Compare commits

...

33 Commits
0.6.1 ... 0.6.6

Author SHA1 Message Date
959b9af378 chore(release): 0.6.6
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2023-04-09 18:13:40 -05:00
8fd1b75e13 fix: removes bad logging in multiprocessing function
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-04-09 18:12:57 -05:00
17ae84879d chore(release): 0.6.5
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-04-09 17:42:44 -05:00
fc2880ba2f build: changes default container to be accurate
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-04-09 17:38:38 -05:00
589c16f25c build: removing unneeded env vars for poetry
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-04-09 17:37:23 -05:00
743c3e22ae build: use pre-built poetry image
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-04-09 17:35:37 -05:00
b3e2acd79c chore: updates maintained readme
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-04-09 17:32:44 -05:00
de1ec3e700 feat: adds temp aware guy using new pdme temp-flexible feature for bundling temp models
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-04-09 17:30:30 -05:00
f4964a19ea chore(release): 0.6.4
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2022-08-13 15:52:17 -05:00
08d73c73e9 Merge pull request 'feat: Prints model names while running' (#21) from printnames into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #21
2022-08-13 20:49:03 +00:00
7ea1d715f6 feat: Prints model names while running
Some checks are pending
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master Build queued...
2022-08-13 11:10:00 -05:00
ed102799d1 Merge pull request 'chore(deps): update dependency mypy to ^0.971' (#18) from renovate/mypy-0.x into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #18
2022-07-20 19:07:24 +00:00
0b8d14ef48 chore(deps): update dependency mypy to ^0.971
Some checks reported errors
gitea-physics/deepdog/pipeline/pr-master This commit looks good
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
2022-07-20 01:31:30 +00:00
a5d0d257d7 Merge pull request 'nix' (#15) from nix into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #15
2022-06-13 13:47:00 +00:00
6ee995e561 Merge branch 'master' into nix
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-06-13 13:23:08 +00:00
a217ad2c75 nix: updates nixpkgs and uses workaround for pdme build-system
Some checks are pending
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master Build queued...
2022-06-13 08:18:55 -05:00
039f68ee97 deps: pins specific scipy and numpy version 2022-06-13 08:16:53 -05:00
e9dd21f69b chore(release): 0.6.3
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2022-06-12 17:35:08 -05:00
8303fc7860 nix: flake lock 2022-06-12 10:45:01 -05:00
2418e3a263 nix: adds nix direnv stuff to gitignore 2022-06-12 10:43:17 -05:00
73465203b2 nix: adds flake.nix 2022-06-12 10:42:45 -05:00
01ba4af229 Merge pull request 'fastfilter' (#14) from fastfilter into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #14
2022-06-12 13:51:47 +00:00
2c5c122820 feat: adds fast filter variant
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-06-11 21:06:27 -05:00
0a1a27759b feat: adds tester for fast filter real spectrum 2022-06-11 12:40:32 -05:00
558a4df643 Merge pull request 'chore(deps): update dependency mypy to ^0.961' (#13) from renovate/mypy-0.x into master
Some checks reported errors
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
Reviewed-on: #13
2022-06-07 22:03:11 +00:00
6f141af0fe chore(deps): update dependency mypy to ^0.961
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-06-07 01:31:28 +00:00
2c99fcf687 deps: updates pdme
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-06-04 12:33:05 -05:00
ad0ace4da3 chore(release): 0.6.2
Some checks reported errors
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
2022-05-26 13:05:14 -05:00
3f1265e3ec Merge branch 'master' of ssh://gitea.deepak.science:2222/physics/deepdog
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-05-26 13:04:28 -05:00
969f01e9c5 deps: updates deps 2022-05-26 13:02:21 -05:00
b282ffa800 Merge pull request 'chore(deps): update dependency mypy to ^0.960' (#12) from renovate/mypy-0.x into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #12
2022-05-26 12:48:42 +00:00
91e9e5198e chore(deps): update dependency mypy to ^0.960
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-26 01:32:51 +00:00
d7e0f13ca5 feat: adds better import api for real data run
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-05-22 16:47:26 -05:00
12 changed files with 713 additions and 573 deletions

4
.gitignore vendored
View File

@@ -114,6 +114,10 @@ ENV/
env.bak/
venv.bak/
# direnv
.envrc
.direnv
# Spyder project settings
.spyderproject
.spyproject

