Adds figure calcs

This commit is contained in:
2021-02-04 18:20:33 -06:00
parent 3add53f772
commit 71f01c9faf
7 changed files with 150 additions and 3 deletions

1
.gitignore vendored
View File

@@ -8,7 +8,6 @@ dist
*.toc
*.log
*.pdf
*.jpg
*.bbl
*.bcf
*.blg

View File

@@ -7,6 +7,7 @@ WS := wolframscript -f
#
PDF_DIR := pdfs
FIG_DIR := figures
CALC_DIR := calcs
### Here we go
#
@@ -26,10 +27,23 @@ $(PDF_DIR):
mkdir $(PDF_DIR)
$(FIG_DIR):
mkdir -p $(FIG_DIR)
$(CALC_DIR):
mkdir -p $(CALC_DIR)
## Figures
#
FIGURES := $(FIG_DIR)/Cond1Im.jpg
$(FIG_DIR)/Cond1Im.jpg: scripts/Cond1ImFigure.wls
$(WS) scripts/Cond1ImFigure.wls
FIGURES += $(FIG_DIR)/Cond1Re.jpg
$(FIG_DIR)/Cond1Re.jpg: scripts/Cond1ReFigure.wls
$(WS) scripts/Cond1ReFigure.wls
## Making main.pdf and other pdfs
#
$(PDF_DIR)/paper.pdf: paper.tex $(MAIN_PDF_DEPS) | $(PDF_DIR)
$(PDF_DIR)/paper.pdf: paper.tex $(MAIN_PDF_DEPS) | $(PDF_DIR) $(FIGURES)
$(LATEXMK) $(<F)
cp $(@F) $@

BIN
figures/Cond1Im.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

BIN
figures/Cond1Re.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

View File

@@ -114,7 +114,7 @@ The Lindhard dielectric function reflects the important property of having an im
This is a very generic feature of these types of response functions, and occurs because there are no points on the assumed spherical Fermi surface further than $2 q_{\mathrm{F}}$ apart.
Thus, there are no available quasiparticle-hole excitations available for energy dissipation (cf discussion in \cite{AGD}, \cite{FetterWalecka} or \cite{SolyomV3}).
This is a general argument, and it should be expected that a superconducting dielectric function should also have zero imaginary part above some momentum on the order of the Fermi momentum.
Because the Lindhard dielectric function's imaginary part vanishes above a cutoff $q_c\left(\omega\right)$ and has real part that goes as $\frac{1}{q^2}$, all of the integrals in $\eqref{eq:chi}, \eqref{eq:zp} and \eqref{eq:zs}$ converge.
Because the Lindhard dielectric function's imaginary part vanishes above a cutoff $q_c\left(\omega\right)$ and has real part that goes as $\Re \epsilon_{\mathrm{Lindhard}} - 1 \sim \frac{1}{q^2}$, all of the integrals in $\eqref{eq:chi}, \eqref{eq:zp} and \eqref{eq:zs}$ converge.
We use the expressions from Nam in~\cite{Nam1967} to represent the superconducting response function.
This extends the previous models by Mattis and Bardeen~\cite{Mattis} and Abrikosov, Dzyaloshinskii and Gorkov\cite{AGD} to give expressions that allow for broader ranges of impurity values.\todo{Including the full expressions from Nam here is a bit space-prohibitive, but it may be important to show exactly what our assumptions encode to in his notation? ex: by assuming no magnetic impurities, our renormalisation factor becomes simpler.}

