Compare commits

..

63 Commits
0.7.7 ... 1.3.0

Author SHA1 Message Date
9cfd484d7c chore(release): 1.3.0
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-19 22:13:39 -05:00
09fad2e102 feat: improve initial cost calculation to allow multiprocessing, adds ability to specify a number of levels to do with direct mc instead of subset simulation 2024-05-19 22:11:50 -05:00
24ac65bf9c fix: fix seeding to avoid recreating seed combinations across multi runs 2024-05-19 22:10:40 -05:00
8fbae32111 doc: some commenting and logging changes 2024-05-19 22:09:52 -05:00
b1c01b25c8 fix: Adds ugly hack for stdevs for this uniform range to multiply by root3, proper fix would be in pdme 2024-05-19 22:08:44 -05:00
a14d9834e5 doc: note on refactoring for subset sim probs 2024-05-19 22:01:42 -05:00
8d04803eb3 fmt: formatting, nicer log, removing comment 2024-05-19 02:29:59 -05:00
92b49fce7c feat: add multi run to wrap multi model and repeat runs 2024-05-19 02:27:11 -05:00
8845b2875f feat: adds a filter that works with cost functions 2024-05-19 02:26:00 -05:00
72791f2d0f deps: update pdme 2024-05-19 02:25:29 -05:00
d258cfbec7 chore(release): 1.2.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-11 20:51:05 -05:00
b3bf4cde97 perf: precompile the magic regexes for probs parsing 2024-05-11 20:49:45 -05:00
60f29b0b2f perf: avoid recalculating product dict in indexifier to improve performance for probs 2024-05-11 20:49:26 -05:00
093a3fb5c4 chore(release): 1.2.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-08 22:24:28 -05:00
dc1d2d45a3 feat: adds additional matching regexes
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-08 22:23:57 -05:00
f0e2fa3da9 feat: adds magnitude enabled parsing option 2024-05-03 10:44:06 -05:00
2581e722e6 chore(release): 1.1.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-02 23:13:21 -05:00
62bd63bf9b refactor: removes redundant calculation and uses pdme 2024-05-02 23:12:21 -05:00
df4d0b5d15 deps: upgrades pdme dep 2024-05-02 22:40:06 -05:00
5361dada8b feat: removes legacy bayes run, technically breaking but just don't use them 2024-05-02 22:04:49 -05:00
29029c137a deps: upgrades pdme 2024-05-02 18:17:33 -05:00
fb018abeae feat: allows disabling timestamps in directmc bayesrun files
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-01 21:40:53 -05:00
d28c190816 chore(release): 1.0.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-01 21:08:00 -05:00
0262de060f nix: adds node for npx in dev shell 2024-05-01 21:07:48 -05:00
e25db1e0f6 fix: fixes issue of zero division error with no successes for anything
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-01 20:37:08 -05:00
8fdbe4d334 chore(release): 1.0.0
Some checks are pending
gitea-physics/deepdog/pipeline/head Build started...
gitea-physics/deepdog/pipeline/tag Build started...
2024-05-01 15:49:57 -05:00
406a1485da build: justfile allows version 2024-05-01 15:49:01 -05:00
6dc66b1c27 release: allows dynamic release as arg 2024-05-01 15:43:33 -05:00
f2b1a1dd3b feat: Adds more powerful direct mc runs to sub for old real spectrum run
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-01 15:22:59 -05:00
cb166a399d deps: updates pdme to 1.0.0 release yay 2024-04-28 21:43:11 -05:00
7108dd0111 feat!: allows new seed spec instead of cli arg, removes old cli arg
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-28 20:54:58 -05:00
2105754911 feat: adds additional file slug parsing 2024-04-28 20:54:15 -05:00
f3ba4cbfd3 fix: no longer throws error for overlapping keys, the warning should hopefully be enough? 2024-04-28 20:51:43 -05:00
e5f7085324 chore(release): 0.8.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-28 04:27:47 -05:00
578481324b chore(release): 0.8.1 2024-04-28 04:27:32 -05:00
bf8ac9850d release: fixes standard version updater which didn't allow minor version to be multidigit 2024-04-28 04:27:06 -05:00
ab408b6412 chore(release): 0.8.1 2024-04-28 04:19:08 -05:00
4aa0a6f234 chore(release): 0.8.0
Some checks failed
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag There was a failure building this commit
2024-04-28 04:08:02 -05:00
f9646e3386 fix!: fixes the spin qubit frequency phase shift calculation which had an index problem 2024-04-28 04:07:35 -05:00
3b612b960e chore(release): 0.7.10
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-27 23:06:24 -05:00
b0ad4bead0 feat: better management of cli wrapper 2024-04-27 23:04:33 -05:00
4b2e573715 feat: adds cli probs 2024-04-27 18:43:25 -05:00
12e6916ab2 doc: documentation for myself because i'll forget otherwise
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-27 12:25:39 -05:00
1e76f63725 git: ignores local_scripts directory as place to run stuff while developing
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-25 16:18:14 -05:00
7aa5ad2eb9 chore(release): 0.7.9
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-21 11:23:42 -05:00
fe331bb544 Merge branch 'filter_compose'
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-21 11:21:36 -05:00
03ac85a967 chore: performance enhancement for fmt in justfile
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-21 11:21:11 -05:00
96589ff659 adds a filter for future dmc use 2024-04-21 10:55:44 -05:00
e5b5809764 build: delete do.sh
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-20 11:28:04 -05:00
1407418c60 Merge pull request 'custom_dmc' (#37) from custom_dmc into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #37
2024-03-20 16:27:19 +00:00
383b51c35d Merge branch 'master' into custom_dmc
Some checks are pending
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master Build started...
2024-03-20 11:23:39 -05:00
5b9123d128 Merge pull request 'flakeupdate' (#36) from flakeupdate into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #36
2024-03-20 16:21:41 +00:00
2b1a1c21e4 Merge branch 'master' into flakeupdate
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2024-03-20 11:18:16 -05:00
ea080ca1c7 feat: adds ability to write custom dmc filters
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-20 10:56:54 -05:00
028fe58561 build: fixes issue brekaing build with unused variable
Some checks failed
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2024-03-19 15:46:00 -05:00
b6a41872d5 just: fmt before test, better comments
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-19 15:45:15 -05:00
731dabd74d nix: adds just as dependency, and fixes tests by installing deepdog app locally 2024-03-19 15:42:43 -05:00
7950f19c2d build: adds justfile to replace do
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-19 15:42:18 -05:00
b27e504bbd lint: unneeded variable definition
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-17 18:40:46 -05:00
33106ba772 nix: updates nix things to work, rewrites flake
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-17 15:18:52 -05:00
3ae0783d00 feat: adds tarucha phase calculation, using spin qubit precession rate noise
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-17 14:11:22 -05:00
e8201865eb chore(release): 0.7.8
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-02-28 18:41:32 -06:00
5f534a60cc fix: uses correct measurements
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:41:05 -06:00
38 changed files with 2786 additions and 1635 deletions

2
.gitignore vendored
View File

@@ -143,3 +143,5 @@ dmypy.json
cython_debug/
*.csv
local_scripts/

View File

@@ -2,6 +2,102 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
## [1.3.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.2.1...1.3.0) (2024-05-20)
### Features
* add multi run to wrap multi model and repeat runs ([92b49fc](https://gitea.deepak.science:2222/physics/deepdog/commit/92b49fce7c86f14484deb1c4aaaa810a6f69c08a))
* adds a filter that works with cost functions ([8845b28](https://gitea.deepak.science:2222/physics/deepdog/commit/8845b2875f2c91c91dd3988fabda26400c59b2d7))
* improve initial cost calculation to allow multiprocessing, adds ability to specify a number of levels to do with direct mc instead of subset simulation ([09fad2e](https://gitea.deepak.science:2222/physics/deepdog/commit/09fad2e1024d9237a6a4f7931f51cb4c84b83bf8))
### Bug Fixes
* Adds ugly hack for stdevs for this uniform range to multiply by root3, proper fix would be in pdme ([b1c01b2](https://gitea.deepak.science:2222/physics/deepdog/commit/b1c01b25c8f2c3947be23f5b2c656c37437dab17))
* fix seeding to avoid recreating seed combinations across multi runs ([24ac65b](https://gitea.deepak.science:2222/physics/deepdog/commit/24ac65bf9c74c454fec826ca9de640fe095f5a17))
### [1.2.1](https://gitea.deepak.science:2222/physics/deepdog/compare/1.2.0...1.2.1) (2024-05-12)
## [1.2.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.1.0...1.2.0) (2024-05-09)
### Features
* adds additional matching regexes ([dc1d2d4](https://gitea.deepak.science:2222/physics/deepdog/commit/dc1d2d45a3e631c5efccce80f8a24fa87c6089e0))
* adds magnitude enabled parsing option ([f0e2fa3](https://gitea.deepak.science:2222/physics/deepdog/commit/f0e2fa3da9f5a5136908d691137a904fda4e3a9a))
## [1.1.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.0.1...1.1.0) (2024-05-03)
### Features
* allows disabling timestamps in directmc bayesrun files ([fb018ab](https://gitea.deepak.science:2222/physics/deepdog/commit/fb018abeae2adf4438a030140a6c905f11bb6bc1))
* removes legacy bayes run, technically breaking but just don't use them ([5361dad](https://gitea.deepak.science:2222/physics/deepdog/commit/5361dada8be4950b5157862f6a92254b543889c3))
### [1.0.1](https://gitea.deepak.science:2222/physics/deepdog/compare/1.0.0...1.0.1) (2024-05-02)
### Bug Fixes
* fixes issue of zero division error with no successes for anything ([e25db1e](https://gitea.deepak.science:2222/physics/deepdog/commit/e25db1e0f677e8d9a657fa1631305cc8f05ff9ff))
## [1.0.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.1...1.0.0) (2024-05-01)
### ⚠ BREAKING CHANGES
* allows new seed spec instead of cli arg, removes old cli arg
### Features
* adds additional file slug parsing ([2105754](https://gitea.deepak.science:2222/physics/deepdog/commit/2105754911c89bde9dcbea9866462225604a3524))
* Adds more powerful direct mc runs to sub for old real spectrum run ([f2b1a1d](https://gitea.deepak.science:2222/physics/deepdog/commit/f2b1a1dd3b3436e37d84f7843b9b2a202be4b51c))
* allows new seed spec instead of cli arg, removes old cli arg ([7108dd0](https://gitea.deepak.science:2222/physics/deepdog/commit/7108dd0111c7dfd6ec204df1d0058530cd3dcab9))
### Bug Fixes
* no longer throws error for overlapping keys, the warning should hopefully be enough? ([f3ba4cb](https://gitea.deepak.science:2222/physics/deepdog/commit/f3ba4cbfd36a9f08cdc4d8774a7f745f8c98bac3))
### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28)
### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28)
## [0.8.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.10...0.8.0) (2024-04-28)
### ⚠ BREAKING CHANGES
* fixes the spin qubit frequency phase shift calculation which had an index problem
### Bug Fixes
* fixes the spin qubit frequency phase shift calculation which had an index problem ([f9646e3](https://gitea.deepak.science:2222/physics/deepdog/commit/f9646e33868e1a0da8ab663230c0c692ac25bb74))
### [0.7.10](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.9...0.7.10) (2024-04-28)
### Features
* adds cli probs ([4b2e573](https://gitea.deepak.science:2222/physics/deepdog/commit/4b2e57371546731137b011461849bb849d4d4e0f))
* better management of cli wrapper ([b0ad4be](https://gitea.deepak.science:2222/physics/deepdog/commit/b0ad4bead0d4762eb7f848f6e557f6d9b61200b9))
### [0.7.9](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.8...0.7.9) (2024-04-21)
### Features
* adds ability to write custom dmc filters ([ea080ca](https://gitea.deepak.science:2222/physics/deepdog/commit/ea080ca1c7068042ce1e0a222d317f785a6b05f4))
* adds tarucha phase calculation, using spin qubit precession rate noise ([3ae0783](https://gitea.deepak.science:2222/physics/deepdog/commit/3ae0783d00cbe6a76439c1d671f2cff621d8d0a8))
### [0.7.8](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.7...0.7.8) (2024-02-29)
### Bug Fixes
* uses correct measurements ([5f534a6](https://gitea.deepak.science:2222/physics/deepdog/commit/5f534a60cc7c4838fcacee11a7e58b97d34e154a))
### [0.7.7](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.6...0.7.7) (2024-02-29)