View File

@@ -2,6 +2,42 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [0.6.6](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.5...0.6.6) (2023-04-09)
### Bug Fixes
* removes bad logging in multiprocessing function ([8fd1b75](https://gitea.deepak.science:2222/physics/deepdog/commit/8fd1b75e1378301210bfa8f14dd09174bbd21414))
### [0.6.5](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.4...0.6.5) (2023-04-09)
### Features
* adds temp aware guy using new pdme temp-flexible feature for bundling temp models ([de1ec3e](https://gitea.deepak.science:2222/physics/deepdog/commit/de1ec3e70062d418e0d4c89716905cc9313d2e26))
### [0.6.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.3...0.6.4) (2022-08-13)
### Features
* Prints model names while running ([7ea1d71](https://gitea.deepak.science:2222/physics/deepdog/commit/7ea1d715f67e81c9fa841c5a62f1cc700ff7363d))
### [0.6.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.2...0.6.3) (2022-06-12)
### Features
* adds fast filter variant ([2c5c122](https://gitea.deepak.science:2222/physics/deepdog/commit/2c5c1228209e51d17253f07470e2f1e6dc6872d7))
* adds tester for fast filter real spectrum ([0a1a277](https://gitea.deepak.science:2222/physics/deepdog/commit/0a1a27759b0d4ab01da214b76ab14bf2b1fe00e3))
### [0.6.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.1...0.6.2) (2022-05-26)
### Features
* adds better import api for real data run ([d7e0f13](https://gitea.deepak.science:2222/physics/deepdog/commit/d7e0f13ca55197b24cb534c80f321ee76b9c4a40))
### [0.6.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.0...0.6.1) (2022-05-22)

20
Jenkinsfile vendored
View File

@@ -4,7 +4,7 @@ pipeline {
label 'deepdog' // all your pods will be named with this prefix, followed by a unique id
idleMinutes 5 // how long the pod will live after no jobs have run on it
yamlFile 'jenkins/ci-agent-pod.yaml' // path to the pod definition relative to the root of our project
defaultContainer 'python' // define a default container if more than a few stages use it, will default to jnlp container
defaultContainer 'poetry' // define a default container if more than a few stages use it, will default to jnlp container
}
}
@@ -12,36 +12,30 @@ pipeline {
parallelsAlwaysFailFast()
}
environment {
POETRY_HOME="/opt/poetry"
POETRY_VERSION="1.1.12"
}
stages {
stage('Build') {
steps {
echo 'Building...'
sh 'python --version'
sh 'curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python'
sh '${POETRY_HOME}/bin/poetry --version'
sh '${POETRY_HOME}/bin/poetry install'
sh 'poetry --version'
sh 'poetry install'
}
}
stage('Test') {
parallel{
stage('pytest') {
steps {
sh '${POETRY_HOME}/bin/poetry run pytest'
sh 'poetry run pytest'
}
}
stage('lint') {
steps {
sh '${POETRY_HOME}/bin/poetry run flake8 deepdog tests'
sh 'poetry run flake8 deepdog tests'
}
}
stage('mypy') {
steps {
sh '${POETRY_HOME}/bin/poetry run mypy deepdog'
sh 'poetry run mypy deepdog'
}
}
}
@@ -57,7 +51,7 @@ pipeline {
}
steps {
echo 'Deploying...'
sh '${POETRY_HOME}/bin/poetry publish -u ${PYPI_USR} -p ${PYPI_PSW} --build'
sh 'poetry publish -u ${PYPI_USR} -p ${PYPI_PSW} --build'
}
}

View File

@@ -5,7 +5,7 @@
[![Jenkins](https://img.shields.io/jenkins/build?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster&style=flat-square)](https://jenkins.deepak.science/job/gitea-physics/job/deepdog/job/master/)
![Jenkins tests](https://img.shields.io/jenkins/tests?compact_message&jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Jenkins Coverage](https://img.shields.io/jenkins/coverage/cobertura?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2022?style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2023?style=flat-square)
The DiPole DiaGnostic tool.

