import pytest import tantri.binning.binning as binning import numpy def test_bin_construction_faulty_min(): x_list = numpy.array([5, 6, 7, 8]) bin_config = binning.BinConfig(log_scale=False, bin_width=0.8, bin_min=5.5) with pytest.raises(ValueError): binning._construct_bins(x_list, bin_config) def test_bin_construction_force_min(): x_list = numpy.array([4.5, 5.5, 6.5, 7.5, 8.5]) bin_config = binning.BinConfig(log_scale=False, bin_width=1, bin_min=2) expected_bins = numpy.array([2, 3, 4, 5, 6, 7, 8, 9]) actual_bins = binning._construct_bins(x_list, bin_config=bin_config) numpy.testing.assert_allclose( actual_bins, expected_bins, err_msg="The bins were not as expected" ) def test_bin_construction_even(): x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) bin_config = binning.BinConfig(log_scale=False, bin_width=8) expected_bins = numpy.array([1, 9, 17, 25, 33]) actual_bins = binning._construct_bins(x_list, bin_config=bin_config) numpy.testing.assert_allclose( actual_bins, expected_bins, err_msg="The bins were not as expected" ) def test_bin_construction_uneven(): x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) bin_config = binning.BinConfig(log_scale=False, bin_width=7) expected_bins = numpy.array([1, 8, 15, 22, 29, 36]) actual_bins = binning._construct_bins(x_list, bin_config=bin_config) numpy.testing.assert_allclose( actual_bins, expected_bins, err_msg="The bins were not as expected" ) def test_bin_construction_uneven_non_integer(): x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) bin_config = binning.BinConfig(log_scale=False, bin_width=7.5) expected_bins = numpy.array([1, 8.5, 16, 23.5, 31, 38.5]) actual_bins = binning._construct_bins(x_list, bin_config=bin_config) numpy.testing.assert_allclose( actual_bins, expected_bins, err_msg="The bins were not as expected" ) def test_group_x_bins(snapshot): x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) y_dict = { "identity_plus_one": ( numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2 ) } bin_config = binning.BinConfig(log_scale=False, bin_width=8) # expected_bins = numpy.array([1, 9, 17, 25, 33]) binned = binning.bin_lists(x_list, y_dict, bin_config) assert binned == snapshot def test_group_x_bins_mean(snapshot): x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) y_dict = { "identity_plus_one": ( numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2 ) } bin_config = binning.BinConfig(log_scale=False, bin_width=8) # expected_bins = numpy.array([1, 9, 17, 25, 33]) binned = binning.bin_lists(x_list, y_dict, bin_config) mean_binned = [bin.mean_point() for bin in binned] assert mean_binned == snapshot def test_group_x_bins_summary(snapshot): x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) y_dict = { "identity_plus_one": ( numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2 ) } bin_config = binning.BinConfig(log_scale=False, bin_width=8) # expected_bins = numpy.array([1, 9, 17, 25, 33]) binned = binning.bin_lists(x_list, y_dict, bin_config) summary = [bin.summary_point() for bin in binned] assert summary == snapshot