View File

@@ -5,7 +5,7 @@
[![Jenkins](https://img.shields.io/jenkins/build?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster&style=flat-square)](https://jenkins.deepak.science/job/gitea-physics/job/deepdog/job/master/)
![Jenkins tests](https://img.shields.io/jenkins/tests?compact_message&jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Jenkins Coverage](https://img.shields.io/jenkins/coverage/cobertura?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2023?style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2024?style=flat-square)
The DiPole DiaGnostic tool.
@@ -13,6 +13,13 @@ The DiPole DiaGnostic tool.
`poetry install` to start locally
Commit using [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/), and when commits are on master, release with `doo release`.
Commit using [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/), and when commits are on master, release with `just release`.
In general `just --list` has some of the useful stuff for figuring out what development tools there are.
Poetry as an installer is good, even better is using Nix (maybe with direnv to automatically pick up the `devShell` from `flake.nix`).
In either case `just` should handle actually calling things in a way that's agnostic to poetry as a runner or through nix.
### local scripts
`local_scripts` folder allows for scripts to be run using this code, but that probably isn't the most auditable for actual usage.
The API is still only something I'm using so there's no guarantees yet that it will be stable; overall semantic versioning should help with API breaks.

View File

@@ -1,10 +1,7 @@
import logging
from deepdog.meta import __version__
from deepdog.bayes_run import BayesRun
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
from deepdog.real_spectrum_run import RealSpectrumRun
from deepdog.temp_aware_real_spectrum_run import TempAwareRealSpectrumRun
from deepdog.bayes_run_with_ss import BayesRunWithSubspaceSimulation
def get_version():
@@ -13,11 +10,8 @@ def get_version():
__all__ = [
"get_version",
"BayesRun",
"BayesRunSimulPairs",
"RealSpectrumRun",
"TempAwareRealSpectrumRun",
"BayesRunWithSubspaceSimulation",
]

View File

@@ -1,281 +0,0 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_result(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, max_frequency, seed = input
rng = numpy.random.default_rng(seed)
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, max_frequency, rng_to_use=rng
)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
def get_a_result_using_pairs(input) -> int:
(
model,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
max_frequency,
) = input
sample_dipoles = model.get_n_single_dipoles(monte_carlo_count, max_frequency)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
return numpy.count_nonzero(combined_matches)
class BayesRun:
"""
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.bayesrun.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(run)
results = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
current_success = sum(
pool.imap_unordered(
get_a_result,
[
(
model,
self.dot_inputs_array,
lows,
highs,
self.monte_carlo_count,
self.max_frequency,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row[f"dipole_moment_{i+1}"] = current_dipoles.p
row[f"dipole_location_{i+1}"] = current_dipoles.s
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
successes: List[float] = []
counts: List[int] = []
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum(
[
(succ / count) * prob
for succ, count, prob in zip(successes, counts, self.probabilities)
]
)
new_probabilities = [
(succ / count) * old_prob / success_weight
for succ, count, old_prob in zip(successes, counts, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break

View File

@@ -1,382 +0,0 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
import numpy.random
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
(
model,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
monte_carlo_cycles,
max_frequency,
seed,
) = input
rng = numpy.random.default_rng(seed)
local_total = 0
combined_total = 0
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, max_frequency, rng_to_use=rng
)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
local_total += numpy.count_nonzero(local_matches)
combined_total += numpy.count_nonzero(combined_matches)
return numpy.array([local_total, combined_total])
class BayesRunSimulPairs:
"""
A dual pairs-nonpairs Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The modoel for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
pairs_high_error=None,
pairs_low_error=None,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.dot_pair_inputs = pdme.inputs.input_pairs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
self.models = [mod for (_, mod) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
if pairs_low_error is None:
self.pairs_low_error = self.low_error
else:
self.pairs_low_error = pairs_low_error
if pairs_high_error is None:
self.pairs_high_error = self.high_error
else:
self.pairs_high_error = pairs_high_error
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities_no_pairs = [1 / self.model_count] * self.model_count
self.probabilities_pairs = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename_pairs = f"{timestamp}-{filename_slug}.simulpairs.yespairs.csv"
self.filename_no_pairs = f"{timestamp}-{filename_slug}.simulpairs.noopairs.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
def go(self) -> None:
with open(self.filename_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
with open(self.filename_no_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
pair_lows, pair_highs = (None, None)
pair_measurements = actual_dipoles.get_percent_range_dot_pair_measurements(
self.dot_pair_inputs, self.pairs_low_error, self.pairs_high_error
)
(
pair_lows,
pair_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
pair_measurements
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(run)
results_pairs = []
results_no_pairs = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success_pairs = 0
cycle_success_no_pairs = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
min(cycle_success_pairs, cycle_success_no_pairs)
<= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success_pairs = 0
current_success_no_pairs = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
_logger.debug(f"Creating {self.monte_carlo_cycles} seeds")
current_success_both = numpy.array(
sum(
pool.imap_unordered(
get_a_simul_result_using_pairs,
[
(
model,
self.dot_inputs_array,
self.dot_pair_inputs_array,
lows,
highs,
pair_lows,
pair_highs,
self.monte_carlo_count,
self.monte_carlo_cycles,
self.max_frequency,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
)
current_success_no_pairs = current_success_both[0]
current_success_pairs = current_success_both[1]
cycle_success_no_pairs += current_success_no_pairs
cycle_success_pairs += current_success_pairs
_logger.debug(
f"(pair, no_pair) successes are {(cycle_success_pairs, cycle_success_no_pairs)}"
)
results_pairs.append((cycle_count, cycle_success_pairs))
results_no_pairs.append((cycle_count, cycle_success_no_pairs))
_logger.debug("Done, constructing output now")
row_pairs = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
row_no_pairs = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
row_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
row_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
row_no_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
row_no_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
row_no_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
successes_pairs: List[float] = []
successes_no_pairs: List[float] = []
counts: List[int] = []
for model_index, (
name,
(count_pair, result_pair),
(count_no_pair, result_no_pair),
) in enumerate(zip(self.model_names, results_pairs, results_no_pairs)):
row_pairs[f"{name}_success"] = result_pair
row_pairs[f"{name}_count"] = count_pair
successes_pairs.append(max(result_pair, 0.5))
row_no_pairs[f"{name}_success"] = result_no_pair
row_no_pairs[f"{name}_count"] = count_no_pair
successes_no_pairs.append(max(result_no_pair, 0.5))
counts.append(count_pair)
success_weight_pair = sum(
[
(succ / count) * prob
for succ, count, prob in zip(
successes_pairs, counts, self.probabilities_pairs
)
]
)
success_weight_no_pair = sum(
[
(succ / count) * prob
for succ, count, prob in zip(
successes_no_pairs, counts, self.probabilities_no_pairs
)
]
)
new_probabilities_pair = [
(succ / count) * old_prob / success_weight_pair
for succ, count, old_prob in zip(
successes_pairs, counts, self.probabilities_pairs
)
]
new_probabilities_no_pair = [
(succ / count) * old_prob / success_weight_no_pair
for succ, count, old_prob in zip(
successes_no_pairs, counts, self.probabilities_no_pairs
)
]
self.probabilities_pairs = new_probabilities_pair
self.probabilities_no_pairs = new_probabilities_no_pair
for name, probability_pair, probability_no_pair in zip(
self.model_names, self.probabilities_pairs, self.probabilities_no_pairs
):
row_pairs[f"{name}_prob"] = probability_pair
row_no_pairs[f"{name}_prob"] = probability_no_pair
_logger.debug(row_pairs)
_logger.debug(row_no_pairs)
with open(self.filename_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row_pairs)
with open(self.filename_no_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row_no_pairs)
if self.use_end_threshold:
max_prob = min(
max(self.probabilities_pairs), max(self.probabilities_no_pairs)
)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break

View File

@@ -1,261 +0,0 @@
import deepdog.subset_simulation
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List, Optional
import datetime
import csv
import logging
import numpy
import numpy.typing
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
CLAMPING_FACTOR = 10
_logger = logging.getLogger(__name__)
class BayesRunWithSubspaceSimulation:
"""
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
max_frequency: float = 20,
end_threshold: float = None,
run_count=100,
chunksize: int = CHUNKSIZE,
ss_n_c: int = 500,
ss_n_s: int = 100,
ss_m_max: int = 15,
ss_target_cost: Optional[float] = None,
ss_level_0_seed: int = 200,
ss_mcmc_seed: int = 20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
ss_initial_costs_chunk_size=100,
write_output_to_bayesruncsv=True,
use_timestamp_for_output=True,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.models_with_names = models_with_names
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_likelihood", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
if use_timestamp_for_output:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.bayesrunwithss.csv"
else:
self.filename = f"{filename_slug}.bayesrunwithss.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
self.ss_n_c = ss_n_c
self.ss_n_s = ss_n_s
self.ss_m_max = ss_m_max
self.ss_target_cost = ss_target_cost
self.ss_level_0_seed = ss_level_0_seed
self.ss_mcmc_seed = ss_mcmc_seed
self.ss_use_adaptive_steps = ss_use_adaptive_steps
self.ss_default_phi_step = ss_default_phi_step
self.ss_default_theta_step = ss_default_theta_step
self.ss_default_r_step = ss_default_r_step
self.ss_default_w_log_step = ss_default_w_log_step
self.ss_default_upper_w_log_step = ss_default_upper_w_log_step
self.ss_dump_last_generation = ss_dump_last_generation
self.ss_initial_costs_chunk_size = ss_initial_costs_chunk_size
self.run_count = run_count
self.write_output_to_csv = write_output_to_bayesruncsv
def go(self) -> Sequence:
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writeheader()
return_result = []
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
measurements = actual_dipoles.get_dot_measurements(self.dot_inputs)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
results = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models_with_names):
_logger.debug(f"Doing model #{model_count}, {model[0]}")
subset_run = deepdog.subset_simulation.SubsetSimulation(
model,
self.dot_inputs,
measurements,
self.ss_n_c,
self.ss_n_s,
self.ss_m_max,
self.ss_target_cost,
self.ss_level_0_seed,
self.ss_mcmc_seed,
self.ss_use_adaptive_steps,
self.ss_default_phi_step,
self.ss_default_theta_step,
self.ss_default_r_step,
self.ss_default_w_log_step,
self.ss_default_upper_w_log_step,
initial_cost_chunk_size=self.ss_initial_costs_chunk_size,
keep_probs_list=False,
dump_last_generation_to_file=self.ss_dump_last_generation,
)
results.append(subset_run.execute())
_logger.debug("Done, constructing output now")
row = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row[f"dipole_moment_{i+1}"] = current_dipoles.p
row[f"dipole_location_{i+1}"] = current_dipoles.s
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
likelihoods: List[float] = []
for (name, result) in zip(self.model_names, results):
if result.over_target_likelihood is None:
if result.lowest_likelihood is None:
_logger.error(f"result {result} looks bad")
clamped_likelihood = 10**-15
else:
clamped_likelihood = result.lowest_likelihood / CLAMPING_FACTOR
_logger.warning(
f"got a none result, clamping to {clamped_likelihood}"
)
else:
clamped_likelihood = result.over_target_likelihood
likelihoods.append(clamped_likelihood)
row[f"{name}_likelihood"] = clamped_likelihood
success_weight = sum(
[
likelihood * prob
for likelihood, prob in zip(likelihoods, self.probabilities)
]
)
new_probabilities = [
likelihood * old_prob / success_weight
for likelihood, old_prob in zip(likelihoods, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
return_result.append(row)
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break
return return_result

