mirror of
https://github.com/dmallubhotla/nam_paper.git
synced 2025-12-16 18:03:32 +00:00
Adds figure calcs
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -8,7 +8,6 @@ dist
|
||||
*.toc
|
||||
*.log
|
||||
*.pdf
|
||||
*.jpg
|
||||
*.bbl
|
||||
*.bcf
|
||||
*.blg
|
||||
|
||||
16
Makefile
16
Makefile
@@ -7,6 +7,7 @@ WS := wolframscript -f
|
||||
#
|
||||
PDF_DIR := pdfs
|
||||
FIG_DIR := figures
|
||||
CALC_DIR := calcs
|
||||
|
||||
### Here we go
|
||||
#
|
||||
@@ -26,10 +27,23 @@ $(PDF_DIR):
|
||||
mkdir $(PDF_DIR)
|
||||
$(FIG_DIR):
|
||||
mkdir -p $(FIG_DIR)
|
||||
$(CALC_DIR):
|
||||
mkdir -p $(CALC_DIR)
|
||||
|
||||
## Figures
|
||||
#
|
||||
|
||||
FIGURES := $(FIG_DIR)/Cond1Im.jpg
|
||||
$(FIG_DIR)/Cond1Im.jpg: scripts/Cond1ImFigure.wls
|
||||
$(WS) scripts/Cond1ImFigure.wls
|
||||
|
||||
FIGURES += $(FIG_DIR)/Cond1Re.jpg
|
||||
$(FIG_DIR)/Cond1Re.jpg: scripts/Cond1ReFigure.wls
|
||||
$(WS) scripts/Cond1ReFigure.wls
|
||||
|
||||
## Making main.pdf and other pdfs
|
||||
#
|
||||
$(PDF_DIR)/paper.pdf: paper.tex $(MAIN_PDF_DEPS) | $(PDF_DIR)
|
||||
$(PDF_DIR)/paper.pdf: paper.tex $(MAIN_PDF_DEPS) | $(PDF_DIR) $(FIGURES)
|
||||
$(LATEXMK) $(<F)
|
||||
cp $(@F) $@
|
||||
|
||||
|
||||
BIN
figures/Cond1Im.jpg
Normal file
BIN
figures/Cond1Im.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.2 MiB |
BIN
figures/Cond1Re.jpg
Normal file
BIN
figures/Cond1Re.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.2 MiB |
@@ -114,7 +114,7 @@ The Lindhard dielectric function reflects the important property of having an im
|
||||
This is a very generic feature of these types of response functions, and occurs because there are no points on the assumed spherical Fermi surface further than $2 q_{\mathrm{F}}$ apart.
|
||||
Thus, there are no available quasiparticle-hole excitations available for energy dissipation (cf discussion in \cite{AGD}, \cite{FetterWalecka} or \cite{SolyomV3}).
|
||||
This is a general argument, and it should be expected that a superconducting dielectric function should also have zero imaginary part above some momentum on the order of the Fermi momentum.
|
||||
Because the Lindhard dielectric function's imaginary part vanishes above a cutoff $q_c\left(\omega\right)$ and has real part that goes as $\frac{1}{q^2}$, all of the integrals in $\eqref{eq:chi}, \eqref{eq:zp} and \eqref{eq:zs}$ converge.
|
||||
Because the Lindhard dielectric function's imaginary part vanishes above a cutoff $q_c\left(\omega\right)$ and has real part that goes as $\Re \epsilon_{\mathrm{Lindhard}} - 1 \sim \frac{1}{q^2}$, all of the integrals in $\eqref{eq:chi}, \eqref{eq:zp} and \eqref{eq:zs}$ converge.
|
||||
|
||||
We use the expressions from Nam in~\cite{Nam1967} to represent the superconducting response function.
