240 lines
6.6 KiB
Python
240 lines
6.6 KiB
Python
import pytest
|
|
import tantri.binning.binning as binning
|
|
import numpy
|
|
|
|
|
|
def test_bin_config_validation():
|
|
with pytest.raises(ValueError):
|
|
binning.BinConfig(log_scale=False, bin_width=1, min_points_required=1)
|
|
|
|
|
|
def test_bin_construction_faulty_min():
|
|
x_list = numpy.array([5, 6, 7, 8])
|
|
|
|
bin_config = binning.BinConfig(log_scale=False, bin_width=0.8, bin_min=5.5)
|
|
|
|
with pytest.raises(ValueError):
|
|
binning._construct_bins(x_list, bin_config)
|
|
|
|
|
|
def test_bin_construction_force_min():
|
|
x_list = numpy.array([4.5, 5.5, 6.5, 7.5, 8.5])
|
|
|
|
bin_config = binning.BinConfig(log_scale=False, bin_width=1, bin_min=2)
|
|
|
|
expected_bins = numpy.array([2, 3, 4, 5, 6, 7, 8, 9])
|
|
|
|
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
|
numpy.testing.assert_allclose(
|
|
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
|
)
|
|
|
|
|
|
def test_bin_construction_even():
|
|
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
|
|
|
bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
|
expected_bins = numpy.array([1, 9, 17, 25, 33])
|
|
|
|
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
|
numpy.testing.assert_allclose(
|
|
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
|
)
|
|
|
|
|
|
def test_bin_construction_uneven():
|
|
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
|
|
|
bin_config = binning.BinConfig(log_scale=False, bin_width=7)
|
|
expected_bins = numpy.array([1, 8, 15, 22, 29, 36])
|
|
|
|
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
|
numpy.testing.assert_allclose(
|
|
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
|
)
|
|
|
|
|
|
def test_bin_construction_uneven_non_integer():
|
|
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
|
|
|
bin_config = binning.BinConfig(log_scale=False, bin_width=7.5)
|
|
expected_bins = numpy.array([1, 8.5, 16, 23.5, 31, 38.5])
|
|
|
|
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
|
numpy.testing.assert_allclose(
|
|
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
|
)
|
|
|
|
|
|
def test_group_x_bins(snapshot):
|
|
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
|
y_dict = {
|
|
"identity_plus_one": (
|
|
numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2
|
|
)
|
|
}
|
|
|
|
bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
|
# expected_bins = numpy.array([1, 9, 17, 25, 33])
|
|
|
|
binned = binning.bin_lists(x_list, y_dict, bin_config)
|
|
|
|
assert binned == snapshot
|
|
|
|
|
|
def test_group_x_bins_mean(snapshot):
|
|
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
|
y_dict = {
|
|
"identity_plus_one": (
|
|
numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2
|
|
)
|
|
}
|
|
|
|
bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
|
# expected_bins = numpy.array([1, 9, 17, 25, 33])
|
|
|
|
binned = binning.bin_lists(x_list, y_dict, bin_config)
|
|
mean_binned = [bin.mean_point() for bin in binned]
|
|
|
|
assert mean_binned == snapshot
|
|
|
|
|
|
def test_group_x_bins_summary(snapshot):
|
|
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
|
y_dict = {
|
|
"identity_plus_one": (
|
|
numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2
|
|
)
|
|
}
|
|
|
|
bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
|
# expected_bins = numpy.array([1, 9, 17, 25, 33])
|
|
|
|
binned = binning.bin_lists(x_list, y_dict, bin_config)
|
|
summary = [bin.summary_point() for bin in binned]
|
|
|
|
assert summary == snapshot
|
|
|
|
|
|
def test_bin_construction_faulty_min_log_scale():
|
|
x_list = numpy.array([5, 6, 7, 8])
|
|
|
|
bin_config = binning.BinConfig(log_scale=True, bin_width=0.8, bin_min=5.5)
|
|
|
|
with pytest.raises(ValueError):
|
|
binning._construct_bins(x_list, bin_config)
|
|
|
|
|
|
def test_bin_construction_force_min_log():
|
|
"""
|
|
This test shows the main use ofthe bin_min parameter, if we want our bins to nicely line up with decades for example,
|
|
then we can force it by ignoring the provided minimum x.