0
deepdog/cli/__init__.py Normal file
View File

View File

@@ -0,0 +1,5 @@
from deepdog.cli.probs.main import wrapped_main
__all__ = [
"wrapped_main",
]

51
deepdog/cli/probs/args.py Normal file
View File

@@ -0,0 +1,51 @@
import argparse
import os
def parse_args() -> argparse.Namespace:
def dir_path(path):
if os.path.isdir(path):
return path
else:
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
parser = argparse.ArgumentParser(
"probs", description="Calculating probability from finished bayesrun"
)
parser.add_argument(
"--log_file",
type=str,
help="A filename for logging to, if not provided will only log to stderr",
default=None,
)
parser.add_argument(
"--bayesrun-directory",
"-d",
type=dir_path,
help="The directory to search for bayesrun files, defaulting to cwd if not passed",
default=".",
)
parser.add_argument(
"--indexify-json",
help="A json file with the indexify config for parsing job indexes. Will skip if not present",
default="",
)
parser.add_argument(
"--coalesced-keys",
type=str,
help="A comma separated list of strings over which to coalesce data. By default coalesce over all fields within model names, ignore file level names",
default="",
)
parser.add_argument(
"--uncoalesced-outfile",
type=str,
help="output filename for uncoalesced data. If not provided, will not be written",
default=None,
)
parser.add_argument(
"--coalesced-outfile",
type=str,
help="output filename for coalesced data. If not provided, will not be written",
default=None,
)
return parser.parse_args()

178
deepdog/cli/probs/dicts.py Normal file
View File

@@ -0,0 +1,178 @@
import typing
from deepdog.results import BayesrunOutput
import logging
import csv
import tqdm
_logger = logging.getLogger(__name__)
def build_model_dict(
bayes_outputs: typing.Sequence[BayesrunOutput],
) -> typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
]:
"""
Maybe someday do something smarter with the coalescing and stuff but don't want to so i won't
"""
# assume that everything is well formatted and the keys are the same across entire list and initialise list of keys.
# model dict will contain a model_key: {calculation_dict} where each calculation_dict represents a single calculation for that model,
# the uncoalesced version, keyed by the specific file keys
model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
] = {}
_logger.info("building model dict")
for out in tqdm.tqdm(bayes_outputs, desc="reading outputs", leave=False):
for model_result in out.results:
model_key = tuple(v for v in model_result.parsed_model_keys.values())
if model_key not in model_dict:
model_dict[model_key] = {}
calculation_dict = model_dict[model_key]
calculation_key = tuple(v for v in out.data.values())
if calculation_key not in calculation_dict:
calculation_dict[calculation_key] = {
"_model_key_dict": model_result.parsed_model_keys,
"_calculation_key_dict": out.data,
"success": model_result.success,
"count": model_result.count,
}
else:
raise ValueError(
f"Got {calculation_key} twice for model_key {model_key}"
)
return model_dict
def write_uncoalesced_dict(
uncoalesced_output_filename: typing.Optional[str],
uncoalesced_model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
],
):
if uncoalesced_output_filename is None or uncoalesced_output_filename == "":
_logger.warning("Not provided a uncoalesced filename, not going to try")
return
first_value = next(iter(next(iter(uncoalesced_model_dict.values())).values()))
model_field_names = set(first_value["_model_key_dict"].keys())
calculation_field_names = set(first_value["_calculation_key_dict"].keys())
if not (set(model_field_names).isdisjoint(calculation_field_names)):
_logger.info(f"Detected model field names {model_field_names}")
_logger.info(f"Detected calculation field names {calculation_field_names}")
_logger.warning(
f"model field names {model_field_names} and calculation {calculation_field_names} have an overlap, which is possibly a problem"
)
collected_fieldnames = list(model_field_names)
collected_fieldnames.extend(calculation_field_names)
collected_fieldnames.extend(["success", "count"])
_logger.info(f"Full uncoalesced fieldnames are {collected_fieldnames}")
with open(uncoalesced_output_filename, "w", newline="") as uncoalesced_output_file:
writer = csv.DictWriter(
uncoalesced_output_file, fieldnames=collected_fieldnames
)
writer.writeheader()
for model_dict in uncoalesced_model_dict.values():
for calculation in model_dict.values():
row = calculation["_model_key_dict"].copy()
row.update(calculation["_calculation_key_dict"].copy())
row.update(
{
"success": calculation["success"],
"count": calculation["count"],
}
)
writer.writerow(row)
def coalesced_dict(
uncoalesced_model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
],
minimum_count: float = 0.1,
):
"""
pass in uncoalesced dict
the minimum_count field is what we use to make sure our probs are never zero
"""
coalesced_dict = {}
# we are already iterating so for no reason because performance really doesn't matter let's count the keys ourselves
num_keys = 0
# first pass coalesce
for model_key, model_dict in uncoalesced_model_dict.items():
num_keys += 1
for calculation in model_dict.values():
if model_key not in coalesced_dict:
coalesced_dict[model_key] = {
"_model_key_dict": calculation["_model_key_dict"].copy(),
"calculations_coalesced": 0,
"count": 0,
"success": 0,
}
sub_dict = coalesced_dict[model_key]
sub_dict["calculations_coalesced"] += 1
sub_dict["count"] += calculation["count"]
sub_dict["success"] += calculation["success"]
# second pass do probability calculation
prior = 1 / num_keys
_logger.info(f"Got {num_keys} model keys, so our prior will be {prior}")
total_weight = 0
for coalesced_model_dict in coalesced_dict.values():
model_weight = (
max(minimum_count, coalesced_model_dict["success"])
/ coalesced_model_dict["count"]
) * prior
total_weight += model_weight
total_prob = 0
for coalesced_model_dict in coalesced_dict.values():
model_weight = (
max(minimum_count, coalesced_model_dict["success"])
/ coalesced_model_dict["count"]
)
prob = model_weight * prior / total_weight
coalesced_model_dict["prob"] = prob
total_prob += prob
_logger.debug(
f"Got a total probability of {total_prob}, which should be close to 1 up to float/rounding error"
)
return coalesced_dict
def write_coalesced_dict(
coalesced_output_filename: typing.Optional[str],
coalesced_model_dict: typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]],
):
if coalesced_output_filename is None or coalesced_output_filename == "":
_logger.warning("Not provided a uncoalesced filename, not going to try")
return
first_value = next(iter(coalesced_model_dict.values()))
model_field_names = set(first_value["_model_key_dict"].keys())
_logger.info(f"Detected model field names {model_field_names}")
collected_fieldnames = list(model_field_names)
collected_fieldnames.extend(["calculations_coalesced", "success", "count", "prob"])
with open(coalesced_output_filename, "w", newline="") as coalesced_output_file:
writer = csv.DictWriter(coalesced_output_file, fieldnames=collected_fieldnames)
writer.writeheader()
for model_dict in coalesced_model_dict.values():
row = model_dict["_model_key_dict"].copy()
row.update(
{
"calculations_coalesced": model_dict["calculations_coalesced"],
"success": model_dict["success"],
"count": model_dict["count"],
"prob": model_dict["prob"],
}
)
writer.writerow(row)

100
deepdog/cli/probs/main.py Normal file
View File

@@ -0,0 +1,100 @@
import logging
import argparse
import json
import deepdog.cli.probs.args
import deepdog.cli.probs.dicts
import deepdog.results
import deepdog.indexify
import pathlib
import tqdm
import tqdm.contrib.logging
_logger = logging.getLogger(__name__)
def set_up_logging(log_file: str):
log_pattern = "%(asctime)s | %(levelname)-7s | %(name)s:%(lineno)d | %(message)s"
if log_file is None:
handlers = [
logging.StreamHandler(),
]
else:
handlers = [logging.StreamHandler(), logging.FileHandler(log_file)]
logging.basicConfig(
level=logging.DEBUG,
format=log_pattern,
# it's okay to ignore this mypy error because who cares about logger handler types
handlers=handlers, # type: ignore
)
logging.captureWarnings(True)
def main(args: argparse.Namespace):
"""
Main function with passed in arguments and no additional logging setup in case we want to extract out later
"""
with tqdm.contrib.logging.logging_redirect_tqdm():
_logger.info(f"args: {args}")
try:
if args.coalesced_keys:
raise NotImplementedError(
"Currently not supporting coalesced keys, but maybe in future"
)
except AttributeError:
# we don't care if this is missing because we don't actually want it to be there
pass
indexifier = None
if args.indexify_json:
with open(args.indexify_json, "r") as indexify_json_file:
indexify_spec = json.load(indexify_json_file)
indexify_data = indexify_spec["indexes"]
if "seed_spec" in indexify_spec:
seed_spec = indexify_spec["seed_spec"]
indexify_data[seed_spec["field_name"]] = list(
range(seed_spec["num_seeds"])
)
# _logger.debug(f"Indexifier data looks like {indexify_data}")
indexifier = deepdog.indexify.Indexifier(indexify_data)
bayes_dir = pathlib.Path(args.bayesrun_directory)
out_files = [f for f in bayes_dir.iterdir() if f.name.endswith("bayesrun.csv")]
_logger.info(
f"Reading {len(out_files)} bayesrun.csv files in directory {args.bayesrun_directory}"
)
# _logger.info(out_files)
parsed_output_files = [
deepdog.results.read_output_file(f, indexifier)
for f in tqdm.tqdm(out_files, desc="reading files", leave=False)
]
# Refactor here to allow for arbitrary likelihood file sources
_logger.info("building uncoalesced dict")
uncoalesced_dict = deepdog.cli.probs.dicts.build_model_dict(parsed_output_files)
if "uncoalesced_outfile" in args and args.uncoalesced_outfile:
deepdog.cli.probs.dicts.write_uncoalesced_dict(
args.uncoalesced_outfile, uncoalesced_dict
)
else:
_logger.info("Skipping writing uncoalesced")
_logger.info("building coalesced dict")
coalesced = deepdog.cli.probs.dicts.coalesced_dict(uncoalesced_dict)
if "coalesced_outfile" in args and args.coalesced_outfile:
deepdog.cli.probs.dicts.write_coalesced_dict(
args.coalesced_outfile, coalesced
)
else:
_logger.info("Skipping writing coalesced")
def wrapped_main():
args = deepdog.cli.probs.args.parse_args()
set_up_logging(args.log_file)
main(args)

View File

@@ -0,0 +1,14 @@
from typing import Sequence
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
import numpy
class ComposedDMCFilter(DirectMonteCarloFilter):
def __init__(self, filters: Sequence[DirectMonteCarloFilter]):
self.filters = filters
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
current_sample = samples
for filter in self.filters:
current_sample = filter.filter_samples(current_sample)
return current_sample

View File

@@ -0,0 +1,24 @@
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
from typing import Callable
import numpy
class CostFunctionTargetFilter(DirectMonteCarloFilter):
def __init__(
self,
cost_function: Callable[[numpy.ndarray], numpy.ndarray],
target_cost: float,
):
"""
Filters dipoles by cost, only leaving dipoles with cost below target_cost
"""
self.cost_function = cost_function
self.target_cost = target_cost
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
current_sample = samples
costs = self.cost_function(current_sample)
current_sample = current_sample[costs < self.target_cost]
return current_sample

