Compare commits
5 Commits
49c55ca541
...
9d564fa2d3
Author | SHA1 | Date | |
---|---|---|---|
9d564fa2d3 | |||
310977e9b8 | |||
b10586bf55 | |||
1741807be4 | |||
9a4548def4 |
@ -2,6 +2,15 @@
|
||||
|
||||
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
|
||||
|
||||
### [0.7.5](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.4...0.7.5) (2023-12-09)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* adds direct monte carlo package ([1741807](https://gitea.deepak.science:2222/physics/deepdog/commit/1741807be43d08fb51bc94518dd3b67585c04c20))
|
||||
* adds longchain logging if logging last generation ([b4e5f53](https://gitea.deepak.science:2222/physics/deepdog/commit/b4e5f5372682fc64c3734a96c4a899e018f127ce))
|
||||
* allows disabling timestamp in subset simulation bayes results ([9a4548d](https://gitea.deepak.science:2222/physics/deepdog/commit/9a4548def45a01f1f518135d4237c3dc09dcc342))
|
||||
|
||||
### [0.7.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.3...0.7.4) (2023-07-27)
|
||||
|
||||
|
||||
|
@ -73,6 +73,7 @@ class BayesRunWithSubspaceSimulation:
|
||||
ss_dump_last_generation=False,
|
||||
ss_initial_costs_chunk_size=100,
|
||||
write_output_to_bayesruncsv=True,
|
||||
use_timestamp_for_output=True,
|
||||
) -> None:
|
||||
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
|
||||
dot_positions, frequency_range
|
||||
@ -110,8 +111,11 @@ class BayesRunWithSubspaceSimulation:
|
||||
|
||||
self.probabilities = [1 / self.model_count] * self.model_count
|
||||
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
self.filename = f"{timestamp}-{filename_slug}.bayesrunwithss.csv"
|
||||
if use_timestamp_for_output:
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
self.filename = f"{timestamp}-{filename_slug}.bayesrunwithss.csv"
|
||||
else:
|
||||
self.filename = f"{filename_slug}.bayesrunwithss.csv"
|
||||
self.max_frequency = max_frequency
|
||||
|
||||
if end_threshold is not None:
|
||||
|
6
deepdog/direct_monte_carlo/__init__.py
Normal file
6
deepdog/direct_monte_carlo/__init__.py
Normal file
@ -0,0 +1,6 @@
|
||||
from deepdog.direct_monte_carlo.direct_mc import (
|
||||
DirectMonteCarloRun,
|
||||
DirectMonteCarloConfig,
|
||||
)
|
||||
|
||||
__all__ = ["DirectMonteCarloRun", "DirectMonteCarloConfig"]
|
157
deepdog/direct_monte_carlo/direct_mc.py
Normal file
157
deepdog/direct_monte_carlo/direct_mc.py
Normal file
@ -0,0 +1,157 @@
|
||||
import pdme.model
|
||||
import pdme.measurement
|
||||
import pdme.measurement.input_types
|
||||
import pdme.subspace_simulation
|
||||
from typing import Tuple, Sequence
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
import numpy
|
||||
import numpy.random
|
||||
import pdme.util.fast_v_calc
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DirectMonteCarloResult:
|
||||
successes: int
|
||||
monte_carlo_count: int
|
||||
likelihood: float
|
||||
|
||||
|
||||
@dataclass
|
||||
class DirectMonteCarloConfig:
|
||||
monte_carlo_count_per_cycle: int = 10000
|
||||
monte_carlo_cycles: int = 10
|
||||
target_success: int = 100
|
||||
max_monte_carlo_cycles_steps: int = 10
|
||||
monte_carlo_seed: int = 1234
|
||||
write_successes_to_file: bool = False
|
||||
tag: str = ""
|
||||
|
||||
|
||||
class DirectMonteCarloRun:
|
||||
"""
|
||||
A single model Direct Monte Carlo run, currently implemented only using single threading.
|
||||
An encapsulation of the steps needed for a Bayes run.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model_name_pair : Sequence[Tuple(str, pdme.model.DipoleModel)]
|
||||
The model to evaluate, with name.
|
||||
|
||||
measurements: Sequence[pdme.measurement.DotRangeMeasurement]
|
||||
The measurements as dot ranges to use as the bounds for the Monte Carlo calculation.
|
||||
|
||||
monte_carlo_count_per_cycle: int
|
||||
The number of Monte Carlo iterations to use in a single cycle calculation.
|
||||
|
||||
monte_carlo_cycles: int
|
||||
The number of cycles to use in each step.
|
||||
Increasing monte_carlo_count_per_cycle increases memory usage (and runtime), while this increases runtime, allowing
|
||||
control over memory use.
|
||||
|
||||
target_success: int
|
||||
The number of successes to target before exiting early.
|
||||
Should likely be ~100 but can go higher to.
|
||||
|
||||
max_monte_carlo_cycles_steps: int
|
||||
The number of steps to use. Each step consists of monte_carlo_cycles cycles, each of which has monte_carlo_count_per_cycle iterations.
