Compare commits

..

33 Commits

Author SHA1 Message Date
9cfd484d7c chore(release): 1.3.0
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-19 22:13:39 -05:00
09fad2e102 feat: improve initial cost calculation to allow multiprocessing, adds ability to specify a number of levels to do with direct mc instead of subset simulation 2024-05-19 22:11:50 -05:00
24ac65bf9c fix: fix seeding to avoid recreating seed combinations across multi runs 2024-05-19 22:10:40 -05:00
8fbae32111 doc: some commenting and logging changes 2024-05-19 22:09:52 -05:00
b1c01b25c8 fix: Adds ugly hack for stdevs for this uniform range to multiply by root3, proper fix would be in pdme 2024-05-19 22:08:44 -05:00
a14d9834e5 doc: note on refactoring for subset sim probs 2024-05-19 22:01:42 -05:00
8d04803eb3 fmt: formatting, nicer log, removing comment 2024-05-19 02:29:59 -05:00
92b49fce7c feat: add multi run to wrap multi model and repeat runs 2024-05-19 02:27:11 -05:00
8845b2875f feat: adds a filter that works with cost functions 2024-05-19 02:26:00 -05:00
72791f2d0f deps: update pdme 2024-05-19 02:25:29 -05:00
d258cfbec7 chore(release): 1.2.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-11 20:51:05 -05:00
b3bf4cde97 perf: precompile the magic regexes for probs parsing 2024-05-11 20:49:45 -05:00
60f29b0b2f perf: avoid recalculating product dict in indexifier to improve performance for probs 2024-05-11 20:49:26 -05:00
093a3fb5c4 chore(release): 1.2.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-08 22:24:28 -05:00
dc1d2d45a3 feat: adds additional matching regexes
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-08 22:23:57 -05:00
f0e2fa3da9 feat: adds magnitude enabled parsing option 2024-05-03 10:44:06 -05:00
2581e722e6 chore(release): 1.1.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-02 23:13:21 -05:00
62bd63bf9b refactor: removes redundant calculation and uses pdme 2024-05-02 23:12:21 -05:00
df4d0b5d15 deps: upgrades pdme dep 2024-05-02 22:40:06 -05:00
5361dada8b feat: removes legacy bayes run, technically breaking but just don't use them 2024-05-02 22:04:49 -05:00
29029c137a deps: upgrades pdme 2024-05-02 18:17:33 -05:00
fb018abeae feat: allows disabling timestamps in directmc bayesrun files
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-01 21:40:53 -05:00
d28c190816 chore(release): 1.0.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-05-01 21:08:00 -05:00
0262de060f nix: adds node for npx in dev shell 2024-05-01 21:07:48 -05:00
e25db1e0f6 fix: fixes issue of zero division error with no successes for anything
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-01 20:37:08 -05:00
8fdbe4d334 chore(release): 1.0.0
Some checks are pending
gitea-physics/deepdog/pipeline/head Build started...
gitea-physics/deepdog/pipeline/tag Build started...
2024-05-01 15:49:57 -05:00
406a1485da build: justfile allows version 2024-05-01 15:49:01 -05:00
6dc66b1c27 release: allows dynamic release as arg 2024-05-01 15:43:33 -05:00
f2b1a1dd3b feat: Adds more powerful direct mc runs to sub for old real spectrum run
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-05-01 15:22:59 -05:00
cb166a399d deps: updates pdme to 1.0.0 release yay 2024-04-28 21:43:11 -05:00
7108dd0111 feat!: allows new seed spec instead of cli arg, removes old cli arg
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-28 20:54:58 -05:00
2105754911 feat: adds additional file slug parsing 2024-04-28 20:54:15 -05:00
f3ba4cbfd3 fix: no longer throws error for overlapping keys, the warning should hopefully be enough? 2024-04-28 20:51:43 -05:00
27 changed files with 1281 additions and 1583 deletions