View File

@@ -1,22 +1,28 @@
import csv
import pdme.model
import pdme.measurement
import pdme.measurement.input_types
import pdme.subspace_simulation
from typing import Tuple, Sequence
import datetime
from typing import Tuple, Dict, NewType, Any, Sequence
from dataclasses import dataclass
import logging
import numpy
import numpy.random
import pdme.util.fast_v_calc
import multiprocessing
_logger = logging.getLogger(__name__)
ANTI_ZERO_SUCCESS_THRES = 0.1
@dataclass
class DirectMonteCarloResult:
successes: int
monte_carlo_count: int
likelihood: float
model_name: str
@dataclass
@@ -28,6 +34,25 @@ class DirectMonteCarloConfig:
monte_carlo_seed: int = 1234
write_successes_to_file: bool = False
tag: str = ""
cap_core_count: int = 0 # 0 means cap at num cores - 1
chunk_size: int = 50
write_bayesrun_file = True
bayesrun_file_timestamp = True
# chunk size of some kind
# Aliasing dict as a generic data container
DirectMonteCarloData = NewType("DirectMonteCarloData", Dict[str, Any])
class DirectMonteCarloFilter:
"""
Abstract class for filtering out samples matching some criteria. Initialise with data as needed,
then filter out samples as needed.
"""
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
raise NotImplementedError
class DirectMonteCarloRun:
@@ -37,8 +62,8 @@ class DirectMonteCarloRun:
Parameters
----------
model_name_pair : Sequence[Tuple(str, pdme.model.DipoleModel)]
The model to evaluate, with name.
model_name_pairs : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate, with names
measurements: Sequence[pdme.measurement.DotRangeMeasurement]
The measurements as dot ranges to use as the bounds for the Monte Carlo calculation.
@@ -64,94 +89,244 @@ class DirectMonteCarloRun:
def __init__(
self,
model_name_pair: Tuple[str, pdme.model.DipoleModel],
measurements: Sequence[pdme.measurement.DotRangeMeasurement],
model_name_pairs: Sequence[Tuple[str, pdme.model.DipoleModel]],
filter: DirectMonteCarloFilter,
config: DirectMonteCarloConfig,
):
self.model_name, self.model = model_name_pair
self.model_name_pairs = model_name_pairs
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
# self.measurements = measurements
# self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
# self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
# self.dot_inputs
# )
self.config = config
(
self.lows,
self.highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
self.filter = filter
# (
# self.lows,
# self.highs,
# ) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
# self.measurements
# )
def _single_run(self, seed) -> numpy.ndarray:
def _single_run(
self, model_name_pair: Tuple[str, pdme.model.DipoleModel], seed
) -> numpy.ndarray:
rng = numpy.random.default_rng(seed)
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
_, model = model_name_pair
# don't log here it's madness
# _logger.info(f"Executing for model {model_name}")
sample_dipoles = model.get_monte_carlo_dipole_inputs(
self.config.monte_carlo_count_per_cycle, -1, rng
)
current_sample = sample_dipoles
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
numpy.array([di]), current_sample
)
return self.filter.filter_samples(current_sample)
# for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
return current_sample
# if len(current_sample) < 1:
# break
# vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
# numpy.array([di]), current_sample
# )
def execute(self) -> DirectMonteCarloResult:
step_count = 0
total_success = 0
total_count = 0
# current_sample = current_sample[
# numpy.all((vals > low) & (vals < high), axis=1)
# ]
# return current_sample
def _wrapped_single_run(self, args: Tuple):
"""
single run wrapped up for multiprocessing call.
takes in a tuple of arguments corresponding to
(model_name_pair, seed)
"""
# here's where we do our work
model_name_pair, seed = args
cycle_success_configs = self._single_run(model_name_pair, seed)
cycle_success_count = len(cycle_success_configs)
return cycle_success_count
def execute_no_multiprocessing(self) -> Sequence[DirectMonteCarloResult]:
count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
)
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
_logger.debug(f"Executing step {step_count}")
for cycle_i, seed in enumerate(
seed_sequence.spawn(self.config.monte_carlo_cycles)
):
cycle_success_configs = self._single_run(seed)
cycle_success_count = len(cycle_success_configs)
if cycle_success_count > 0:
_logger.debug(
f"For cycle {cycle_i} received {cycle_success_count} successes"
)
_logger.debug(cycle_success_configs)
if self.config.write_successes_to_file:
sorted_by_freq = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
dipole_config
)
for dipole_config in cycle_success_configs
]
)
dipole_count = numpy.array(cycle_success_configs).shape[1]
for n in range(dipole_count):
numpy.savetxt(
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
sorted_by_freq[:, n],
delimiter=",",
)
total_success += cycle_success_count
_logger.debug(f"At end of step {step_count} have {total_success} successes")
step_count += 1
total_count += count_per_step
return DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
# core count etc. logic here
results = []
for model_name_pair in self.model_name_pairs:
step_count = 0
total_success = 0
total_count = 0
_logger.info(f"Working on model {model_name_pair[0]}")
# This is probably where multiprocessing logic should go
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
_logger.debug(f"Executing step {step_count}")
for cycle_i, seed in enumerate(
seed_sequence.spawn(self.config.monte_carlo_cycles)
):
# here's where we do our work
cycle_success_configs = self._single_run(model_name_pair, seed)
cycle_success_count = len(cycle_success_configs)
if cycle_success_count > 0:
_logger.debug(
f"For cycle {cycle_i} received {cycle_success_count} successes"
)
# _logger.debug(cycle_success_configs)
if self.config.write_successes_to_file:
sorted_by_freq = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
dipole_config
)
for dipole_config in cycle_success_configs
]
)
dipole_count = numpy.array(cycle_success_configs).shape[1]
for n in range(dipole_count):
numpy.savetxt(
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
sorted_by_freq[:, n],
delimiter=",",
)
total_success += cycle_success_count
_logger.debug(
f"At end of step {step_count} have {total_success} successes"
)
step_count += 1
total_count += count_per_step
results.append(
DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
model_name=model_name_pair[0],
)
)
return results
def execute(self) -> Sequence[DirectMonteCarloResult]:
# set starting execution timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
)
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
# core count etc. logic here
core_count = multiprocessing.cpu_count() - 1 or 1
if (self.config.cap_core_count >= 1) and (
self.config.cap_core_count < core_count
):
core_count = self.config.cap_core_count
_logger.info(f"Using {core_count} cores")
results = []
with multiprocessing.Pool(core_count) as pool:
for model_name_pair in self.model_name_pairs:
_logger.info(f"Working on model {model_name_pair[0]}")
# This is probably where multiprocessing logic should go
step_count = 0
total_success = 0
total_count = 0
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
step_count += 1
_logger.debug(f"Executing step {step_count}")
seeds = seed_sequence.spawn(self.config.monte_carlo_cycles)
pool_results = sum(
pool.imap_unordered(
self._wrapped_single_run,
[(model_name_pair, seed) for seed in seeds],
self.config.chunk_size,
)
)
_logger.debug(f"Pool results: {pool_results}")
total_success += pool_results
total_count += count_per_step
_logger.debug(
f"At end of step {step_count} have {total_success} successes"
)
results.append(
DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
model_name=model_name_pair[0],
)
)
if self.config.write_bayesrun_file:
if self.config.bayesrun_file_timestamp:
timestamp_str = f"{timestamp}-"
else:
timestamp_str = ""
filename = (
f"{timestamp_str}{self.config.tag}.realdata.fast_filter.bayesrun.csv"
)
_logger.info(f"Going to write to file [{filename}]")
# row: Dict[str, Union[int, float, str]] = {}
row = {}
num_models = len(self.model_name_pairs)
success_weight = sum(
[
(
max(ANTI_ZERO_SUCCESS_THRES, res.successes)
/ res.monte_carlo_count
)
/ num_models
for res in results
]
)
for res in results:
row.update(
{
f"{res.model_name}_success": res.successes,
f"{res.model_name}_count": res.monte_carlo_count,
f"{res.model_name}_prob": (
max(ANTI_ZERO_SUCCESS_THRES, res.successes)
/ res.monte_carlo_count
)
/ (num_models * success_weight),
}
)
_logger.info(f"Writing row {row}")
fieldnames = list(row.keys())
with open(filename, "w", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=fieldnames, dialect="unix")
writer.writeheader()
writer.writerow(row)
return results

View File

@@ -0,0 +1,115 @@
from numpy import ndarray
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
from typing import Sequence
import pdme.measurement
import pdme.measurement.input_types
import pdme.util.fast_nonlocal_spectrum
import pdme.util.fast_v_calc
import numpy
class SingleDotPotentialFilter(DirectMonteCarloFilter):
def __init__(self, measurements: Sequence[pdme.measurement.DotRangeMeasurement]):
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
(
self.lows,
self.highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
numpy.array([di]), current_sample
)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
return current_sample
class SingleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__(self, measurements: Sequence[pdme.measurement.DotRangeMeasurement]):
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
(
self.lows,
self.highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_efieldxs_for_dipoleses(
numpy.array([di]), current_sample
)
# _logger.info(vals)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
# _logger.info(f"leaving with {len(current_sample)}")
return current_sample
class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__(
self,
pair_phase_measurements: Sequence[pdme.measurement.DotPairRangeMeasurement],
):
self.pair_phase_measurements = pair_phase_measurements
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_phase_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
(
self.pair_phase_lows,
self.pair_phase_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.pair_phase_measurements
)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for pi, plow, phigh in zip(
self.dot_pair_inputs_array, self.pair_phase_lows, self.pair_phase_highs
):
if len(current_sample) < 1:
break
vals = pdme.util.fast_nonlocal_spectrum.signarg(
pdme.util.fast_nonlocal_spectrum.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return current_sample

View File

@@ -0,0 +1,58 @@
"""
Probably should just include a way to handle the indexify function I reuse so much.
All about breaking an integer into a tuple of values from lists, which is useful because of how we do CHTC runs.
"""
import itertools
import typing
import logging
import math
_logger = logging.getLogger(__name__)
# from https://stackoverflow.com/questions/5228158/cartesian-product-of-a-dictionary-of-lists
def _dict_product(dicts):
"""
>>> list(dict_product(dict(number=[1,2], character='ab')))
[{'character': 'a', 'number': 1},
{'character': 'a', 'number': 2},
{'character': 'b', 'number': 1},
{'character': 'b', 'number': 2}]
"""
return list(dict(zip(dicts.keys(), x)) for x in itertools.product(*dicts.values()))
class Indexifier:
"""
The order of keys is very important, but collections.OrderedDict is no longer needed in python 3.7.
I think it's okay to rely on that.
"""
def __init__(self, list_dict: typing.Dict[str, typing.Sequence]):
self.dict = list_dict
self.product_dict = _dict_product(self.dict)
def indexify(self, n: int) -> typing.Dict[str, typing.Any]:
return self.product_dict[n]
def _indexify_indices(self, n: int) -> typing.Sequence[int]:
"""
legacy indexify from old scripts, copypast.
could be used like
>>> ret = {}
>>> for k, i in zip(self.dict.keys(), self._indexify_indices):
>>> ret[k] = self.dict[k][i]
>>> return ret
"""
weights = [len(v) for v in self.dict.values()]
N = math.prod(weights)
curr_n = n
curr_N = N
out = []
for w in weights[:-1]:
# print(f"current: {curr_N}, {curr_n}, {curr_n // w}")
curr_N = curr_N // w # should be int division anyway
out.append(curr_n // curr_N)
curr_n = curr_n % curr_N
return out