|
||||
|
||||
monte_carlo_seed: int
|
||||
The seed to use for the RNG.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name_pair: Tuple[str, pdme.model.DipoleModel],
|
||||
measurements: Sequence[pdme.measurement.DotRangeMeasurement],
|
||||
config: DirectMonteCarloConfig,
|
||||
):
|
||||
self.model_name, self.model = model_name_pair
|
||||
|
||||
self.measurements = measurements
|
||||
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
|
||||
|
||||
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||
self.dot_inputs
|
||||
)
|
||||
|
||||
self.config = config
|
||||
(
|
||||
self.lows,
|
||||
self.highs,
|
||||
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||
self.measurements
|
||||
)
|
||||
|
||||
def _single_run(self, seed) -> numpy.ndarray:
|
||||
rng = numpy.random.default_rng(seed)
|
||||
|
||||
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
|
||||
self.config.monte_carlo_count_per_cycle, -1, rng
|
||||
)
|
||||
|
||||
current_sample = sample_dipoles
|
||||
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
|
||||
|
||||
if len(current_sample) < 1:
|
||||
break
|
||||
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
|
||||
numpy.array([di]), current_sample
|
||||
)
|
||||
|
||||
current_sample = current_sample[
|
||||
numpy.all((vals > low) & (vals < high), axis=1)
|
||||
]
|
||||
return current_sample
|
||||
|
||||
def execute(self) -> DirectMonteCarloResult:
|
||||
step_count = 0
|
||||
total_success = 0
|
||||
total_count = 0
|
||||
|
||||
count_per_step = (
|
||||
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
|
||||
)
|
||||
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
|
||||
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
|
||||
total_success < self.config.target_success
|
||||
):
|
||||
_logger.debug(f"Executing step {step_count}")
|
||||
for cycle_i, seed in enumerate(
|
||||
seed_sequence.spawn(self.config.monte_carlo_cycles)
|
||||
):
|
||||
cycle_success_configs = self._single_run(seed)
|
||||
cycle_success_count = len(cycle_success_configs)
|
||||
if cycle_success_count > 0:
|
||||
_logger.debug(
|
||||
f"For cycle {cycle_i} received {cycle_success_count} successes"
|
||||
)
|
||||
_logger.debug(cycle_success_configs)
|
||||
if self.config.write_successes_to_file:
|
||||
sorted_by_freq = numpy.array(
|
||||
[
|
||||
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
|
||||
dipole_config
|
||||
)
|
||||
for dipole_config in cycle_success_configs
|
||||
]
|
||||
)
|
||||
dipole_count = numpy.array(cycle_success_configs).shape[1]
|
||||
for n in range(dipole_count):
|
||||
numpy.savetxt(
|
||||
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
|
||||
sorted_by_freq[:, n],
|
||||
delimiter=",",
|
||||
)
|
||||
total_success += cycle_success_count
|
||||
_logger.debug(f"At end of step {step_count} have {total_success} successes")
|
||||
step_count += 1
|
||||
total_count += count_per_step
|
||||
|
||||
return DirectMonteCarloResult(
|
||||
successes=total_success,
|
||||
monte_carlo_count=total_count,
|
||||
likelihood=total_success / total_count,
|
||||
)
|
@ -101,11 +101,17 @@ class SubsetSimulation:
|
||||
# _logger.debug(sample_dipoles.shape)
|
||||
|
||||
raw_costs = []
|
||||
_logger.debug(f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}")
|
||||
_logger.debug(
|
||||
f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}"
|
||||
)
|
||||
|
||||
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size):
|
||||
_logger.debug(f"doing chunk {x}")
|
||||
raw_costs.extend(self.cost_function_to_use(sample_dipoles[x: x + self.initial_cost_chunk_size]))
|
||||
raw_costs.extend(
|
||||
self.cost_function_to_use(
|
||||
sample_dipoles[x : x + self.initial_cost_chunk_size]
|
||||
)
|
||||
)
|
||||
costs = numpy.array(raw_costs)
|
||||
|
||||
_logger.debug(f"costs: {costs}")
|
||||
@ -147,13 +153,12 @@ class SubsetSimulation:
|
||||
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
|
||||
_logger.info(f"got stdevs: {stdevs.stdevs}")
|
||||
all_long_chains = []
|
||||
for seed_index, (c, s) in enumerate(next_seeds[::len(next_seeds) // 20]):
|
||||
for seed_index, (c, s) in enumerate(
|
||||
next_seeds[:: len(next_seeds) // 20]
|
||||
):
|
||||
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
|
||||
# until new version gotta do
|
||||
_logger.debug(
|
||||
f"\t{seed_index}: doing long chain on the next seed"
|
||||
)
|
||||
|
||||
_logger.debug(f"\t{seed_index}: doing long chain on the next seed")
|
||||
|
||||
long_chain = self.model.get_mcmc_chain(
|
||||
s,
|
||||
@ -175,7 +180,6 @@ class SubsetSimulation:
|
||||
delimiter=",",
|
||||
)
|
||||
|
||||
|
||||
if self.keep_probs_list:
|
||||
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
|
||||
probs_list.append(
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "deepdog"
|
||||
version = "0.7.4"
|
||||
version = "0.7.5"
|
||||
description = ""
|
||||
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
|
||||
|
||||
@ -14,7 +14,7 @@ scipy = "1.10"
|
||||
pytest = ">=6"
|
||||
flake8 = "^4.0.1"
|
||||
pytest-cov = "^4.1.0"
|
||||
mypy = "^0.971"
|
||||
mypy = "^1.8"
|
||||
python-semantic-release = "^7.24.0"
|
||||
black = "^22.3.0"
|
||||
syrupy = "^4.0.8"
|
||||
|
@ -151,7 +151,7 @@ def test_bayesss_with_tighter_cost(snapshot):
|
||||
ss_default_upper_w_log_step=4,
|
||||
ss_dump_last_generation=False,
|
||||
write_output_to_bayesruncsv=False,
|
||||
ss_initial_costs_chunk_size=1
|
||||
ss_initial_costs_chunk_size=1,
|
||||
)
|
||||
result = square_run.go()
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user