67
scripts/Cond1ImFigure.wls Normal file
View File

@@ -0,0 +1,67 @@
Needs["namConductivity`"];
Needs["namAsymptoticLowKConductivity`"];
(* Defines lindhard functions *)
epsL[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ, omegapP_?NumericQ,
tauP_?NumericQ] :=
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
prefactor = 3*(omegapP^2)/(omegaP^2)},
1 + ((prefactor)/(u^2))*(1 + ((1 + I*s)/(2*u))*
Log[(1 - u + I*s)/(1 + u + I*s)])/(1 + ((I*s)/(2*u))*
Log[(1 - u + I*s)/(1 + u + I*s)])];
epsSeries[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ,
omegapP_?NumericQ, tauP_?NumericQ] :=
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
prefactor = 3*(omegapP^2)/(omegaP^2)},
1 + ((prefactor)) ((I/(3*(s - I))) +
u^2*(-9*I + 5*s)/(45*(-I + s)^3))];
epsEf[q_?NumericQ, omega_?NumericQ, vf_?NumericQ, omegap_?NumericQ,
tau_?NumericQ] :=
epsEf[q, omega, vf, omegap, tau] =
Piecewise[{{epsSeries[q, omega, vf, omegap, tau],
q < .01 * omega / vf}, {epsL[q, omega, vf, omegap, tau],
q >= .01 * omega / vf}}];
(* Nam stuff *)
makeDimensionlessParams[\[Omega]_, \[Sigma]n_, \[Tau]_, vf_, T_, Tc_] :=
With[{\[CapitalDelta] =
3.06*Sqrt[
Tc*(Tc - T)]}, <|\[Xi] -> \[Omega]/\[CapitalDelta], \[Nu] ->
1/(\[CapitalDelta]*\[Tau]), A -> \[Omega]*vf/(1*\[CapitalDelta]),
t -> T/\[CapitalDelta], B -> \[Sigma]n/\[Omega],
C -> vf/\[CapitalDelta]|>];
omega = 1;
tau := .5;
omegaPlasma := 10;
sigmaN := omegaPlasma^2 * tau / (4 * Pi);
vf := 1
tempCritical := 3
temp := .9999 * tempCritical
params := makeDimensionlessParams[omega, sigmaN, tau, vf, temp, tempCritical]
Print[params];
epsNam2[q_, ps_] := With[
{k = ps[C] * q},
1 + 4 * Pi * I *
ps[B] * \[CapitalSigma][ps[\[Xi]], k, ps[\[Nu]], ps[t]]
];
(* Populates the figures directory as ../figures *)
figuresDirectory = FileNameJoin[{
ParentDirectory[
DirectoryName[
FileNameJoin[{
Directory[],
$ScriptCommandLine[[1]]
}]
]
], "figures"
}];
figure[filename_] := FileNameJoin[{figuresDirectory, filename}];
plot1 = LogLinearPlot[ {Im@epsEf[q, omega, vf, omegaPlasma, tau], Im@epsNam2[q, params]} , {q, 0, 10^2}, ImageSize -> Large, AxesLabel -> {"q", StringForm["Re[\[Epsilon](q, \[Omega] = 1)]"]}, PlotRange -> All, PlotLegends -> {Lindhard, Nam}, ImagePadding -> {{50, Automatic}, {Automatic, Automatic}}];
Export[figure["Cond1Im.jpg"], plot1, ImageResolution -> 1200];

67
scripts/Cond1ReFigure.wls Normal file
View File

@@ -0,0 +1,67 @@
Needs["namConductivity`"];
Needs["namAsymptoticLowKConductivity`"];
(* Defines lindhard functions *)
epsL[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ, omegapP_?NumericQ,
tauP_?NumericQ] :=
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
prefactor = 3*(omegapP^2)/(omegaP^2)},
1 + ((prefactor)/(u^2))*(1 + ((1 + I*s)/(2*u))*
Log[(1 - u + I*s)/(1 + u + I*s)])/(1 + ((I*s)/(2*u))*
Log[(1 - u + I*s)/(1 + u + I*s)])];
epsSeries[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ,
omegapP_?NumericQ, tauP_?NumericQ] :=
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
prefactor = 3*(omegapP^2)/(omegaP^2)},
1 + ((prefactor)) ((I/(3*(s - I))) +
u^2*(-9*I + 5*s)/(45*(-I + s)^3))];
epsEf[q_?NumericQ, omega_?NumericQ, vf_?NumericQ, omegap_?NumericQ,
tau_?NumericQ] :=
epsEf[q, omega, vf, omegap, tau] =
Piecewise[{{epsSeries[q, omega, vf, omegap, tau],
q < .01 * omega / vf}, {epsL[q, omega, vf, omegap, tau],
q >= .01 * omega / vf}}];
(* Nam stuff *)
makeDimensionlessParams[\[Omega]_, \[Sigma]n_, \[Tau]_, vf_, T_, Tc_] :=
With[{\[CapitalDelta] =
3.06*Sqrt[
Tc*(Tc - T)]}, <|\[Xi] -> \[Omega]/\[CapitalDelta], \[Nu] ->
1/(\[CapitalDelta]*\[Tau]), A -> \[Omega]*vf/(1*\[CapitalDelta]),
t -> T/\[CapitalDelta], B -> \[Sigma]n/\[Omega],
C -> vf/\[CapitalDelta]|>];
omega = 1;
tau := .5;
omegaPlasma := 10;
sigmaN := omegaPlasma^2 * tau / (4 * Pi);
vf := 1
tempCritical := 3
temp := .9999 * tempCritical
params := makeDimensionlessParams[omega, sigmaN, tau, vf, temp, tempCritical]
Print[params];
epsNam2[q_, ps_] := With[
{k = ps[C] * q},
1 + 4 * Pi * I *
ps[B] * \[CapitalSigma][ps[\[Xi]], k, ps[\[Nu]], ps[t]]
];
(* Populates the figures directory as ../figures *)
figuresDirectory = FileNameJoin[{
ParentDirectory[
DirectoryName[
FileNameJoin[{
Directory[],
$ScriptCommandLine[[1]]
}]
]
], "figures"
}];
figure[filename_] := FileNameJoin[{figuresDirectory, filename}];
plot1 = LogLinearPlot[ {Re@epsEf[q, omega, vf, omegaPlasma, tau], Re@epsNam2[q, params]} , {q, 0, 10^2}, ImageSize -> Large, AxesLabel -> {"q", StringForm["Re[\[Epsilon](q, \[Omega] = 1)]"]}, PlotRange -> All, PlotLegends -> {Lindhard, Nam}, ImagePadding -> {{50, Automatic}, {Automatic, Automatic}}];
Export[figure["Cond1Re.jpg"], plot1, ImageResolution -> 1200];