View File

@@ -66,7 +66,7 @@ def get_a_result_fast_filter_pairs(input) -> int:
return len(current_sample)
def get_a_result_fast_filter_pair_phase_only(input) -> int:
def get_a_result_fast_filter_potential_pair_phase_only(input) -> int:
(
model,
pair_inputs,
@@ -102,6 +102,50 @@ def get_a_result_fast_filter_pair_phase_only(input) -> int:
return len(current_sample)
def get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only(input) -> int:
(
model,
pair_inputs,
pair_phase_lows,
pair_phase_highs,
monte_carlo_count,
seed,
) = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for pi, plow, phigh in zip(pair_inputs, pair_phase_lows, pair_phase_highs):
if len(current_sample) < 1:
break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg(
pdme.util.fast_nonlocal_spectrum.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return len(current_sample)
def get_a_result_fast_filter(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, seed = input
@@ -197,7 +241,7 @@ class RealSpectrumRun:
self.pair_phase_measurements = pair_phase_measurements
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_measurements
for measure in self.pair_phase_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(
@@ -299,6 +343,7 @@ class RealSpectrumRun:
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
if self.use_pair_measurements:
_logger.debug("using pair measurements")
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter_pairs,
@@ -320,9 +365,11 @@ class RealSpectrumRun:
)
)
elif self.use_pair_phase_measurements:
_logger.debug("using pair phase measurements")
_logger.debug("specifically using tarucha")
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter_pairs,
get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only,
[
(
model,

193
deepdog/results/__init__.py Normal file
View File

@@ -0,0 +1,193 @@
import dataclasses
import re
import typing
import logging
import deepdog.indexify
import pathlib
import csv
_logger = logging.getLogger(__name__)
FILENAME_REGEX = re.compile(
r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv"
)
MODEL_REGEXES = [
re.compile(pattern)
for pattern in [
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-magnitude_(?P<log_magnitude>\d*\.?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
r"geom_(?P<xmin>-?\d*\.?\d+)_(?P<xmax>-?\d*\.?\d+)_(?P<ymin>-?\d*\.?\d+)_(?P<ymax>-?\d*\.?\d+)_(?P<zmin>-?\d*\.?\d+)_(?P<zmax>-?\d*\.?\d+)-magnitude_(?P<log_magnitude>\d*\.?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
]
]
FILE_SLUG_REGEXES = [
re.compile(pattern)
for pattern in [
r"(?P<tag>\w+)-(?P<job_index>\d+)",
r"mock_tarucha-(?P<job_index>\d+)",
r"(?:(?P<mock>mock)_)?tarucha(?:_(?P<tarucha_run_id>\d+))?-(?P<job_index>\d+)",
]
]
SIMPLE_TAG_REGEX = re.compile(r"\w+-\d+")
@dataclasses.dataclass
class BayesrunOutputFilename:
timestamp: str
filename_slug: str
path: pathlib.Path
class BayesrunColumnParsed:
"""
class for parsing a bayesrun while pulling certain special fields out
"""
def __init__(self, groupdict: typing.Dict[str, str]):
self.column_field = groupdict["field_name"]
self.model_field_dict = {
k: v for k, v in groupdict.items() if k != "field_name"
}
self._groupdict_str = repr(groupdict)
def __str__(self):
return f"BayesrunColumnParsed[{self.column_field}: {self.model_field_dict}]"
def __repr__(self):
return f"BayesrunColumnParsed({self._groupdict_str})"
def __eq__(self, other):
if isinstance(other, BayesrunColumnParsed):
return (self.column_field == other.column_field) and (
self.model_field_dict == other.model_field_dict
)
return NotImplemented
@dataclasses.dataclass
class BayesrunModelResult:
parsed_model_keys: typing.Dict[str, str]
success: int
count: int
@dataclasses.dataclass
class BayesrunOutput:
filename: BayesrunOutputFilename
data: typing.Dict["str", typing.Any]
results: typing.Sequence[BayesrunModelResult]
def _batch_iterable_into_chunks(iterable, n=1):
"""
utility for batching bayesrun files where columns appear in threes
"""
for ndx in range(0, len(iterable), n):
yield iterable[ndx : min(ndx + n, len(iterable))]
def _parse_bayesrun_column(
column: str,
) -> typing.Optional[BayesrunColumnParsed]:
"""
Tries one by one all of a predefined list of regexes that I might have used in the past.
Returns the groupdict for the first match, or None if no match found.
"""
for pattern in MODEL_REGEXES:
match = pattern.match(column)
if match:
return BayesrunColumnParsed(match.groupdict())
else:
return None
def _parse_bayesrun_row(
row: typing.Dict[str, str],
) -> typing.Sequence[BayesrunModelResult]:
results = []
batched_keys = _batch_iterable_into_chunks(list(row.keys()), 3)
for model_keys in batched_keys:
parsed = [_parse_bayesrun_column(column) for column in model_keys]
values = [row[column] for column in model_keys]
if parsed[0] is None:
raise ValueError(f"no viable success row found for keys {model_keys}")
if parsed[1] is None:
raise ValueError(f"no viable count row found for keys {model_keys}")
if parsed[0].column_field != "success":
raise ValueError(f"The column {model_keys[0]} is not a success field")
if parsed[1].column_field != "count":
raise ValueError(f"The column {model_keys[1]} is not a count field")
parsed_keys = parsed[0].model_field_dict
success = int(values[0])
count = int(values[1])
results.append(
BayesrunModelResult(
parsed_model_keys=parsed_keys,
success=success,
count=count,
)
)
return results
def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
filename = file.name
match = FILENAME_REGEX.match(filename)
if not match:
raise ValueError(f"{filename} was not a valid bayesrun output")
groups = match.groupdict()
return BayesrunOutputFilename(
timestamp=groups["timestamp"], filename_slug=groups["filename_slug"], path=file
)
def _parse_file_slug(slug: str) -> typing.Optional[typing.Dict[str, str]]:
for pattern in FILE_SLUG_REGEXES:
match = pattern.match(slug)
if match:
return match.groupdict()
else:
return None
def read_output_file(
file: pathlib.Path, indexifier: typing.Optional[deepdog.indexify.Indexifier]
) -> BayesrunOutput:
parsed_filename = tag = _parse_output_filename(file)
out = BayesrunOutput(filename=parsed_filename, data={}, results=[])
out.data.update(dataclasses.asdict(tag))
parsed_tag = _parse_file_slug(parsed_filename.filename_slug)
if parsed_tag is None:
_logger.warning(
f"Could not parse {tag} against any matching regexes. Going to skip tag parsing"
)
else:
out.data.update(parsed_tag)
if indexifier is not None:
try:
job_index = parsed_tag["job_index"]
indexified = indexifier.indexify(int(job_index))
out.data.update(indexified)
except KeyError:
# This isn't really that important of an error, apart from the warning
_logger.warning(
f"Parsed tag to {parsed_tag}, and attempted to indexify but no job_index key was found. skipping and moving on"
)
with file.open() as input_file:
reader = csv.DictReader(input_file)
rows = [r for r in reader]
if len(rows) == 1:
row = rows[0]
else:
raise ValueError(f"Confused about having multiple rows in {file.name}")
results = _parse_bayesrun_row(row)
out.results = results
return out