View File

@@ -2,6 +2,64 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines. All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
## [1.3.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.2.1...1.3.0) (2024-05-20)
### Features
* add multi run to wrap multi model and repeat runs ([92b49fc](https://gitea.deepak.science:2222/physics/deepdog/commit/92b49fce7c86f14484deb1c4aaaa810a6f69c08a))
* adds a filter that works with cost functions ([8845b28](https://gitea.deepak.science:2222/physics/deepdog/commit/8845b2875f2c91c91dd3988fabda26400c59b2d7))
* improve initial cost calculation to allow multiprocessing, adds ability to specify a number of levels to do with direct mc instead of subset simulation ([09fad2e](https://gitea.deepak.science:2222/physics/deepdog/commit/09fad2e1024d9237a6a4f7931f51cb4c84b83bf8))
### Bug Fixes
* Adds ugly hack for stdevs for this uniform range to multiply by root3, proper fix would be in pdme ([b1c01b2](https://gitea.deepak.science:2222/physics/deepdog/commit/b1c01b25c8f2c3947be23f5b2c656c37437dab17))
* fix seeding to avoid recreating seed combinations across multi runs ([24ac65b](https://gitea.deepak.science:2222/physics/deepdog/commit/24ac65bf9c74c454fec826ca9de640fe095f5a17))
### [1.2.1](https://gitea.deepak.science:2222/physics/deepdog/compare/1.2.0...1.2.1) (2024-05-12)
## [1.2.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.1.0...1.2.0) (2024-05-09)
### Features
* adds additional matching regexes ([dc1d2d4](https://gitea.deepak.science:2222/physics/deepdog/commit/dc1d2d45a3e631c5efccce80f8a24fa87c6089e0))
* adds magnitude enabled parsing option ([f0e2fa3](https://gitea.deepak.science:2222/physics/deepdog/commit/f0e2fa3da9f5a5136908d691137a904fda4e3a9a))
## [1.1.0](https://gitea.deepak.science:2222/physics/deepdog/compare/1.0.1...1.1.0) (2024-05-03)
### Features
* allows disabling timestamps in directmc bayesrun files ([fb018ab](https://gitea.deepak.science:2222/physics/deepdog/commit/fb018abeae2adf4438a030140a6c905f11bb6bc1))
* removes legacy bayes run, technically breaking but just don't use them ([5361dad](https://gitea.deepak.science:2222/physics/deepdog/commit/5361dada8be4950b5157862f6a92254b543889c3))
### [1.0.1](https://gitea.deepak.science:2222/physics/deepdog/compare/1.0.0...1.0.1) (2024-05-02)
### Bug Fixes
* fixes issue of zero division error with no successes for anything ([e25db1e](https://gitea.deepak.science:2222/physics/deepdog/commit/e25db1e0f677e8d9a657fa1631305cc8f05ff9ff))
## [1.0.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.1...1.0.0) (2024-05-01)
### ⚠ BREAKING CHANGES
* allows new seed spec instead of cli arg, removes old cli arg
### Features
* adds additional file slug parsing ([2105754](https://gitea.deepak.science:2222/physics/deepdog/commit/2105754911c89bde9dcbea9866462225604a3524))
* Adds more powerful direct mc runs to sub for old real spectrum run ([f2b1a1d](https://gitea.deepak.science:2222/physics/deepdog/commit/f2b1a1dd3b3436e37d84f7843b9b2a202be4b51c))
* allows new seed spec instead of cli arg, removes old cli arg ([7108dd0](https://gitea.deepak.science:2222/physics/deepdog/commit/7108dd0111c7dfd6ec204df1d0058530cd3dcab9))
### Bug Fixes
* no longer throws error for overlapping keys, the warning should hopefully be enough? ([f3ba4cb](https://gitea.deepak.science:2222/physics/deepdog/commit/f3ba4cbfd36a9f08cdc4d8774a7f745f8c98bac3))
### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28) ### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28)
### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28) ### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28)

View File

@@ -1,10 +1,7 @@
import logging import logging
from deepdog.meta import __version__ from deepdog.meta import __version__
from deepdog.bayes_run import BayesRun
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
from deepdog.real_spectrum_run import RealSpectrumRun from deepdog.real_spectrum_run import RealSpectrumRun
from deepdog.temp_aware_real_spectrum_run import TempAwareRealSpectrumRun from deepdog.temp_aware_real_spectrum_run import TempAwareRealSpectrumRun
from deepdog.bayes_run_with_ss import BayesRunWithSubspaceSimulation
def get_version(): def get_version():
@@ -13,11 +10,8 @@ def get_version():
__all__ = [ __all__ = [
"get_version", "get_version",
"BayesRun",
"BayesRunSimulPairs",
"RealSpectrumRun", "RealSpectrumRun",
"TempAwareRealSpectrumRun", "TempAwareRealSpectrumRun",
"BayesRunWithSubspaceSimulation",
] ]