View File

@@ -2,6 +2,8 @@ import logging
from deepdog.meta import __version__
from deepdog.bayes_run import BayesRun
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
from deepdog.real_spectrum_run import RealSpectrumRun
from deepdog.temp_aware_real_spectrum_run import TempAwareRealSpectrumRun
def get_version():
@@ -12,6 +14,8 @@ __all__ = [
"get_version",
"BayesRun",
"BayesRunSimulPairs",
"RealSpectrumRun",
"TempAwareRealSpectrumRun",
]

View File

@@ -32,6 +32,28 @@ def get_a_result(input) -> int:
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
def get_a_result_fast_filter(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, seed = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for di, low, high in zip(dot_inputs, lows, highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
numpy.array([di]), current_sample
)
current_sample = current_sample[numpy.all((vals > low) & (vals < high), axis=1)]
return len(current_sample)
class RealSpectrumRun:
"""
A bayes run given some real data.
@@ -65,6 +87,7 @@ class RealSpectrumRun:
max_monte_carlo_cycles_steps: int = 10,
chunksize: int = CHUNKSIZE,
initial_seed: int = 12345,
use_fast_filter: bool = True,
) -> None:
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
@@ -93,7 +116,11 @@ class RealSpectrumRun:
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.realdata.bayesrun.csv"
self.use_fast_filter = use_fast_filter
ff_string = "no_fast_filter"
if self.use_fast_filter:
ff_string = "fast_filter"
self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv"
self.initial_seed = initial_seed
def go(self) -> None:
@@ -113,8 +140,10 @@ class RealSpectrumRun:
results = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
for model_count, (model, model_name) in enumerate(
zip(self.models, self.model_names)
):
_logger.debug(f"Doing model #{model_count}: {model_name}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
@@ -133,9 +162,13 @@ class RealSpectrumRun:
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
if self.use_fast_filter:
result_func = get_a_result_fast_filter
else:
result_func = get_a_result
current_success = sum(
pool.imap_unordered(
get_a_result,
result_func,
[
(
model,

View File

@@ -0,0 +1,225 @@
import pdme.inputs
import pdme.model
import pdme.measurement
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List, Dict, Union, Mapping
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
_logger = logging.getLogger(__name__)
def get_a_result_fast_filter(input) -> int:
# (
# model,
# self.dot_inputs_array_dict,
# low_high_dict,
# self.monte_carlo_count,
# seed,
# )
model, dot_inputs_dict, low_high_dict, monte_carlo_count, seed = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for temp in dot_inputs_dict.keys():
dot_inputs = dot_inputs_dict[temp]
lows, highs = low_high_dict[temp]
for di, low, high in zip(dot_inputs, lows, highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_asymmetric_dipoleses(
numpy.array([di]), current_sample, temp
)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
return len(current_sample)
class TempAwareRealSpectrumRun:
"""
A bayes run given some real data, with potentially variable temperature.
Parameters
----------
measurements_dict : Dict[float, Sequence[pdme.measurement.DotRangeMeasurement]]
The dot inputs for this bayes run, in a dictionary indexed by temperatures
models_with_names : models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
measurements_dict: Mapping[
float, Sequence[pdme.measurement.DotRangeMeasurement]
],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
filename_slug: str,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
chunksize: int = CHUNKSIZE,
initial_seed: int = 12345,
) -> None:
self.measurements_dict = measurements_dict
self.dot_inputs_dict = {
k: [(measure.r, measure.f) for measure in measurements]
for k, measurements in measurements_dict.items()
}
self.dot_inputs_array_dict = {
k: pdme.measurement.input_types.dot_inputs_to_array(dot_inputs)
for k, dot_inputs in self.dot_inputs_dict.items()
}
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.csv_fields = []
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
# for now initialise priors as uniform.
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
ff_string = "fast_filter"
self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv"
self.initial_seed = initial_seed
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
low_high_dict = {}
for temp, measurements in self.measurements_dict.items():
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
measurements
)
low_high_dict[temp] = (lows, highs)
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
results = []
_logger.debug("Going to iterate over models now")
for model_count, (model, model_name) in enumerate(
zip(self.models, self.model_names)
):
_logger.debug(f"Doing model #{model_count}: {model_name}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
result_func = get_a_result_fast_filter
current_success = sum(
pool.imap_unordered(
result_func,
[
(
model,
self.dot_inputs_array_dict,
low_high_dict,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row: Dict[str, Union[int, float, str]] = {}
successes: List[float] = []
counts: List[int] = []
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum(
[
(succ / count) * prob
for succ, count, prob in zip(successes, counts, self.probabilities)
]
)
new_probabilities = [
(succ / count) * old_prob / success_weight
for succ, count, old_prob in zip(successes, counts, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writerow(row)