View File

@@ -1,9 +1,11 @@
import logging
import multiprocessing
import numpy
import pdme.measurement
import pdme.measurement.input_types
import pdme.model
import pdme.subspace_simulation
from typing import Sequence, Tuple, Optional
from typing import Sequence, Tuple, Optional, Callable, Union, List
from dataclasses import dataclass
@@ -18,47 +20,63 @@ class SubsetSimulationResult:
under_target_cost: Optional[float]
under_target_likelihood: Optional[float]
lowest_likelihood: Optional[float]
messages: Sequence[str]
@dataclass
class MultiSubsetSimulationResult:
child_results: Sequence[SubsetSimulationResult]
model_name: str
estimated_likelihood: float
arithmetic_mean_estimated_likelihood: float
num_children: int
num_finished_children: int
clean_estimate: bool
class SubsetSimulation:
def __init__(
self,
model_name_pair,
dot_inputs,
actual_measurements: Sequence[pdme.measurement.DotMeasurement],
# actual_measurements: Sequence[pdme.measurement.DotMeasurement],
cost_function: Callable[[numpy.ndarray], numpy.ndarray],
n_c: int,
n_s: int,
m_max: int,
target_cost: Optional[float] = None,
level_0_seed: int = 200,
mcmc_seed: int = 20,
level_0_seed: Union[int, Sequence[int]] = 200,
mcmc_seed: Union[int, Sequence[int]] = 20,
use_adaptive_steps=True,
default_phi_step=0.01,
default_theta_step=0.01,
default_r_step=0.01,
default_w_log_step=0.01,
default_upper_w_log_step=4,
num_initial_dmc_gens=1,
keep_probs_list=True,
dump_last_generation_to_file=False,
initial_cost_chunk_size=100,
initial_cost_multiprocess=True,
cap_core_count: int = 0, # 0 means cap at num cores - 1
):
name, model = model_name_pair
self.model_name = name
self.model = model
_logger.info(f"got model {self.model_name}")
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
dot_inputs
)
# dot_inputs = [(meas.r, meas.f) for meas in actual_measurements]
# self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
# dot_inputs
# )
# _logger.debug(f"actual measurements: {actual_measurements}")
self.actual_measurement_array = numpy.array([m.v for m in actual_measurements])
# self.actual_measurement_array = numpy.array([m.v for m in actual_measurements])
def cost_function_to_use(dipoles_to_test):
return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
self.dot_inputs_array, self.actual_measurement_array, dipoles_to_test
)
# def cost_function_to_use(dipoles_to_test):
# return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
# self.dot_inputs_array, self.actual_measurement_array, dipoles_to_test
# )
self.cost_function_to_use = cost_function_to_use
self.cost_function_to_use = cost_function
self.n_c = n_c
self.n_s = n_s
@@ -68,16 +86,25 @@ class SubsetSimulation:
self.mcmc_seed = mcmc_seed
self.use_adaptive_steps = use_adaptive_steps
self.default_phi_step = default_phi_step
self.default_phi_step = (
default_phi_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_theta_step = default_theta_step
self.default_r_step = default_r_step
self.default_w_log_step = default_w_log_step
self.default_r_step = (
default_r_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_w_log_step = (
default_w_log_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_upper_w_log_step = default_upper_w_log_step
_logger.info("using params:")
_logger.info(f"\tn_c: {self.n_c}")
_logger.info(f"\tn_s: {self.n_s}")
_logger.info(f"\tm: {self.m_max}")
_logger.info(f"\t{num_initial_dmc_gens=}")
_logger.info(f"\t{mcmc_seed=}")
_logger.info(f"\t{level_0_seed=}")
_logger.info("let's do level 0...")
self.target_cost = target_cost
@@ -87,158 +114,176 @@ class SubsetSimulation:
self.dump_last_generations = dump_last_generation_to_file
self.initial_cost_chunk_size = initial_cost_chunk_size
self.initial_cost_multiprocess = initial_cost_multiprocess
self.cap_core_count = cap_core_count
self.num_dmc_gens = num_initial_dmc_gens
def _single_chain_gen(self, args: Tuple):
threshold_cost, stdevs, rng_seed, (c, s) = args
rng = numpy.random.default_rng(rng_seed)
return self.model.get_repeat_counting_mcmc_chain(
s,
self.cost_function_to_use,
self.n_s,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=rng,
)
def execute(self) -> SubsetSimulationResult:
probs_list = []
output_messages = []
# If we have n_s = 10 and n_c = 100, then our big N = 1000 and p = 1/10
# The DMC stage would normally generate 1000, then pick the best 100 and start counting prob = p/10.
# Let's say we want our DMC stage to go down to level 2.
# Then we need to filter out p^2, so our initial has to be N_0 = N / p = n_c * n_s^2
initial_dmc_n = self.n_c * (self.n_s**self.num_dmc_gens)
initial_level = (
self.num_dmc_gens - 1
) # This is perfunctory but let's label it here really explicitly
_logger.info(f"Generating {initial_dmc_n} for DMC stage")
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
self.n_c * self.n_s,
initial_dmc_n,
-1,
rng_to_use=numpy.random.default_rng(self.level_0_seed),
)
# _logger.debug(sample_dipoles)
# _logger.debug(sample_dipoles.shape)
raw_costs = []
_logger.debug("Finished dipole generation")
_logger.debug(
f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}"
f"Using iterated multiprocessing cost function thing with chunk size {self.initial_cost_chunk_size}"
)
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size):
_logger.debug(f"doing chunk {x}")
raw_costs.extend(
self.cost_function_to_use(
sample_dipoles[x : x + self.initial_cost_chunk_size]
)
# core count etc. logic here
core_count = multiprocessing.cpu_count() - 1 or 1
if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
core_count = self.cap_core_count
_logger.info(f"Using {core_count} cores")
with multiprocessing.Pool(core_count) as pool:
# Do the initial DMC calculation in a multiprocessing
chunks = numpy.array_split(
sample_dipoles,
range(
self.initial_cost_chunk_size,
len(sample_dipoles),
self.initial_cost_chunk_size,
),
)
costs = numpy.array(raw_costs)
if self.initial_cost_multiprocess:
_logger.debug("Multiprocessing initial costs")
raw_costs = pool.map(self.cost_function_to_use, chunks)
else:
_logger.debug("Single process initial costs")
raw_costs = []
for chunk_idx, chunk in enumerate(chunks):
_logger.debug(f"doing chunk #{chunk_idx}")
raw_costs.append(self.cost_function_to_use(chunk))
costs = numpy.concatenate(raw_costs)
_logger.debug("finished initial dmc cost calculation")
# _logger.debug(f"costs: {costs}")
sorted_indexes = costs.argsort()[::-1]
_logger.debug(f"costs: {costs}")
sorted_indexes = costs.argsort()[::-1]
# _logger.debug(costs[sorted_indexes])
# _logger.debug(sample_dipoles[sorted_indexes])
_logger.debug(costs[sorted_indexes])
_logger.debug(sample_dipoles[sorted_indexes])
sorted_costs = costs[sorted_indexes]
sorted_dipoles = sample_dipoles[sorted_indexes]
sorted_costs = costs[sorted_indexes]
sorted_dipoles = sample_dipoles[sorted_indexes]
threshold_cost = sorted_costs[-self.n_c]
all_dipoles = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(samp)
for samp in sorted_dipoles
]
)
all_chains = list(zip(sorted_costs, all_dipoles))
mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
for i in range(self.m_max):
next_seeds = all_chains[-self.n_c :]
if self.dump_last_generations:
_logger.info("writing out csv file")
next_dipoles_seed_dipoles = numpy.array([n[1] for n in next_seeds])
for n in range(self.model.n):
_logger.info(f"{next_dipoles_seed_dipoles[:, n].shape}")
numpy.savetxt(
f"generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
next_dipoles_seed_dipoles[:, n],
delimiter=",",
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
all_long_chains = []
for seed_index, (c, s) in enumerate(
next_seeds[:: len(next_seeds) // 20]
):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(f"\t{seed_index}: doing long chain on the next seed")
long_chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
1000,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
)
for _, chained in long_chain:
all_long_chains.append(chained)
all_long_chains_array = numpy.array(all_long_chains)
for n in range(self.model.n):
_logger.info(f"{all_long_chains_array[:, n].shape}")
numpy.savetxt(
f"long_chain_generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
all_long_chains_array[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
_logger.debug("Starting the MCMC")
all_chains = []
for seed_index, (c, s) in enumerate(next_seeds):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
all_dipoles = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(samp)
for samp in sorted_dipoles
]
)
all_chains = list(zip(sorted_costs, all_dipoles))
for dmc_level in range(initial_level):
# if initial level is 1, we want to print out what the level 0 threshold would have been?
_logger.debug(f"Get the pseudo statistics for level {dmc_level}")
_logger.debug(f"Whole chain has length {len(all_chains)}")
pseudo_threshold_index = -(
self.n_c * (self.n_s ** (self.num_dmc_gens - dmc_level - 1))
)
_logger.debug(
f"\t{seed_index}: getting another chain from the next seed"
f"Have a pseudo_threshold_index of {pseudo_threshold_index}, or {len(all_chains) + pseudo_threshold_index}"
)
chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
self.n_s,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
pseudo_threshold_cost = all_chains[-pseudo_threshold_index][0]
_logger.info(
f"Pseudo-level {dmc_level} threshold cost {pseudo_threshold_cost}, at P = (1 / {self.n_s})^{dmc_level + 1}"
)
for cost, chained in chain:
try:
filtered_cost = cost[0]
except (IndexError, TypeError):
filtered_cost = cost
all_chains.append((filtered_cost, chained))
_logger.debug("finished mcmc")
# _logger.debug(all_chains)
all_chains = all_chains[pseudo_threshold_index:]
all_chains.sort(key=lambda c: c[0], reverse=True)
_logger.debug("finished sorting all_chains")
long_mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
mcmc_rng_seed_sequence = numpy.random.SeedSequence(self.mcmc_seed)
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
f"current threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{i + 1}"
f"Finishing DMC threshold cost {threshold_cost} at level {initial_level}, at P = (1 / {self.n_s})^{initial_level + 1}"
)
if (self.target_cost is not None) and (threshold_cost < self.target_cost):
_logger.info(
f"got a threshold cost {threshold_cost}, less than {self.target_cost}. will leave early"
)
_logger.debug(f"Executing the MCMC with chains of length {len(all_chains)}")
cost_list = [c[0] for c in all_chains]
over_index = reverse_bisect_right(cost_list, self.target_cost)
# Now we move on to the MCMC part of the algorithm
shorter_probs_list = []
for cost_index, cost_chain in enumerate(all_chains):
if self.keep_probs_list:
# This is important, we want to allow some extra initial levels so we need to account for that here!
for i in range(self.num_dmc_gens, self.m_max):
_logger.info(f"Starting level {i}")
next_seeds = all_chains[-self.n_c :]
if self.dump_last_generations:
_logger.info("writing out csv file")
next_dipoles_seed_dipoles = numpy.array([n[1] for n in next_seeds])
for n in range(self.model.n):
_logger.info(f"{next_dipoles_seed_dipoles[:, n].shape}")
numpy.savetxt(
f"generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
next_dipoles_seed_dipoles[:, n],
delimiter=",",
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
all_long_chains = []
for seed_index, (c, s) in enumerate(
next_seeds[:: len(next_seeds) // 20]
):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(
f"\t{seed_index}: doing long chain on the next seed"
)
long_chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
1000,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=long_mcmc_rng,
)
for _, chained in long_chain:
all_long_chains.append(chained)
all_long_chains_array = numpy.array(all_long_chains)
for n in range(self.model.n):
_logger.info(f"{all_long_chains_array[:, n].shape}")
numpy.savetxt(
f"long_chain_generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
all_long_chains_array[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
(
(
@@ -250,26 +295,105 @@ class SubsetSimulation:
i + 1,
)
)
shorter_probs_list.append(
(
cost_chain[0],
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
)
)
# _logger.info(shorter_probs_list)
result = SubsetSimulationResult(
probs_list=probs_list,
over_target_cost=shorter_probs_list[over_index - 1][0],
over_target_likelihood=shorter_probs_list[over_index - 1][1],
under_target_cost=shorter_probs_list[over_index][0],
under_target_likelihood=shorter_probs_list[over_index][1],
lowest_likelihood=shorter_probs_list[-1][1],
)
return result
# _logger.debug([c[0] for c in all_chains[-n_c:]])
_logger.info(f"doing level {i + 1}")
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.debug(f"got stdevs, begin: {stdevs.stdevs[:10]}")
_logger.debug("Starting the MCMC")
all_chains = []
seeds = mcmc_rng_seed_sequence.spawn(len(next_seeds))
pool_results = pool.imap_unordered(
self._single_chain_gen,
[
(threshold_cost, stdevs, rng_seed, test_seed)
for rng_seed, test_seed in zip(seeds, next_seeds)
],
chunksize=50,
)
# count for ergodicity analysis
samples_generated = 0
samples_rejected = 0
for rejected_count, chain in pool_results:
for cost, chained in chain:
try:
filtered_cost = cost[0]
except (IndexError, TypeError):
filtered_cost = cost
all_chains.append((filtered_cost, chained))
samples_generated += self.n_s
samples_rejected += rejected_count
_logger.debug("finished mcmc")
_logger.debug(f"{samples_rejected=} out of {samples_generated=}")
if samples_rejected * 2 > samples_generated:
reject_ratio = samples_rejected / samples_generated
rejectionmessage = f"On level {i}, rejected {samples_rejected} out of {samples_generated}, {reject_ratio=} is too high and may indicate ergodicity problems"
output_messages.append(rejectionmessage)
_logger.warning(rejectionmessage)
# _logger.debug(all_chains)
all_chains.sort(key=lambda c: c[0], reverse=True)
_logger.debug("finished sorting all_chains")
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
f"current threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{i + 1}"
)
if (self.target_cost is not None) and (
threshold_cost < self.target_cost
):
_logger.info(
f"got a threshold cost {threshold_cost}, less than {self.target_cost}. will leave early"
)
cost_list = [c[0] for c in all_chains]
over_index = reverse_bisect_right(cost_list, self.target_cost)
winner = all_chains[over_index][1]
_logger.info(f"Winner obtained: {winner}")
shorter_probs_list = []
for cost_index, cost_chain in enumerate(all_chains):
if self.keep_probs_list:
probs_list.append(
(
(
(self.n_c * self.n_s - cost_index)
/ (self.n_c * self.n_s)
)
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
)
shorter_probs_list.append(
(
cost_chain[0],
(
(self.n_c * self.n_s - cost_index)
/ (self.n_c * self.n_s)
)
/ (self.n_s ** (i)),
)
)
# _logger.info(shorter_probs_list)
result = SubsetSimulationResult(
probs_list=probs_list,
over_target_cost=shorter_probs_list[over_index - 1][0],
over_target_likelihood=shorter_probs_list[over_index - 1][1],
under_target_cost=shorter_probs_list[over_index][0],
under_target_likelihood=shorter_probs_list[over_index][1],
lowest_likelihood=shorter_probs_list[-1][1],
messages=output_messages,
)
return result
# _logger.debug([c[0] for c in all_chains[-n_c:]])
_logger.info(f"doing level {i + 1}")
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains):
@@ -285,8 +409,8 @@ class SubsetSimulation:
_logger.info(
f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}"
)
for a in all_chains[-10:]:
_logger.info(a)
# for a in all_chains[-10:]:
# _logger.info(a)
# for prob, prob_cost in probs_list:
# _logger.info(f"\t{prob}: {prob_cost}")
probs_list.sort(key=lambda c: c[0], reverse=True)
@@ -300,6 +424,7 @@ class SubsetSimulation:
under_target_cost=None,
under_target_likelihood=None,
lowest_likelihood=min_likelihood,
messages=output_messages,
)
return result
@@ -358,6 +483,116 @@ class SubsetSimulation:
return stdevs
class MultiSubsetSimulations:
def __init__(
self,
model_name_pairs: Sequence[Tuple[str, pdme.model.DipoleModel]],
# actual_measurements: Sequence[pdme.measurement.DotMeasurement],
cost_function: Callable[[numpy.ndarray], numpy.ndarray],
num_runs: int,
n_c: int,
n_s: int,
m_max: int,
target_cost: float,
num_initial_dmc_gens: int = 1,
level_0_seed_seed: int = 200,
mcmc_seed_seed: int = 20,
use_adaptive_steps=True,
default_phi_step=0.01,
default_theta_step=0.01,
default_r_step=0.01,
default_w_log_step=0.01,
default_upper_w_log_step=4,
initial_cost_chunk_size=100,
cap_core_count: int = 0, # 0 means cap at num cores - 1
):
self.model_name_pairs = model_name_pairs
self.cost_function = cost_function
self.num_runs = num_runs
self.n_c = n_c
self.n_s = n_s
self.m_max = m_max
self.target_cost = target_cost # This is not optional here!
self.num_dmc_gens = num_initial_dmc_gens
self.level_0_seed_seed = level_0_seed_seed
self.mcmc_seed_seed = mcmc_seed_seed
self.use_adaptive_steps = use_adaptive_steps
self.default_phi_step = default_phi_step
self.default_theta_step = default_theta_step
self.default_r_step = default_r_step
self.default_w_log_step = default_w_log_step
self.default_upper_w_log_step = default_upper_w_log_step
self.initial_cost_chunk_size = initial_cost_chunk_size
self.cap_core_count = cap_core_count
def execute(self) -> Sequence[MultiSubsetSimulationResult]:
output: List[MultiSubsetSimulationResult] = []
for model_index, model_name_pair in enumerate(self.model_name_pairs):
ss_results = [
SubsetSimulation(
model_name_pair,
self.cost_function,
self.n_c,
self.n_s,
self.m_max,
self.target_cost,
num_initial_dmc_gens=self.num_dmc_gens,
level_0_seed=[model_index, run_index, self.level_0_seed_seed],
mcmc_seed=[model_index, run_index, self.mcmc_seed_seed],
use_adaptive_steps=self.use_adaptive_steps,
default_phi_step=self.default_phi_step,
default_theta_step=self.default_theta_step,
default_r_step=self.default_r_step,
default_w_log_step=self.default_w_log_step,
default_upper_w_log_step=self.default_upper_w_log_step,
keep_probs_list=False,
dump_last_generation_to_file=False,
initial_cost_chunk_size=self.initial_cost_chunk_size,
cap_core_count=self.cap_core_count,
).execute()
for run_index in range(self.num_runs)
]
output.append(coalesce_ss_results(model_name_pair[0], ss_results))
return output
def coalesce_ss_results(
model_name: str, results: Sequence[SubsetSimulationResult]
) -> MultiSubsetSimulationResult:
num_finished = sum(1 for res in results if res.under_target_likelihood is not None)
estimated_likelihoods = numpy.array(
[
res.under_target_likelihood
if res.under_target_likelihood is not None
else res.lowest_likelihood
for res in results
]
)
_logger.info(estimated_likelihoods)
geometric_mean_estimated_likelihoods = numpy.exp(
numpy.log(estimated_likelihoods).mean()
)
_logger.info(geometric_mean_estimated_likelihoods)
arithmetic_mean_estimated_likelihoods = estimated_likelihoods.mean()
result = MultiSubsetSimulationResult(
child_results=results,
model_name=model_name,
estimated_likelihood=geometric_mean_estimated_likelihoods,
arithmetic_mean_estimated_likelihood=arithmetic_mean_estimated_likelihoods,
num_children=len(results),
num_finished_children=num_finished,
clean_estimate=num_finished == len(results),
)
return result
def reverse_bisect_right(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted in descending order.