View File

@@ -1,281 +0,0 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_result(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, max_frequency, seed = input
rng = numpy.random.default_rng(seed)
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, max_frequency, rng_to_use=rng
)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
def get_a_result_using_pairs(input) -> int:
(
model,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
max_frequency,
) = input
sample_dipoles = model.get_n_single_dipoles(monte_carlo_count, max_frequency)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
return numpy.count_nonzero(combined_matches)
class BayesRun:
"""
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.bayesrun.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(run)
results = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
current_success = sum(
pool.imap_unordered(
get_a_result,
[
(
model,
self.dot_inputs_array,
lows,
highs,
self.monte_carlo_count,
self.max_frequency,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row[f"dipole_moment_{i+1}"] = current_dipoles.p
row[f"dipole_location_{i+1}"] = current_dipoles.s
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
successes: List[float] = []
counts: List[int] = []
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum(
[
(succ / count) * prob
for succ, count, prob in zip(successes, counts, self.probabilities)
]
)
new_probabilities = [
(succ / count) * old_prob / success_weight
for succ, count, old_prob in zip(successes, counts, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break

View File

@@ -1,382 +0,0 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
import numpy.random
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
(
model,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
monte_carlo_cycles,
max_frequency,
seed,
) = input
rng = numpy.random.default_rng(seed)
local_total = 0
combined_total = 0
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, max_frequency, rng_to_use=rng
)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
local_total += numpy.count_nonzero(local_matches)
combined_total += numpy.count_nonzero(combined_matches)
return numpy.array([local_total, combined_total])
class BayesRunSimulPairs:
"""
A dual pairs-nonpairs Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The modoel for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
pairs_high_error=None,
pairs_low_error=None,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.dot_pair_inputs = pdme.inputs.input_pairs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
self.models = [mod for (_, mod) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
if pairs_low_error is None:
self.pairs_low_error = self.low_error
else:
self.pairs_low_error = pairs_low_error
if pairs_high_error is None:
self.pairs_high_error = self.high_error
else:
self.pairs_high_error = pairs_high_error
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities_no_pairs = [1 / self.model_count] * self.model_count
self.probabilities_pairs = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename_pairs = f"{timestamp}-{filename_slug}.simulpairs.yespairs.csv"
self.filename_no_pairs = f"{timestamp}-{filename_slug}.simulpairs.noopairs.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
def go(self) -> None:
with open(self.filename_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
with open(self.filename_no_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
pair_lows, pair_highs = (None, None)
pair_measurements = actual_dipoles.get_percent_range_dot_pair_measurements(
self.dot_pair_inputs, self.pairs_low_error, self.pairs_high_error
)
(
pair_lows,
pair_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
pair_measurements
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(run)
results_pairs = []
results_no_pairs = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success_pairs = 0
cycle_success_no_pairs = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
min(cycle_success_pairs, cycle_success_no_pairs)
<= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success_pairs = 0
current_success_no_pairs = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
_logger.debug(f"Creating {self.monte_carlo_cycles} seeds")
current_success_both = numpy.array(
sum(
pool.imap_unordered(
get_a_simul_result_using_pairs,
[
(
model,
self.dot_inputs_array,
self.dot_pair_inputs_array,
lows,
highs,
pair_lows,
pair_highs,
self.monte_carlo_count,
self.monte_carlo_cycles,
self.max_frequency,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
)
current_success_no_pairs = current_success_both[0]
current_success_pairs = current_success_both[1]
cycle_success_no_pairs += current_success_no_pairs
cycle_success_pairs += current_success_pairs
_logger.debug(
f"(pair, no_pair) successes are {(cycle_success_pairs, cycle_success_no_pairs)}"
)
results_pairs.append((cycle_count, cycle_success_pairs))
results_no_pairs.append((cycle_count, cycle_success_no_pairs))
_logger.debug("Done, constructing output now")
row_pairs = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
row_no_pairs = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
row_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
row_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
row_no_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
row_no_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
row_no_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
successes_pairs: List[float] = []
successes_no_pairs: List[float] = []
counts: List[int] = []
for model_index, (
name,
(count_pair, result_pair),
(count_no_pair, result_no_pair),
) in enumerate(zip(self.model_names, results_pairs, results_no_pairs)):
row_pairs[f"{name}_success"] = result_pair
row_pairs[f"{name}_count"] = count_pair
successes_pairs.append(max(result_pair, 0.5))
row_no_pairs[f"{name}_success"] = result_no_pair
row_no_pairs[f"{name}_count"] = count_no_pair
successes_no_pairs.append(max(result_no_pair, 0.5))
counts.append(count_pair)
success_weight_pair = sum(
[
(succ / count) * prob
for succ, count, prob in zip(
successes_pairs, counts, self.probabilities_pairs
)
]
)
success_weight_no_pair = sum(
[
(succ / count) * prob
for succ, count, prob in zip(
successes_no_pairs, counts, self.probabilities_no_pairs
)
]
)
new_probabilities_pair = [
(succ / count) * old_prob / success_weight_pair
for succ, count, old_prob in zip(
successes_pairs, counts, self.probabilities_pairs
)
]
new_probabilities_no_pair = [
(succ / count) * old_prob / success_weight_no_pair
for succ, count, old_prob in zip(
successes_no_pairs, counts, self.probabilities_no_pairs
)
]
self.probabilities_pairs = new_probabilities_pair
self.probabilities_no_pairs = new_probabilities_no_pair
for name, probability_pair, probability_no_pair in zip(
self.model_names, self.probabilities_pairs, self.probabilities_no_pairs
):
row_pairs[f"{name}_prob"] = probability_pair
row_no_pairs[f"{name}_prob"] = probability_no_pair
_logger.debug(row_pairs)
_logger.debug(row_no_pairs)
with open(self.filename_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row_pairs)
with open(self.filename_no_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row_no_pairs)
if self.use_end_threshold:
max_prob = min(
max(self.probabilities_pairs), max(self.probabilities_no_pairs)
)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break

