(E)$ we just plug in an inversion of \cref{eq:tempdepe}.
\begin{align}
\frac{1}{T_{bh}} &= \frac{8 \pi G \kb}{\hbar c^5} E \\
\int_{0}^{E} \dd{E'} \frac{1}{T(E')} &= \int_{0}^{E} \dd{E'} \frac{8 \pi G \kb}{\hbar c^5} E' \\
S(E) &= \frac{4 \pi G \kb}{\hbar c^5} E^2 \label{eq:entropyunsimple}
\end{align}
Now we want to write this in better units.
The Schwarzschild radius is
\begin{equation}
R_s = G \frac{2 E}{c^4},
\end{equation}
so the surface area $A$ follows
\begin{align}
A &= 4 \pi \left(G \frac{2 E}{c^4}, \right)^2 \\
A &= 16 \pi G^2 \frac{E^2}{c^8}
\end{align}
We're told we want this in units of Planck lengths, so
\begin{align}
\frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{1}{(L^\ast)^2} \\
\frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{1}{\flatfrac{\hbar G}{c^3}} \\
\frac{A}{(L^\ast)^2} &= 16 \pi G^2 \frac{E^2}{c^8} \frac{c^3}{\hbar G} \\
A_\ast &= 16 \pi G \frac{E^2}{\hbar c^5}
\end{align}
Plug this in our $S(E)$ from \cref{eq:entropyunsimple}:
\begin{align}
S(E) &= \frac{4 \pi G \kb}{\hbar c^5} E^2 \\
S(E) &= 16 \pi G \frac{E^2}{\hbar c^5} \frac{\kb}{4} \\
S(E) &= A_\ast \frac{\kb}{4}
\end{align}
and that's a pretty simple result.
Neato.
\subsection*{(c)}
A bit has two states, so its entropy is $\kb \log 2$.
And if we have a sphere of radius $\SI{1}{\cm}$, that can be written in Planck lengths as $\SI{1}{\cm} \approx 6.25 \times 10^{32} L^\ast$.
So the area is $4 \pi$ times that radius squared, and then we divide by 4, then by $\kb \log 2$, we get our answer:
\begin{equation}
\frac{S_{\mathrm{black hole}}}{S_{\mathrm{bit}}} \approx \SI{1.77e66}{\bit} = \SI{2.21e53}{\tera\byte}
\end{equation}
\newpage
\listoftodos
\end{document}