|
||||
This extends the previous models by Mattis and Bardeen~\cite{Mattis} and Abrikosov, Dzyaloshinskii and Gorkov\cite{AGD} to give expressions that allow for broader ranges of impurity values.\todo{Including the full expressions from Nam here is a bit space-prohibitive, but it may be important to show exactly what our assumptions encode to in his notation? ex: by assuming no magnetic impurities, our renormalisation factor becomes simpler.}
|
||||
|
||||
67
scripts/Cond1ImFigure.wls
Normal file
67
scripts/Cond1ImFigure.wls
Normal file
@@ -0,0 +1,67 @@
|
||||
Needs["namConductivity`"];
|
||||
Needs["namAsymptoticLowKConductivity`"];
|
||||
|
||||
(* Defines lindhard functions *)
|
||||
epsL[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ, omegapP_?NumericQ,
|
||||
tauP_?NumericQ] :=
|
||||
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
|
||||
prefactor = 3*(omegapP^2)/(omegaP^2)},
|
||||
1 + ((prefactor)/(u^2))*(1 + ((1 + I*s)/(2*u))*
|
||||
Log[(1 - u + I*s)/(1 + u + I*s)])/(1 + ((I*s)/(2*u))*
|
||||
Log[(1 - u + I*s)/(1 + u + I*s)])];
|
||||
epsSeries[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ,
|
||||
omegapP_?NumericQ, tauP_?NumericQ] :=
|
||||
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
|
||||
prefactor = 3*(omegapP^2)/(omegaP^2)},
|
||||
1 + ((prefactor)) ((I/(3*(s - I))) +
|
||||
u^2*(-9*I + 5*s)/(45*(-I + s)^3))];
|
||||
epsEf[q_?NumericQ, omega_?NumericQ, vf_?NumericQ, omegap_?NumericQ,
|
||||
tau_?NumericQ] :=
|
||||
epsEf[q, omega, vf, omegap, tau] =
|
||||
Piecewise[{{epsSeries[q, omega, vf, omegap, tau],
|
||||
q < .01 * omega / vf}, {epsL[q, omega, vf, omegap, tau],
|
||||
q >= .01 * omega / vf}}];
|
||||
|
||||
(* Nam stuff *)
|
||||
makeDimensionlessParams[\[Omega]_, \[Sigma]n_, \[Tau]_, vf_, T_, Tc_] :=
|
||||
With[{\[CapitalDelta] =
|
||||
3.06*Sqrt[
|
||||
Tc*(Tc - T)]}, <|\[Xi] -> \[Omega]/\[CapitalDelta], \[Nu] ->
|
||||
1/(\[CapitalDelta]*\[Tau]), A -> \[Omega]*vf/(1*\[CapitalDelta]),
|
||||
t -> T/\[CapitalDelta], B -> \[Sigma]n/\[Omega],
|
||||
C -> vf/\[CapitalDelta]|>];
|
||||
|
||||
|
||||
omega = 1;
|
||||
tau := .5;
|
||||
omegaPlasma := 10;
|
||||
sigmaN := omegaPlasma^2 * tau / (4 * Pi);
|
||||
vf := 1
|
||||
tempCritical := 3
|
||||
temp := .9999 * tempCritical
|
||||
params := makeDimensionlessParams[omega, sigmaN, tau, vf, temp, tempCritical]
|
||||
Print[params];
|
||||
|
||||
epsNam2[q_, ps_] := With[
|
||||
{k = ps[C] * q},
|
||||
1 + 4 * Pi * I *
|
||||
ps[B] * \[CapitalSigma][ps[\[Xi]], k, ps[\[Nu]], ps[t]]
|
||||
];
|
||||
|
||||
(* Populates the figures directory as ../figures *)
|
||||
figuresDirectory = FileNameJoin[{
|
||||
ParentDirectory[
|
||||
DirectoryName[
|
||||
FileNameJoin[{
|
||||
Directory[],
|
||||
$ScriptCommandLine[[1]]
|
||||
}]
|
||||
]
|
||||
], "figures"
|
||||
}];
|
||||
|
||||
figure[filename_] := FileNameJoin[{figuresDirectory, filename}];
|
||||
|
||||
plot1 = LogLinearPlot[ {Im@epsEf[q, omega, vf, omegaPlasma, tau], Im@epsNam2[q, params]} , {q, 0, 10^2}, ImageSize -> Large, AxesLabel -> {"q", StringForm["Re[\[Epsilon](q, \[Omega] = 1)]"]}, PlotRange -> All, PlotLegends -> {Lindhard, Nam}, ImagePadding -> {{50, Automatic}, {Automatic, Automatic}}];