|
|
"""
|
|
x_list = numpy.array([1500, 5000, 10000, 33253, 400000])
|
|
|
|
bin_config = binning.BinConfig(log_scale=True, bin_width=1, bin_min=10)
|
|
|
|
expected_bins = numpy.array([10, 100, 1000, 10000, 100000, 1000000])
|
|
|
|
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
|
numpy.testing.assert_allclose(
|
|
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
|
)
|
|
|
|
|
|
def test_bin_construction_even_log_scale():
|
|
x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
|
|
|
# bin width of 0.3 corresponds to 10^0.3 ~= 2, so we're roughly looking at
|
|
bin_config = binning.BinConfig(log_scale=True, bin_width=0.3)
|
|
expected_bins = numpy.array(
|
|
[
|
|
1.00000000000,
|
|
1.99526231497,
|
|
3.98107170553,
|
|
7.94328234724,
|
|
15.8489319246,
|
|
31.6227766017,
|
|
63.0957344480,
|
|
]
|
|
)
|
|
|
|
actual_bins = binning._construct_bins(x_list, bin_config=bin_config)
|
|
numpy.testing.assert_allclose(
|
|
actual_bins, expected_bins, err_msg="The bins were not as expected"
|
|
)
|
|
|
|
|
|
def test_group_x_bins_log(snapshot):
|
|
x_list = numpy.array(
|
|
[
|
|
0.00158489,
|
|
0.00363078,
|
|
0.0398107,
|
|
0.275423,
|
|
0.524807,
|
|
2.51189,
|
|
8.74984,
|
|
10.0,
|
|
63.0957,
|
|
3981.07,
|
|
]
|
|
)
|
|
y_dict = {
|
|
"basic_lorentzian": numpy.array(
|
|
[
|
|
0.159154,
|
|
0.15915,
|
|
0.158535,
|
|
0.134062,
|
|
0.0947588,
|
|
0.00960602,
|
|
0.000838084,
|
|
0.000642427,
|
|
0.0000162008,
|
|
4.06987e-9,
|
|
]
|
|
)
|
|
}
|
|
|
|
bin_config = binning.BinConfig(log_scale=True, bin_width=2)
|
|
# expected_bins = numpy.array([1, 9, 17, 25, 33])
|
|
|
|
binned = binning.bin_lists(x_list, y_dict, bin_config)
|
|
|
|
assert binned == snapshot
|
|
|
|
|
|
def test_group_x_bins_mean_log(snapshot):
|
|
x_list = numpy.array([0.0158489, 0.0316228, 0.0794328, 0.158489, 0.17378, 0.316228, 0.944061, 0.977237, 0.988553, 3.16228, 5.01187, 15.8489, 25.1189, 31.6228, 158.489, 630.957])
|
|
y_dict = {
|
|
"basic_lorentzian": (
|
|
numpy.array([0.159056, 0.158763, 0.156715, 0.149866, 0.148118, 0.127657, 0.0497503, 0.0474191, 0.0466561, 0.00619907, 0.00252714, 0.000256378, 0.000102165, 0.0000644769, 2.56787e-6, 1.62024e-7])
|
|
)
|
|
}
|
|
|
|
bin_config = binning.BinConfig(log_scale=True, bin_width=1, bin_min=-2)
|
|
# expected_bins = numpy.array([1, 9, 17, 25, 33])
|
|
|
|
binned = binning.bin_lists(x_list, y_dict, bin_config)
|
|
mean_binned = [bin.mean_point() for bin in binned]
|
|
|
|
assert mean_binned == snapshot
|
|
|
|
|
|
# def test_group_x_bins_summary(snapshot):
|
|
# x_list = numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33])
|
|
# y_dict = {
|
|
# "identity_plus_one": (
|
|
# numpy.array([1, 2.8, 8, 12.2, 13.6, 17, 19.71, 20, 24, 33]) + 2
|
|
# )
|
|
# }
|
|
|
|
# bin_config = binning.BinConfig(log_scale=False, bin_width=8)
|
|
# # expected_bins = numpy.array([1, 9, 17, 25, 33])
|
|
|
|
# binned = binning.bin_lists(x_list, y_dict, bin_config)
|
|
# summary = [bin.summary_point() for bin in binned]
|
|
|
|
# assert summary == snapshot
|