167 lines
5.4 KiB
TeX
167 lines
5.4 KiB
TeX
\documentclass{article}
|
|
|
|
% set up telugu
|
|
\usepackage{fontspec}
|
|
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
|
|
\usepackage{polyglossia}
|
|
\setdefaultlanguage{english}
|
|
\setotherlanguage{telugu}
|
|
|
|
%other packages
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{physics}
|
|
\usepackage{siunitx}
|
|
\usepackage{todonotes}
|
|
\usepackage{luacode}
|
|
\usepackage{titling}
|
|
\usepackage{enumitem}
|
|
\usepackage{mathtools}
|
|
|
|
% custom deepak packages
|
|
\usepackage{luatrivially}
|
|
\usepackage{subtitling}
|
|
|
|
\usepackage{cleveref}
|
|
|
|
\begin{luacode*}
|
|
math.randomseed(31415926)
|
|
\end{luacode*}
|
|
|
|
\newcommand{\kb}{k_{\mathrm{B}}}
|
|
\newcommand{\defeq}{\vcentcolon=}
|
|
%\newcommand{\defeq}{\equiv}
|
|
|
|
\title{Problem 3.11}
|
|
\subtitle{Maxwell Relations}
|
|
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
|
|
% want empty date
|
|
\predate{}
|
|
\date{}
|
|
\postdate{}
|
|
|
|
% !TeX spellcheck = en_GB
|
|
\begin{document}
|
|
\maketitle
|
|
|
|
We want to derive our Maxwell relations based on our thermodynamic potentials.
|
|
For convenience work in units where $\kb = 1$, (if you want to put it back, just put it in front of the temperatures).
|
|
Start these with our \emph{definitions}:
|
|
\begin{align}
|
|
\frac{1}{T} &\defeq \left. \pdv{S}{E} \right|_{V, N} \label{eq:defT} \\
|
|
\frac{P}{T} &\defeq \left. \pdv{S}{V} \right|_{E, N} \label{eq:defP} \\
|
|
\frac{\mu}{T} &\defeq \left. \pdv{S}{N} \right|_{E, V} \label{eq:defMu}
|
|
\end{align}
|
|
|
|
Show the following:
|
|
\begin{enumerate}[label=(\alph*)]
|
|
\item \begin{equation}
|
|
\left. \pdv{T}{V} \right|_{S, N} = - \left. \pdv{P}{S} \right|_{V, N}
|
|
\end{equation}
|
|
\item \begin{equation}
|
|
\left. \pdv{C_P}{P} \right|_{T} = - T \left. \pdv[2]{V}{T} \right|_{P}
|
|
\end{equation}
|
|
\item \begin{equation}
|
|
\left. \pdv{E}{P} \right|_{T} = - T \left. \pdv{V}{T} \right|_{P} - P \left. \pdv{V}{P} \right|_T
|
|
\end{equation}
|
|
\item \begin{equation}
|
|
\left. \pdv{E}{T} \right|_{P} = C_P - P \left. \pdv{V}{T} \right|_P
|
|
\end{equation}
|
|
\item \begin{equation}
|
|
\left. \pdv{T}{V} \right|_{S} = - \frac{T}{C_V} \left. \pdv{S}{V} \right|_T
|
|
\end{equation}
|
|
\item \begin{equation}
|
|
\left. \pdv{T}{P} \right|_{S} = - \frac{T}{C_P} \left. \pdv{S}{P} \right|_{T}
|
|
\end{equation}
|
|
\item \begin{equation}
|
|
\left. \pdv{V}{T} \right|_{P} = - \frac{C_P}{T} \left. \pdv{T}{V} \right|_{S} \left. \pdv{V}{P} \right|_S
|
|
\end{equation}
|
|
\item \begin{equation}
|
|
\left. \pdv{P}{V} \right|_{S} = \left. \pdv{P}{V} \right|_{T} - \frac{T}{C_V} \left( \left. \pdv{P}{T} \right|_V \right)^2
|
|
\end{equation}
|
|
\end{enumerate}
|
|
|
|
\section{Solution} \label{sec:solution}
|
|
|
|
These can either be manipulated by thinking in terms of manipulating expressions like $\dd{E} = T \dd{S} - P \dd{V} + \mu \dd{N}$ casually, using the `physicist's identities' strategy, or by doing it more formally.
