initial binning commit
Some checks failed
gitea-physics/tantri/pipeline/head There was a failure building this commit
Some checks failed
gitea-physics/tantri/pipeline/head There was a failure building this commit
This commit is contained in:
parent
f91df4227d
commit
bb7f87239f
3
tantri/binning/__init__.py
Normal file
3
tantri/binning/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Binning data.
|
||||
"""
|
125
tantri/binning/binning.py
Normal file
125
tantri/binning/binning.py
Normal file
@ -0,0 +1,125 @@
|
||||
import typing
|
||||
import numpy
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BinConfig:
|
||||
log_scale: bool # true means that our bins of the x coordinate will be in
|
||||
# if linear scale (not log_scale) then the semantics are
|
||||
# min_x, min_x + bin_width, .... min_x + A * bin_width, max_x (and the last bin may not be evenly spaced)
|
||||
# if log_scale then log(min_x), log(min_x) + bin_width, log(min_x) + 2 bin_width etc.
|
||||
# (so essentially the units of bin_width depend on log_scale)
|
||||
bin_width: float
|
||||
# never log, will be logarithmed if needed
|
||||
bin_min: typing.Optional[float] = None
|
||||
|
||||
# note that min_points_required must be >= 2
|
||||
min_points_required: int = 2
|
||||
|
||||
def __post_init__(self):
|
||||
if self.min_points_required < 2:
|
||||
raise ValueError(
|
||||
f"Can't compute summary statistics with bins of size < 2, so {self.min_points_required} is invalid"
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BinSummaryValue:
|
||||
mean_y: float
|
||||
stdev_y: float
|
||||
|
||||
|
||||
def _summarise_values(ys: numpy.ndarray) -> BinSummaryValue:
|
||||
mean_y = ys.mean(axis=0).item()
|
||||
stdev_y = ys.std(axis=0, ddof=1).item()
|
||||
return BinSummaryValue(mean_y, stdev_y)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BinSummary:
|
||||
mean_x: float
|
||||
summary_values: typing.Dict[str, BinSummaryValue]
|
||||
|
||||
|
||||
@dataclass
|
||||
class Bin:
|
||||
bindex: int # this is going to be very specific to a particular binning but hey let's include it
|
||||
x_min: float
|
||||
# points is a tuple of (freqs, value_dicts: Dict[str, numpy.ndarray])
|
||||
# this conforms well to APSD result
|
||||
point_xs: numpy.ndarray
|
||||
point_y_dict: typing.Dict[str, numpy.ndarray]
|
||||
|
||||
def mean_point(self) -> typing.Tuple[float, typing.Dict[str, float]]:
|
||||
mean_x = self.point_xs.mean(axis=0).item()
|
||||
mean_y_dict = {k: v.mean(axis=0).item() for k, v in self.point_y_dict.items()}
|
||||
return (mean_x, mean_y_dict)
|
||||
|
||||
def summary_point(self) -> BinSummary:
|
||||
mean_x = self.point_xs.mean(axis=0).item()
|
||||
summary_dict = {k: _summarise_values(v) for k, v in self.point_y_dict.items()}
|
||||
return BinSummary(mean_x, summary_dict)
|
||||
|
||||
def stdev_ys(self) -> typing.Dict[str, float]:
|
||||
return {k: v.std(axis=0, ddof=1).item() for k, v in self.point_y_dict.items()}
|
||||
|
||||
|
||||
def _construct_bins(xs: numpy.ndarray, bin_config: BinConfig) -> numpy.ndarray:
|
||||
min_x = numpy.min(xs)