95
flake.lock generated Normal file
View File

@@ -0,0 +1,95 @@
{
"nodes": {
"flake-utils": {
"locked": {
"lastModified": 1648297722,
"narHash": "sha256-W+qlPsiZd8F3XkzXOzAoR+mpFqzm3ekQkJNa+PIh1BQ=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
"type": "github"
}
},
"flake-utils_2": {
"locked": {
"lastModified": 1653893745,
"narHash": "sha256-0jntwV3Z8//YwuOjzhV2sgJJPt+HY6KhU7VZUL0fKZQ=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "1ed9fb1935d260de5fe1c2f7ee0ebaae17ed2fa1",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1655087213,
"narHash": "sha256-4R5oQ+OwGAAcXWYrxC4gFMTUSstGxaN8kN7e8hkum/8=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
"type": "github"
}
},
"nixpkgs_2": {
"locked": {
"lastModified": 1655046959,
"narHash": "sha256-gxqHZKq1ReLDe6ZMJSbmSZlLY95DsVq5o6jQihhzvmw=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "07bf3d25ce1da3bee6703657e6a787a4c6cdcea9",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nixpkgs",
"type": "github"
}
},
"poetry2nix": {
"inputs": {
"flake-utils": "flake-utils_2",
"nixpkgs": "nixpkgs_2"
},
"locked": {
"lastModified": 1654921554,
"narHash": "sha256-hkfMdQAHSwLWlg0sBVvgrQdIiBP45U1/ktmFpY4g2Mo=",
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
"type": "github"
}
},
"root": {
"inputs": {
"flake-utils": "flake-utils",
"nixpkgs": "nixpkgs",
"poetry2nix": "poetry2nix"
}
}
},
"root": "root",
"version": 7
}

63
flake.nix Normal file
View File

@@ -0,0 +1,63 @@
{
description = "Application packaged using poetry2nix";
inputs.flake-utils.url = "github:numtide/flake-utils?rev=0f8662f1319ad6abf89b3380dd2722369fc51ade";
inputs.nixpkgs.url = "github:NixOS/nixpkgs?rev=37b6b161e536fddca54424cf80662bce735bdd1e";
inputs.poetry2nix.url = "github:nix-community/poetry2nix?rev=7b71679fa7df00e1678fc3f1d1d4f5f372341b63";
outputs = { self, nixpkgs, flake-utils, poetry2nix }:
{
# Nixpkgs overlay providing the application
overlay = nixpkgs.lib.composeManyExtensions [
poetry2nix.overlay
(final: prev: {
# The application
deepdog = prev.poetry2nix.mkPoetryApplication {
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
# …
# workaround https://github.com/nix-community/poetry2nix/issues/568
pdme = super.pdme.overridePythonAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
});
});
projectDir = ./.;
};
deepdogEnv = prev.poetry2nix.mkPoetryEnv {
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
# …
# workaround https://github.com/nix-community/poetry2nix/issues/568
pdme = super.pdme.overridePythonAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
});
});
projectDir = ./.;
};
})
];
} // (flake-utils.lib.eachDefaultSystem (system:
let
pkgs = import nixpkgs {
inherit system;
overlays = [ self.overlay ];
};
in
{
apps = {
deepdog = pkgs.deepdog;
};
defaultApp = pkgs.deepdog;
devShell = pkgs.mkShell {
buildInputs = [
pkgs.poetry
pkgs.deepdogEnv
pkgs.deepdog
];
shellHook = ''
export DO_NIX_CUSTOM=1
'';
packages = [ pkgs.nodejs-16_x ];
};
}));
}

View File

@@ -1,9 +1,11 @@
apiVersion: v1
kind: Pod
spec:
imagePullSecrets:
- name: regcreds
containers: # list of containers that you want present for your build, you can define a default container in the Jenkinsfile
- name: python
image: python:3.8
- name: poetry
image: ghcr.io/dmallubhotla/poetry-image:1
command: ["tail", "-f", "/dev/null"] # this or any command that is bascially a noop is required, this is so that you don't overwrite the entrypoint of the base container
imagePullPolicy: Always # use cache or pull image for agent
resources: # limits the resources your build contaienr

782
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,18 +1,20 @@
[tool.poetry]
name = "deepdog"
version = "0.6.1"
version = "0.6.6"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies]
python = "^3.8,<3.10"
pdme = "^0.8.3"
pdme = "^0.8.6"
numpy = "1.22.3"
scipy = "1.10"
[tool.poetry.dev-dependencies]
pytest = ">=6"
flake8 = "^4.0.1"
pytest-cov = "^3.0.0"
mypy = "^0.950"
mypy = "^0.971"
python-semantic-release = "^7.24.0"
black = "^22.3.0"