Compare commits

..

5 Commits
0.3.1 ... 0.3.3

Author SHA1 Message Date
fb4b012491 chore(release): 0.3.3
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2022-03-06 17:23:15 -06:00
8617e4d274 fix: Fixes count to use cycles as well
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-03-06 17:22:52 -06:00
fe2af1644e chore(release): 0.3.2
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2022-03-06 17:18:42 -06:00
e6d8d33c27 feat: Adds monte carlo cycles to trade off space and cpu 2022-03-06 17:18:24 -06:00
e00dc95f02 docs: readme badges
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-03-06 16:48:49 -06:00
4 changed files with 47 additions and 8 deletions

View File

@@ -2,6 +2,20 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [0.3.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.3.2...0.3.3) (2022-03-06)
### Bug Fixes
* Fixes count to use cycles as well ([8617e4d](https://gitea.deepak.science:2222/physics/deepdog/commit/8617e4d2742b112cc824068150682ce3b2cdd879))
### [0.3.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.3.1...0.3.2) (2022-03-06)
### Features
* Adds monte carlo cycles to trade off space and cpu ([e6d8d33](https://gitea.deepak.science:2222/physics/deepdog/commit/e6d8d33c27e7922581e91c10de4f5faff2a51f8b))
### [0.3.1](https://gitea.deepak.science:2222/physics/deepdog/compare/v0.3.0...v0.3.1) (2022-03-06)

View File

@@ -1,3 +1,18 @@
# deepdog
The dipole diagnostic tool.
[![Conventional Commits](https://img.shields.io/badge/Conventional%20Commits-1.0.0-green.svg?style=flat-square)](https://conventionalcommits.org)
[![PyPI](https://img.shields.io/pypi/v/deepdog?style=flat-square)](https://pypi.org/project/deepdog/)
[![Jenkins](https://img.shields.io/jenkins/build?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster&style=flat-square)](https://jenkins.deepak.science/job/gitea-physics/job/deepdog/job/master/)
![Jenkins tests](https://img.shields.io/jenkins/tests?compact_message&jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Jenkins Coverage](https://img.shields.io/jenkins/coverage/cobertura?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2022?style=flat-square)
The DiPole DiaGnostic tool.
## Getting started
`poetry install` to start locally
Commit using [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/), and when commits are on master, release with `doo release`.

View File

@@ -4,6 +4,7 @@ import pdme.util.fast_v_calc
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
@@ -19,6 +20,13 @@ DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_result(input) -> int:
discretisation, dot_inputs, lows, highs, monte_carlo_count, max_frequency = input
sample_dipoles = discretisation.get_model().get_n_single_dipoles(monte_carlo_count, max_frequency)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
class AltBayesRun():
'''
A single Bayes run for a given set of dots.
@@ -36,7 +44,7 @@ class AltBayesRun():
run_count: int
The number of runs to do.
'''
def __init__(self, dot_inputs: Sequence[DotInput], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int, low_error: float = 0.9, high_error: float = 1.1, monte_carlo_count: int = 10000, max_frequency: float = 20, end_threshold: float = None) -> None:
def __init__(self, dot_inputs: Sequence[DotInput], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int, low_error: float = 0.9, high_error: float = 1.1, monte_carlo_count: int = 10000, monte_carlo_cycles: int = 10, max_frequency: float = 20, end_threshold: float = None) -> None:
self.dot_inputs = dot_inputs
self.dot_inputs_array = pdme.measurement.oscillating_dipole.dot_inputs_to_array(dot_inputs)
self.discretisations = [disc for (_, disc) in discretisations_with_names]
@@ -44,6 +52,7 @@ class AltBayesRun():
self.actual_model = actual_model
self.model_count = len(self.discretisations)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
@@ -87,9 +96,10 @@ class AltBayesRun():
_logger.debug("Going to iterate over discretisations now")
for disc_count, discretisation in enumerate(self.discretisations):
_logger.debug(f"Doing discretisation #{disc_count}")
sample_dipoles = discretisation.get_model().get_n_single_dipoles(self.monte_carlo_count, self.max_frequency)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(self.dot_inputs_array, sample_dipoles)
results.append(numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs)))
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
results.append(sum(
pool.imap_unordered(get_a_result, [(discretisation, self.dot_inputs_array, lows, highs, self.monte_carlo_count, self.max_frequency)] * self.monte_carlo_cycles)
))
_logger.debug("Done, constructing output now")
row = {
@@ -102,9 +112,9 @@ class AltBayesRun():
for model_index, (name, result) in enumerate(zip(self.model_names, results)):
row[f"{name}_success"] = result
row[f"{name}_count"] = self.monte_carlo_count
row[f"{name}_count"] = self.monte_carlo_count * self.monte_carlo_cycles
successes.append(max(result, 0.5))
counts.append(self.monte_carlo_count)
counts.append(self.monte_carlo_count * self.monte_carlo_cycles)
success_weight = sum([(succ / count) * prob for succ, count, prob in zip(successes, counts, self.probabilities)])
new_probabilities = [(succ / count) * old_prob / success_weight for succ, count, old_prob in zip(successes, counts, self.probabilities)]

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "deepdog"
version = "0.3.1"
version = "0.3.3"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]