|
||||
|
||||
# if the bin config requested bin_min is None, then we can ignore it.
|
||||
|
||||
if bin_config.bin_min is not None:
|
||||
_logger.debug(f"Received a desired bin_min={bin_config.bin_min}")
|
||||
if bin_config.bin_min > min_x:
|
||||
raise ValueError(
|
||||
f"The lowest x value of {xs=} was {min_x=}, which is lower than the requested bin_min={bin_config.bin_min}"
|
||||
)
|
||||
else:
|
||||
_logger.debug(f"Setting minimum to {bin_config.bin_min}")
|
||||
min_x = bin_config.bin_min
|
||||
|
||||
max_x = numpy.max(xs)
|
||||
num_points = numpy.ceil(1 + (max_x - min_x) / bin_config.bin_width)
|
||||
return min_x + (numpy.arange(0, num_points) * bin_config.bin_width)
|
||||
|
||||
|
||||
def _populate_bins(
|
||||
xs: numpy.ndarray, ys: typing.Dict[str, numpy.ndarray], bins: numpy.ndarray
|
||||
) -> typing.Sequence[Bin]:
|
||||
indexes = numpy.digitize(xs, bins) - 1
|
||||
output_bins = []
|
||||
|
||||
seen = set()
|
||||
|
||||
for bindex in indexes:
|
||||
if bindex not in seen:
|
||||
seen.add(bindex)
|
||||
|
||||
matched_x = xs[indexes == bindex]
|
||||
matched_output_dict = {k: v[indexes == bindex] for k, v in ys.items()}
|
||||
output_bins.append(
|
||||
Bin(
|
||||
bindex,
|
||||
x_min=bins[bindex].item(),
|
||||
point_xs=matched_x,
|
||||
point_y_dict=matched_output_dict,
|
||||
)
|
||||
)
|
||||
|
||||
return output_bins
|
||||
|
||||
|
||||
def bin_lists(
|
||||
xs: numpy.ndarray, ys: typing.Dict[str, numpy.ndarray], bin_config: BinConfig
|
||||
) -> typing.Sequence[Bin]:
|
||||
bins = _construct_bins(xs, bin_config)
|
||||
raw_bins = _populate_bins(xs, ys, bins)
|
||||
return [
|
||||
bin for bin in raw_bins if len(bin.point_xs) >= bin_config.min_points_required
|
||||
]
|
45
tests/binning/__snapshots__/test_binning.ambr
Normal file
45
tests/binning/__snapshots__/test_binning.ambr
Normal file
@ -0,0 +1,45 @@
|
||||
# serializer version: 1
|
||||
# name: test_group_x_bins
|
||||
list([
|
||||
Bin(bindex=0, x_min=1.0, point_xs=array([1. , 2.8, 8. ]), point_y_dict={'identity_plus_one': array([ 3. , 4.8, 10. ])}),
|
||||
Bin(bindex=1, x_min=9.0, point_xs=array([12.2, 13.6]), point_y_dict={'identity_plus_one': array([14.2, 15.6])}),
|
||||
Bin(bindex=2, x_min=17.0, point_xs=array([17. , 19.71, 20. , 24. ]), point_y_dict={'identity_plus_one': array([19. , 21.71, 22. , 26. ])}),
|
||||
Bin(bindex=4, x_min=33.0, point_xs=array([33.]), point_y_dict={'identity_plus_one': array([35.])}),
|
||||
])
|
||||
# ---
|
||||
# name: test_group_x_bins_mean
|
||||
list([
|
||||
tuple(
|
||||
3.9333333333333336,
|
||||
dict({
|
||||
'identity_plus_one': 5.933333333333334,
|
||||
}),
|
||||
),
|
||||
tuple(
|
||||
12.899999999999999,
|
||||
dict({
|
||||
'identity_plus_one': 14.899999999999999,
|
||||
}),
|
||||
),
|
||||
tuple(
|
||||
20.177500000000002,
|
||||
dict({
|
||||
'identity_plus_one': 22.177500000000002,
|
||||
}),
|
||||
),
|
||||
tuple(
|
||||
33.0,
|
||||
dict({
|
||||
'identity_plus_one': 35.0,
|
||||
}),
|
||||
),
|
||||
])
|
||||
# ---
|
||||
# name: test_group_x_bins_summary
|
||||
list([
|
||||
BinSummary(mean_x=3.9333333333333336, summary_values={'identity_plus_one': BinSummaryValue(mean_y=5.933333333333334, stdev_y=3.635014901390823)}),
|
||||
BinSummary(mean_x=12.899999999999999, summary_values={'identity_plus_one': BinSummaryValue(mean_y=14.899999999999999, stdev_y=0.9899494936611668)}),
|
||||
BinSummary(mean_x=20.177500000000002, summary_values={'identity_plus_one': BinSummaryValue(mean_y=22.177500000000002, stdev_y=2.884329789280923)}),
|
||||
BinSummary(mean_x=33.0, summary_values={'identity_plus_one': BinSummaryValue(mean_y=35.0, stdev_y=nan)}),
|
||||
])
|
||||
# ---
|
111
tests/binning/test_binning.py
Normal file
111
tests/binning/test_binning.py
