feat: adds direct monte carlo package
This commit is contained in:
parent
9a4548def4
commit
1741807be4
3
deepdog/direct_monte_carlo/__init__.py
Normal file
3
deepdog/direct_monte_carlo/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloRun, DirectMonteCarloConfig
|
||||
|
||||
__all__ = ["DirectMonteCarloRun", "DirectMonteCarloConfig"]
|
146
deepdog/direct_monte_carlo/direct_mc.py
Normal file
146
deepdog/direct_monte_carlo/direct_mc.py
Normal file
@ -0,0 +1,146 @@
|
||||
import pdme.model
|
||||
import pdme.measurement
|
||||
import pdme.measurement.input_types
|
||||
import pdme.subspace_simulation
|
||||
from typing import Tuple, Sequence
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
import numpy
|
||||
import numpy.random
|
||||
import pdme.util.fast_v_calc
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DirectMonteCarloResult:
|
||||
successes: int
|
||||
monte_carlo_count: int
|
||||
likelihood: float
|
||||
|
||||
@dataclass
|
||||
class DirectMonteCarloConfig:
|
||||
monte_carlo_count_per_cycle: int = 10000
|
||||
monte_carlo_cycles: int = 10
|
||||
target_success: int = 100
|
||||
max_monte_carlo_cycles_steps: int = 10
|
||||
monte_carlo_seed: int = 1234
|
||||
write_successes_to_file: bool = False
|
||||
tag: str = ""
|
||||
|
||||
class DirectMonteCarloRun:
|
||||
"""
|
||||
A single model Direct Monte Carlo run, currently implemented only using single threading.
|
||||
An encapsulation of the steps needed for a Bayes run.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model_name_pair : Sequence[Tuple(str, pdme.model.DipoleModel)]
|
||||
The model to evaluate, with name.
|
||||
|
||||
measurements: Sequence[pdme.measurement.DotRangeMeasurement]
|
||||
The measurements as dot ranges to use as the bounds for the Monte Carlo calculation.
|
||||
|
||||
monte_carlo_count_per_cycle: int
|
||||
The number of Monte Carlo iterations to use in a single cycle calculation.
|
||||
|
||||
monte_carlo_cycles: int
|
||||
The number of cycles to use in each step.
|
||||
Increasing monte_carlo_count_per_cycle increases memory usage (and runtime), while this increases runtime, allowing
|
||||
control over memory use.
|
||||
|
||||
target_success: int
|
||||
The number of successes to target before exiting early.
|
||||
Should likely be ~100 but can go higher to.
|
||||
|
||||
max_monte_carlo_cycles_steps: int
|
||||
The number of steps to use. Each step consists of monte_carlo_cycles cycles, each of which has monte_carlo_count_per_cycle iterations.
|
||||
|
||||
monte_carlo_seed: int
|
||||
The seed to use for the RNG.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name_pair: Tuple[str, pdme.model.DipoleModel],
|
||||
measurements: Sequence[pdme.measurement.DotRangeMeasurement],
|
||||
config: DirectMonteCarloConfig,
|
||||
):
|
||||
self.model_name, self.model = model_name_pair
|
||||
|
||||
self.measurements = measurements
|
||||
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
|
||||
|
||||
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||
self.dot_inputs
|
||||
)
|
||||
|
||||
self.config = config
|
||||
(
|
||||
self.lows,
|
||||
self.highs,
|
||||
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||
self.measurements
|
||||
)
|
||||
def _single_run(self, seed) -> numpy.ndarray:
|
||||
rng = numpy.random.default_rng(seed)
|
||||
|
||||
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
|
||||
self.config.monte_carlo_count_per_cycle, -1, rng
|
||||
)
|
||||
|
||||
current_sample = sample_dipoles
|
||||
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
|
||||
|
||||
if len(current_sample) < 1:
|
||||
break
|
||||
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
|
||||
numpy.array([di]), current_sample
|
||||
)
|
||||
|
||||
current_sample = current_sample[numpy.all((vals > low) & (vals < high), axis=1)]
|
||||
return current_sample
|
||||
|
||||
def execute(self) -> DirectMonteCarloResult:
|
||||
step_count = 0
|
||||
total_success = 0
|
||||
total_count = 0
|
||||
|
||||
count_per_step = self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
|
||||
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
|
||||
while (
|
||||
(step_count < self.config.max_monte_carlo_cycles_steps) and
|
||||
(total_success < self.config.target_success)
|
||||
):
|
||||
_logger.debug(f"Executing step {step_count}")
|
||||
for cycle_i, seed in enumerate(seed_sequence.spawn(self.config.monte_carlo_cycles)):
|
||||
cycle_success_configs = self._single_run(seed)
|
||||
cycle_success_count = len(cycle_success_configs)
|
||||
if cycle_success_count > 0:
|
||||
_logger.debug(f"For cycle {cycle_i} received {cycle_success_count} successes")
|
||||
_logger.debug(cycle_success_configs)
|
||||
if self.config.write_successes_to_file:
|
||||
sorted_by_freq = numpy.array(
|
||||
[
|
||||
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(dipole_config)
|
||||
for dipole_config in cycle_success_configs
|
||||
]
|
||||
)
|
||||
dipole_count = numpy.array(cycle_success_configs).shape[1]
|
||||
for n in range(dipole_count):
|
||||
numpy.savetxt(
|
||||
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
|
||||
sorted_by_freq[:, n],
|
||||
delimiter=",",
|
||||
)
|
||||
total_success += cycle_success_count
|
||||
_logger.debug(f"At end of step {step_count} have {total_success} successes")
|
||||
step_count += 1
|
||||
total_count += count_per_step
|
||||
|
||||
|
||||
return DirectMonteCarloResult(
|
||||
successes=total_success,
|
||||
monte_carlo_count=total_count,
|
||||
likelihood=total_success/total_count
|
||||
)
|
Loading…
x
Reference in New Issue
Block a user