38
do.sh
View File

@@ -1,38 +0,0 @@
#!/usr/bin/env bash
# Do - The Simplest Build Tool on Earth.
# Documentation and examples see https://github.com/8gears/do
set -Eeuo pipefail # -e "Automatic exit from bash shell script on error" -u "Treat unset variables and parameters as errors"
build() {
echo "I am ${FUNCNAME[0]}ing"
poetry build
}
test() {
echo "I am ${FUNCNAME[0]}ing"
poetry run flake8 deepdog tests
poetry run mypy deepdog
poetry run pytest
}
fmt() {
poetry run black .
find . -not \( -path "./.*" -type d -prune \) -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
}
release() {
./scripts/release.sh
}
htmlcov() {
poetry run pytest --cov-report=html
}
all() {
build && test
}
"$@" # <- execute the task
[ "$#" -gt 0 ] || printf "Usage:\n\t./do.sh %s\n" "($(compgen -A function | grep '^[^_]' | paste -sd '|' -))"

145
flake.lock generated
View File

@@ -1,28 +1,33 @@
{
"nodes": {
"flake-utils": {
"inputs": {
"systems": "systems"
},
"locked": {
"lastModified": 1648297722,
"narHash": "sha256-W+qlPsiZd8F3XkzXOzAoR+mpFqzm3ekQkJNa+PIh1BQ=",
"lastModified": 1710146030,
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
"type": "github"
}
},
"flake-utils_2": {
"inputs": {
"systems": "systems_2"
},
"locked": {
"lastModified": 1653893745,
"narHash": "sha256-0jntwV3Z8//YwuOjzhV2sgJJPt+HY6KhU7VZUL0fKZQ=",
"lastModified": 1705309234,
"narHash": "sha256-uNRRNRKmJyCRC/8y1RqBkqWBLM034y4qN7EprSdmgyA=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "1ed9fb1935d260de5fe1c2f7ee0ebaae17ed2fa1",
"rev": "1ef2e671c3b0c19053962c07dbda38332dcebf26",
"type": "github"
},
"original": {
@@ -31,29 +36,34 @@
"type": "github"
}
},
"nix-github-actions": {
"inputs": {
"nixpkgs": [
"poetry2nixSrc",
"nixpkgs"
]
},
"locked": {
"lastModified": 1703863825,
"narHash": "sha256-rXwqjtwiGKJheXB43ybM8NwWB8rO2dSRrEqes0S7F5Y=",
"owner": "nix-community",
"repo": "nix-github-actions",
"rev": "5163432afc817cf8bd1f031418d1869e4c9d5547",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "nix-github-actions",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1655087213,
"narHash": "sha256-4R5oQ+OwGAAcXWYrxC4gFMTUSstGxaN8kN7e8hkum/8=",
"lastModified": 1710703777,
"narHash": "sha256-M4CNAgjrtvrxIWIAc98RTYcVFoAgwUhrYekeiMScj18=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
"type": "github"
}
},
"nixpkgs_2": {
"locked": {
"lastModified": 1655046959,
"narHash": "sha256-gxqHZKq1ReLDe6ZMJSbmSZlLY95DsVq5o6jQihhzvmw=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "07bf3d25ce1da3bee6703657e6a787a4c6cdcea9",
"rev": "fc7885fbcea4b782142e06ce2d4d08cf92862004",
"type": "github"
},
"original": {
@@ -62,23 +72,27 @@
"type": "github"
}
},
"poetry2nix": {
"poetry2nixSrc": {
"inputs": {
"flake-utils": "flake-utils_2",
"nixpkgs": "nixpkgs_2"
"nix-github-actions": "nix-github-actions",
"nixpkgs": [
"nixpkgs"
],
"systems": "systems_3",
"treefmt-nix": "treefmt-nix"
},
"locked": {
"lastModified": 1654921554,
"narHash": "sha256-hkfMdQAHSwLWlg0sBVvgrQdIiBP45U1/ktmFpY4g2Mo=",
"lastModified": 1708589824,
"narHash": "sha256-2GOiFTkvs5MtVF65sC78KNVxQSmsxtk0WmV1wJ9V2ck=",
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
"rev": "3c92540611f42d3fb2d0d084a6c694cd6544b609",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
"type": "github"
}
},
@@ -86,7 +100,72 @@
"inputs": {
"flake-utils": "flake-utils",
"nixpkgs": "nixpkgs",
"poetry2nix": "poetry2nix"
"poetry2nixSrc": "poetry2nixSrc"
}
},
"systems": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_2": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_3": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"id": "systems",
"type": "indirect"
}
},
"treefmt-nix": {
"inputs": {
"nixpkgs": [
"poetry2nixSrc",
"nixpkgs"
]
},
"locked": {
"lastModified": 1708335038,
"narHash": "sha256-ETLZNFBVCabo7lJrpjD6cAbnE11eDOjaQnznmg/6hAE=",
"owner": "numtide",
"repo": "treefmt-nix",
"rev": "e504621290a1fd896631ddbc5e9c16f4366c9f65",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "treefmt-nix",
"type": "github"
}
}
},

View File

@@ -1,63 +1,47 @@
{
description = "Application packaged using poetry2nix";
inputs.flake-utils.url = "github:numtide/flake-utils?rev=0f8662f1319ad6abf89b3380dd2722369fc51ade";
inputs.nixpkgs.url = "github:NixOS/nixpkgs?rev=37b6b161e536fddca54424cf80662bce735bdd1e";
inputs.poetry2nix.url = "github:nix-community/poetry2nix?rev=7b71679fa7df00e1678fc3f1d1d4f5f372341b63";
inputs.flake-utils.url = "github:numtide/flake-utils";
inputs.nixpkgs.url = "github:NixOS/nixpkgs";
inputs.poetry2nixSrc = {
url = "github:nix-community/poetry2nix";
inputs.nixpkgs.follows = "nixpkgs";
};
outputs = { self, nixpkgs, flake-utils, poetry2nix }:
{
# Nixpkgs overlay providing the application
overlay = nixpkgs.lib.composeManyExtensions [
poetry2nix.overlay
(final: prev: {
# The application
deepdog = prev.poetry2nix.mkPoetryApplication {
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
# …
# workaround https://github.com/nix-community/poetry2nix/issues/568
pdme = super.pdme.overridePythonAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
});
});
projectDir = ./.;
};
deepdogEnv = prev.poetry2nix.mkPoetryEnv {
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
# …
# workaround https://github.com/nix-community/poetry2nix/issues/568
pdme = super.pdme.overridePythonAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
});
});
projectDir = ./.;
};
})
];
} // (flake-utils.lib.eachDefaultSystem (system:
outputs = { self, nixpkgs, flake-utils, poetry2nixSrc }:
flake-utils.lib.eachDefaultSystem (system:
let
pkgs = import nixpkgs {
inherit system;
overlays = [ self.overlay ];
};
in
{
apps = {
deepdog = pkgs.deepdog;
};
defaultApp = pkgs.deepdog;
devShell = pkgs.mkShell {
buildInputs = [
pkgs.poetry
pkgs.deepdogEnv
pkgs.deepdog
];
shellHook = ''
export DO_NIX_CUSTOM=1
'';
packages = [ pkgs.nodejs-16_x ];
};
}));
pkgs = nixpkgs.legacyPackages.${system};
poetry2nix = poetry2nixSrc.lib.mkPoetry2Nix { inherit pkgs; };
in {
packages = {
deepdogApp = poetry2nix.mkPoetryApplication {
projectDir = self;
python = pkgs.python39;
preferWheels = true;
};
deepdogEnv = poetry2nix.mkPoetryEnv {
projectDir = self;
python = pkgs.python39;
preferWheels = true;
overrides = poetry2nix.overrides.withDefaults (self: super: {
});
};
default = self.packages.${system}.deepdogEnv;
};
devShells.default = pkgs.mkShell {
inputsFrom = [ self.packages.${system}.deepdogEnv ];
buildInputs = [
pkgs.poetry
self.packages.${system}.deepdogEnv
self.packages.${system}.deepdogApp
pkgs.just
pkgs.nodejs
];
shellHook = ''
export DO_NIX_CUSTOM=1
'';
};
}
);
}