|
|
Being too informal runs the risk of accidentally working off the wrong intuition, like the minus signs if we write a chain rule too casually:
|
|
\begin{equation}
|
|
\pdv{P}{V} \neq \pdv{P}{T} \pdv{T}{V},
|
|
\end{equation}
|
|
but instead
|
|
\begin{equation}
|
|
\pdv{P}{V} = - \pdv{P}{T} \pdv{T}{V}!
|
|
\end{equation}
|
|
Why?
|
|
Because these aren't actually compatible chain rule derivatives, we're ignoring what we're holding constant.
|
|
Which is why it's useful to write the labels for what's not changing for these guys.
|
|
It's actually
|
|
\begin{equation}
|
|
\left. \pdv{P}{V} \right|_{T} = - \left. \pdv{P}{T} \right|_{V} \left. \pdv{T}{V} \right|_{P}.
|
|
\end{equation}
|
|
|
|
|
|
Our two main operational identities are the cyclic triple product relation:
|
|
\begin{equation}
|
|
\left. \pdv{x}{y} \right|_{z} \left. \pdv{y}{z} \right|_{x} \left. \pdv{z}{x} \right|_{y} = - 1 \label{eq:trip}
|
|
\end{equation}
|
|
and the inverse derivative relation:
|
|
\begin{equation}
|
|
\left. \pdv{x}{y} \right|_{z} = \flatfrac{1}{\left( \left. \pdv{y}{x} \right|_{z} \right)}. \label{eq:inv}
|
|
\end{equation}
|
|
Those basically just let us write things down.
|
|
|
|
\subsection{(a)}
|
|
|
|
Want to show
|
|
\item \begin{equation}
|
|
\left. \pdv{T}{V} \right|_{S, N} = - \left. \pdv{P}{S} \right|_{V, N}
|
|
\end{equation}
|
|
|
|
Start with the expression
|
|
\begin{equation}
|
|
\pdv[2]{E}{V_{S, N}}{S_{V, N}},
|
|
\end{equation}
|
|
where the subscript in the denominator tells us what we're keeping constant.
|
|
If $E$ is sufficiently well-behaved (fun question, what're the necessary and sufficient conditions here?), then these derivatives commute:
|
|
\begin{align}
|
|
\pdv[2]{E}{V_{S, N}}{S_{V, N}} &= \pdv[2]{E}{S_{V, N}}{V_{S, N}}
|
|
\end{align}
|
|
The lhs starts with the reciprocal (using \cref{eq:inv}) and our temperature definition \cref{eq:defT}, and the $V$ derivative in the rhs comes out of the triple product rule \cref{eq:trip,eq:defP}.
|
|
|
|
\begin{align}
|
|
\pdv{T}{V_{S, N}} &= - \pdv{P}{S_{V, N}}
|
|
\end{align}
|
|
|
|
\subection{(b)}
|
|
|
|
We want:
|
|
\begin{equation}
|
|
\left. \pdv{C_P}{P} \right|_{T} = - T \left. \pdv[2]{V}{T} \right|_{P}
|
|
\end{equation}
|
|
|
|
By definition:
|
|
\begin{equation}
|
|
C_P = T \left. \pdv{S}{T} \right|_{P}
|
|
\end{equation}
|
|
|
|
Let's start by looking at the expression and do the commutativity of derivatives thing (again subscripting for what we're holding constant).
|
|
\begin{align}
|
|
T \pdv[2]{S}{P_T}{T_P} &= T \pdv[2]{S}{T_P}{P_T} \\
|
|
\pdv{C_P}{P_T} &= T \pdv[2]{S}{T_P}{P_T} \\
|
|
\pdv{C_P}{P_T} &= - T \pdv[2]{V}{T_P}
|
|
\end{align}
|
|
where on the right hand side we've used our result from part (a).
|
|
|
|
\subsection{(c)}
|
|
|
|
Want
|
|
\begin{equation}
|
|
\left. \pdv{E}{T} \right|_{P} = - \frac{T}{C_P} \left. \pdv{S}{P} \right|_{T}
|
|
\end{equation}
|
|
|
|
\newpage
|
|
\listoftodos
|
|
|
|
\end{document}
|