|
||||
|
||||
Export[figure["Cond1Im.jpg"], plot1, ImageResolution -> 1200];
|
||||
67
scripts/Cond1ReFigure.wls
Normal file
67
scripts/Cond1ReFigure.wls
Normal file
@@ -0,0 +1,67 @@
|
||||
Needs["namConductivity`"];
|
||||
Needs["namAsymptoticLowKConductivity`"];
|
||||
|
||||
(* Defines lindhard functions *)
|
||||
epsL[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ, omegapP_?NumericQ,
|
||||
tauP_?NumericQ] :=
|
||||
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
|
||||
prefactor = 3*(omegapP^2)/(omegaP^2)},
|
||||
1 + ((prefactor)/(u^2))*(1 + ((1 + I*s)/(2*u))*
|
||||
Log[(1 - u + I*s)/(1 + u + I*s)])/(1 + ((I*s)/(2*u))*
|
||||
Log[(1 - u + I*s)/(1 + u + I*s)])];
|
||||
epsSeries[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ,
|
||||
omegapP_?NumericQ, tauP_?NumericQ] :=
|
||||
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
|
||||
prefactor = 3*(omegapP^2)/(omegaP^2)},
|
||||
1 + ((prefactor)) ((I/(3*(s - I))) +
|
||||
u^2*(-9*I + 5*s)/(45*(-I + s)^3))];
|
||||
epsEf[q_?NumericQ, omega_?NumericQ, vf_?NumericQ, omegap_?NumericQ,
|
||||
tau_?NumericQ] :=
|
||||
epsEf[q, omega, vf, omegap, tau] =
|
||||
Piecewise[{{epsSeries[q, omega, vf, omegap, tau],
|
||||
q < .01 * omega / vf}, {epsL[q, omega, vf, omegap, tau],
|
||||
q >= .01 * omega / vf}}];
|
||||
|
||||
(* Nam stuff *)
|
||||
makeDimensionlessParams[\[Omega]_, \[Sigma]n_, \[Tau]_, vf_, T_, Tc_] :=
|
||||
With[{\[CapitalDelta] =
|
||||
3.06*Sqrt[
|
||||
Tc*(Tc - T)]}, <|\[Xi] -> \[Omega]/\[CapitalDelta], \[Nu] ->
|
||||
1/(\[CapitalDelta]*\[Tau]), A -> \[Omega]*vf/(1*\[CapitalDelta]),
|
||||
t -> T/\[CapitalDelta], B -> \[Sigma]n/\[Omega],
|
||||
C -> vf/\[CapitalDelta]|>];
|
||||
|
||||
|
||||
omega = 1;
|
||||
tau := .5;
|
||||
omegaPlasma := 10;
|
||||
sigmaN := omegaPlasma^2 * tau / (4 * Pi);
|
||||
vf := 1
|
||||
tempCritical := 3
|
||||
temp := .9999 * tempCritical
|
||||
params := makeDimensionlessParams[omega, sigmaN, tau, vf, temp, tempCritical]
|
||||
Print[params];
|
||||
|
||||
epsNam2[q_, ps_] := With[
|
||||
{k = ps[C] * q},
|
||||
1 + 4 * Pi * I *
|
||||
ps[B] * \[CapitalSigma][ps[\[Xi]], k, ps[\[Nu]], ps[t]]
|
||||
];
|
||||
|
||||
(* Populates the figures directory as ../figures *)
|
||||
figuresDirectory = FileNameJoin[{
|
||||
ParentDirectory[
|
||||
DirectoryName[
|
||||
FileNameJoin[{
|
||||
Directory[],
|
||||
$ScriptCommandLine[[1]]
|
||||
}]
|
||||
]
|
||||
], "figures"
|
||||
}];
|
||||
|
||||
figure[filename_] := FileNameJoin[{figuresDirectory, filename}];
|
||||
|
||||
plot1 = LogLinearPlot[ {Re@epsEf[q, omega, vf, omegaPlasma, tau], Re@epsNam2[q, params]} , {q, 0, 10^2}, ImageSize -> Large, AxesLabel -> {"q", StringForm["Re[\[Epsilon](q, \[Omega] = 1)]"]}, PlotRange -> All, PlotLegends -> {Lindhard, Nam}, ImagePadding -> {{50, Automatic}, {Automatic, Automatic}}];
|
||||
|
||||
Export[figure["Cond1Re.jpg"], plot1, ImageResolution -> 1200];
|
||||
Reference in New Issue
Block a user