60
justfile Normal file
View File

@@ -0,0 +1,60 @@
# execute default build
default: build
# builds the python module using poetry
build:
echo "building..."
poetry build
# print a message displaying whether nix is being used
checknix:
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
echo "In an interactive nix env."
else
echo "Using poetry as runner, no nix detected."
fi
# run all tests
test: fmt
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
echo "testing, using nix..."
flake8 deepdog tests
mypy deepdog
pytest
else
echo "testing..."
poetry run flake8 deepdog tests
poetry run mypy deepdog
poetry run pytest
fi
# format code
fmt:
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
black .
else
poetry run black .
fi
find deepdog -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
find tests -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
# release the app, checking that our working tree is clean and ready for release, optionally takes target version
release version="":
#!/usr/bin/env bash
set -euxo pipefail
if [[ -n "{{version}}" ]]; then
./scripts/release.sh {{version}}
else
./scripts/release.sh
fi
htmlcov:
poetry run pytest --cov-report=html

844
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,14 +1,15 @@
[tool.poetry]
name = "deepdog"
version = "0.7.7"
version = "1.3.0"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies]
python = ">=3.8.1,<3.10"
pdme = "^0.9.3"
pdme = "^1.5.0"
numpy = "1.22.3"
scipy = "1.10"
tqdm = "^4.66.2"
[tool.poetry.dev-dependencies]
pytest = ">=6"
@@ -19,6 +20,9 @@ python-semantic-release = "^7.24.0"
black = "^22.3.0"
syrupy = "^4.0.8"
[tool.poetry.scripts]
probs = "deepdog.cli.probs:wrapped_main"
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
@@ -38,6 +42,13 @@ module = [
]
ignore_missing_imports = true
[[tool.mypy.overrides]]
module = [
"tqdm",
"tqdm.*"
]
ignore_missing_imports = true
[tool.semantic_release]
version_toml = "pyproject.toml:tool.poetry.version"
tag_format = "{version}"

View File

@@ -25,15 +25,22 @@ if [ -z "$(git status --porcelain)" ]; then
exit 0
fi
std_version_args=()
if [[ -n "${1:-}" ]]; then
std_version_args+=( "--release-as" "$1" )
echo "Parameter $1 was supplied, so we should use release-as"
else
echo "No release-as parameter specifed."
fi
# Working directory clean
echo "Doing a dry run..."
npx standard-version --dry-run
npx standard-version --dry-run "${std_version_args[@]}"
read -p "Does that look good? [y/N] " -n 1 -r
echo # (optional) move to a new line
if [[ $REPLY =~ ^[Yy]$ ]]
then
# do dangerous stuff
npx standard-version
npx standard-version "${std_version_args[@]}"
git push --follow-tags origin master
else
echo "okay, never mind then..."

View File

@@ -1,4 +1,4 @@
const pattern = /(\[tool\.poetry\]\nname = "deepdog"\nversion = ")(?<vers>\d+\.\d+\.\d)(")/mg;
const pattern = /(\[tool\.poetry\]\nname = "deepdog"\nversion = ")(?<vers>\d+\.\d+\.\d+)(")/mg;
module.exports.readVersion = function (contents) {
const result = pattern.exec(contents);

View File

View File

@@ -0,0 +1,42 @@
import deepdog.direct_monte_carlo.cost_function_filter
import numpy
def test_px_cost_function_filter_example():
dipoles_1 = [
[1, 2, 3, 4, 5, 6, 7],
[2, 3, 2, 5, 4, 7, 6],
]
dipoles_2 = [
[15, 9, 8, 7, 6, 5, 3],
[30, 4, 4, 7, 3, 1, 4],
]
dipoleses = numpy.array([dipoles_1, dipoles_2])
def cost_function(dipoleses: numpy.ndarray) -> numpy.ndarray:
return dipoleses[:, :, 0].max(axis=-1)
expected_costs = numpy.array([2, 30])
numpy.testing.assert_array_equal(cost_function(dipoleses), expected_costs)
filter = deepdog.direct_monte_carlo.cost_function_filter.CostFunctionTargetFilter(
cost_function, 5
)
actual_filtered = filter.filter_samples(dipoleses)
expected_filtered = numpy.array([dipoles_1])
assert actual_filtered.size != 0
numpy.testing.assert_array_equal(actual_filtered, expected_filtered)
filter_stricter = (
deepdog.direct_monte_carlo.cost_function_filter.CostFunctionTargetFilter(
cost_function, 0.5
)
)
actual_filtered_stricter = filter_stricter.filter_samples(dipoleses)
assert actual_filtered_stricter.size == 0

View File

@@ -0,0 +1,137 @@
import pdme.measurement
import pdme.measurement.input_types
from pdme.model import (
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
)
import deepdog.direct_monte_carlo.dmc_filters
import numpy.random
import numpy.testing
import logging
_logger = logging.getLogger(__name__)
def fixed_z_model_func(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
n_max,
prob_occupancy,
):
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
0,
0,
n_max,
prob_occupancy,
)
def get_model(orientation):
model_funcs = {
"fixedz": fixed_z_model_func,
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
}
model = model_funcs[orientation](
-10,
10,
-17.5,
17.5,
5,
7.5,
-5,
6.5,
10**3,
2,
0.99999999,
)
model.n = 2
model.rng = numpy.random.default_rng(1234)
return (
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
model,
)
def test_electric_field_x_dmc_filter():
dipoles_raw = [
[(1, 2, 3), (4, 5, 6), 1],
[(-1, 5, 2), (6, 5, 4), 10],
]
dipoles = [
pdme.measurement.OscillatingDipole(numpy.array(d[0]), numpy.array(d[1]), d[2])
for d in dipoles_raw
]
_logger.debug(f"dipoles: {dipoles}")
dot_inputs_raw = [
([-1, -1, 0], 1),
([-1, -1, 0], 2),
([-1, -1, 0], 3),
([-1, -1, 0], 4),
]
dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(dot_inputs_raw)
_logger.debug(f"dot_inputs_array: {dot_inputs_array}")
arrangement = pdme.measurement.OscillatingDipoleArrangement(dipoles)
measurements = []
for input in dot_inputs_raw:
ex = sum(
[
dipole.s_electric_fieldx_at_position(*input)
for dipole in arrangement.dipoles
]
)
ex_low = ex * 0.5
ex_high = ex * 1.5
meas = pdme.measurement.DotRangeMeasurement(ex_low, ex_high, input[0], input[1])
measurements.append(meas)
filter = deepdog.direct_monte_carlo.dmc_filters.SingleDotSpinQubitFrequencyFilter(
measurements
)
samples = numpy.array(
[
[
[1, 2, 3, 4, 5, 6, 1],
[-1, 5, 2, 6, 5, 4, 10],
],
[
[10, 20, 30, 40, 50, 60, 1],
[-1, 5, 2, 6, 5, 4, 1],
],
[
[1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 1],
],
]
)
expected = samples[
0:1
] # only expect to see the first guy, because that's what generated our thing
filtered = filter.filter_samples(samples)
assert len(filtered) != len(samples), "Should have filtered some out!"
numpy.testing.assert_array_equal(
filtered, expected, "The filter should have only returned the first one"
)

View File

View File

@@ -0,0 +1,12 @@
import deepdog.indexify
import logging
_logger = logging.getLogger(__name__)
def test_indexifier():
weight_dict = {"key_1": [1, 2, 3], "key_2": ["a", "b", "c"]}
indexifier = deepdog.indexify.Indexifier(weight_dict)
_logger.debug(f"setting up indexifier {indexifier}")
assert indexifier.indexify(0) == {"key_1": 1, "key_2": "a"}
assert indexifier.indexify(5) == {"key_1": 2, "key_2": "c"}

View File

View File

@@ -0,0 +1,53 @@
import deepdog.results
def test_parse_groupdict():
example_column_name = (
"geom_-20_20_-10_10_0_5-orientation_free-dipole_count_100_success"
)
parsed = deepdog.results._parse_bayesrun_column(example_column_name)
assert parsed is not None
expected = deepdog.results.BayesrunColumnParsed(
{
"xmin": "-20",
"xmax": "20",
"ymin": "-10",
"ymax": "10",
"zmin": "0",
"zmax": "5",
"orientation": "free",
"avg_filled": "100",
"field_name": "success",
}
)
assert parsed == expected
def test_parse_groupdict_with_magnitude():
example_column_name = (
"geom_-20_20_-10_10_0_5-magnitude_3.5-orientation_free-dipole_count_100_success"
)
parsed = deepdog.results._parse_bayesrun_column(example_column_name)
assert parsed is not None
expected = deepdog.results.BayesrunColumnParsed(
{
"xmin": "-20",
"xmax": "20",
"ymin": "-10",
"ymax": "10",
"zmin": "0",
"zmax": "5",
"orientation": "free",
"avg_filled": "100",
"log_magnitude": "3.5",
"field_name": "success",
}
)
assert parsed == expected
# def test_parse_no_match_column_name():
# parsed = deepdog.results.parse_bayesrun_column("There's nothing here")
# assert parsed is None

View File

@@ -0,0 +1,10 @@
# serializer version: 1
# name: test_subset_simulation_multi_result_coalescing_easy_arithmetic
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.8, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.6, lowest_likelihood=0.01, messages=[])], model_name='test', estimated_likelihood=0.6928203230275509, arithmetic_mean_estimated_likelihood=0.7, num_children=2, num_finished_children=2, clean_estimate=True)
# ---
# name: test_subset_simulation_multi_result_coalescing_easy_geometric
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.1, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.001, lowest_likelihood=0.01, messages=[])], model_name='test', estimated_likelihood=0.010000000000000004, arithmetic_mean_estimated_likelihood=0.0505, num_children=2, num_finished_children=2, clean_estimate=True)
# ---
# name: test_subset_simulation_multi_result_coalescing_include_dirty
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.8, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.08, lowest_likelihood=0.01, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=None, over_target_likelihood=None, under_target_cost=None, under_target_likelihood=None, lowest_likelihood=0.0001, messages=[])], model_name='test', estimated_likelihood=0.01856635533445112, arithmetic_mean_estimated_likelihood=0.29336666666666666, num_children=3, num_finished_children=2, clean_estimate=False)
# ---

View File

@@ -0,0 +1,92 @@
import deepdog.subset_simulation.subset_simulation_impl as impl
import numpy
def test_subset_simulation_multi_result_coalescing_include_dirty(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.8,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.08,
lowest_likelihood=0.01,
messages=[],
)
res3 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=None,
over_target_likelihood=None,
under_target_cost=None,
under_target_likelihood=None,
lowest_likelihood=0.0001,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2, res3])
assert combined == snapshot
def test_subset_simulation_multi_result_coalescing_easy_arithmetic(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.8,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.6,
lowest_likelihood=0.01,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2])
assert combined.arithmetic_mean_estimated_likelihood == 0.7
assert combined == snapshot
def test_subset_simulation_multi_result_coalescing_easy_geometric(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.1,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.001,
lowest_likelihood=0.01,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2])
numpy.testing.assert_allclose(combined.estimated_likelihood, 0.01)
assert combined == snapshot

View File

@@ -1,158 +0,0 @@
import deepdog
import logging
import logging.config
import numpy.random
from pdme.model import (
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
)
_logger = logging.getLogger(__name__)
def fixed_z_model_func(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
n_max,
prob_occupancy,
):
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
0,
0,
n_max,
prob_occupancy,
)
def get_model(orientation):
model_funcs = {
"fixedz": fixed_z_model_func,
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
}
model = model_funcs[orientation](
-10,
10,
-17.5,
17.5,
5,
7.5,
-5,
6.5,
10**3,
2,
0.99999999,
)
model.n = 2
model.rng = numpy.random.default_rng(1234)
return (
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
model,
)
def test_basic_analysis(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=150,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1000,
)
result = square_run.go()
assert result == snapshot
def test_bayesss_with_tighter_cost(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=1.5,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1,
)
result = square_run.go()
assert result == snapshot