Adds logarithm branch cut

This commit is contained in:
2021-02-03 17:36:46 -06:00
parent 56b332d21a
commit ca22ccbcdd

View File

@@ -107,6 +107,7 @@ Using the form described by Solyom\cite{SolyomV3},
\epsilon_{\mathrm{Lindhard}}(\vec{q}, \omega) = 1 + \frac{q_{TF}^2}{q^2}\frac{\displaystyle 1 + \frac{\omega + \flatfrac{i}{\tau}}{2 \vf q} \ln(\frac{\omega - \vf q + \flatfrac{i}{\tau}}{\omega + \vf q + \flatfrac{i}{\tau}})}{\displaystyle 1 + \frac{\flatfrac{i}{\tau}}{2 \vf q} \ln(\frac{\omega - \vf q + \flatfrac{i}{\tau}}{\omega + \vf q + \flatfrac{i}{\tau}})}. \label{eq:lindhardsolyom}
\end{equation}
Here, $q_{TF}$ is the Thomas-Fermi wavevector $q_{TF}^2 = 3 \flatfrac{\omega_p^2}{\vf^2}$, $\omega_p$ is the plasma frequency $\sqrt{\flatfrac{4 \pi n e^2}{m}}$, $\tau$ is the collision time and $\vf$ is the Fermi velocity.
The branch cut for the logarithm is chosen here such that their imaginary parts lie between $\pm i \pi$.
This can be shown to reduce to the Drude dielectric function in the $q \rightarrow 0$ limit.
The Lindhard dielectric function reflects the important property of having an imaginary part that vanishes for $q$ such that $\abs{\varepsilon_q - \omega} > q\vf$.