Normal file
@ -0,0 +1,111 @@
|
||||
import pytest
|
||||
import tantri.binning.binning as binning
|
||||
import numpy
|
||||
|
||||
|
||||
def test_bin_construction_faulty_min():
|
||||
x_list = numpy.array([5, 6, 7, 8])
|
||||
|
||||
bin_config = binning.BinConfig(log_scale=False, bin_width=0.8, bin_min=5.5)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
binning._construct_bins(x_list, bin_config)
|
||||
|
||||
|
||||
def test_bin_construction_force_min():
|
||||
x_list = numpy.array([4.5, 5.5, 6.5, 7.5, 8.5])
|
||||
|
||||
bin_config = binning.BinConfig(log_scale=False, bin_width=1, bin_min=2)
|
||||
|
||||
expected_bins = numpy.array([2, 3, 4, 5, 6, 7, 8, 9])
|
||||
|
||||
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
||||
numpy.testing.assert_allclose(
|
||||
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
||||
)
|
||||
|
||||
|
||||
def test_bin_construction_even():
|
||||
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
||||
|
||||
bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
||||
expected_bins = numpy.array([1, 9, 17, 25, 33])
|
||||
|
||||
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
||||
numpy.testing.assert_allclose(
|
||||
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
||||
)
|
||||
|
||||
|
||||
def test_bin_construction_uneven():
|
||||
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
||||
|
||||
bin_config = binning.BinConfig(log_scale=False, bin_width=7)
|
||||
expected_bins = numpy.array([1, 8, 15, 22, 29, 36])
|
||||
|
||||
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
||||
numpy.testing.assert_allclose(
|
||||
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
||||
)
|
||||
|
||||
|
||||
def test_bin_construction_uneven_non_integer():
|
||||
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
||||
|
||||
bin_config = binning.BinConfig(log_scale=False, bin_width=7.5)
|
||||
expected_bins = numpy.array([1, 8.5, 16, 23.5, 31, 38.5])
|
||||
|
||||
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
||||
numpy.testing.assert_allclose(
|
||||
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
||||
)
|
||||
|
||||
|
||||
def test_group_x_bins(snapshot):
|
||||
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
||||
y_dict = {
|
||||
"identity_plus_one": (
|
||||
numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2
|
||||
)
|
||||
}
|
||||
|
||||
bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
||||
# expected_bins = numpy.array([1, 9, 17, 25, 33])
|
||||
|
||||
binned = binning.bin_lists(x_list, y_dict, bin_config)
|
||||
|
||||
assert binned == snapshot
|
||||
|
||||
|
||||
def test_group_x_bins_mean(snapshot):
|
||||
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
||||
y_dict = {
|
||||
"identity_plus_one": (
|
||||
numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2
|
||||
)
|
||||
}
|
||||
|
||||
bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
||||
# expected_bins = numpy.array([1, 9, 17, 25, 33])
|
||||
|
||||
binned = binning.bin_lists(x_list, y_dict, bin_config)
|
||||
mean_binned = [bin.mean_point() for bin in binned]
|
||||
|
||||
assert mean_binned == snapshot
|
||||
|
||||
|
||||
def test_group_x_bins_summary(snapshot):
|
||||
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
||||
y_dict = {
|
||||
"identity_plus_one": (
|
||||
numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2
|
||||
)
|
||||
}
|
||||
|
||||
bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
||||
# expected_bins = numpy.array([1, 9, 17, 25, 33])
|
||||
|
||||
binned = binning.bin_lists(x_list, y_dict, bin_config)
|
||||
summary = [bin.summary_point() for bin in binned]
|
||||
|
||||
assert summary == snapshot
|
Loading…
x
Reference in New Issue
Block a user