View File

@@ -1,261 +0,0 @@
import deepdog.subset_simulation
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List, Optional
import datetime
import csv
import logging
import numpy
import numpy.typing
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
CLAMPING_FACTOR = 10
_logger = logging.getLogger(__name__)
class BayesRunWithSubspaceSimulation:
"""
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
max_frequency: float = 20,
end_threshold: float = None,
run_count=100,
chunksize: int = CHUNKSIZE,
ss_n_c: int = 500,
ss_n_s: int = 100,
ss_m_max: int = 15,
ss_target_cost: Optional[float] = None,
ss_level_0_seed: int = 200,
ss_mcmc_seed: int = 20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
ss_initial_costs_chunk_size=100,
write_output_to_bayesruncsv=True,
use_timestamp_for_output=True,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.models_with_names = models_with_names
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_likelihood", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
if use_timestamp_for_output:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.bayesrunwithss.csv"
else:
self.filename = f"{filename_slug}.bayesrunwithss.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
self.ss_n_c = ss_n_c
self.ss_n_s = ss_n_s
self.ss_m_max = ss_m_max
self.ss_target_cost = ss_target_cost
self.ss_level_0_seed = ss_level_0_seed
self.ss_mcmc_seed = ss_mcmc_seed
self.ss_use_adaptive_steps = ss_use_adaptive_steps
self.ss_default_phi_step = ss_default_phi_step
self.ss_default_theta_step = ss_default_theta_step
self.ss_default_r_step = ss_default_r_step
self.ss_default_w_log_step = ss_default_w_log_step
self.ss_default_upper_w_log_step = ss_default_upper_w_log_step
self.ss_dump_last_generation = ss_dump_last_generation
self.ss_initial_costs_chunk_size = ss_initial_costs_chunk_size
self.run_count = run_count
self.write_output_to_csv = write_output_to_bayesruncsv
def go(self) -> Sequence:
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writeheader()
return_result = []
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
measurements = actual_dipoles.get_dot_measurements(self.dot_inputs)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
results = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models_with_names):
_logger.debug(f"Doing model #{model_count}, {model[0]}")
subset_run = deepdog.subset_simulation.SubsetSimulation(
model,
self.dot_inputs,
measurements,
self.ss_n_c,
self.ss_n_s,
self.ss_m_max,
self.ss_target_cost,
self.ss_level_0_seed,
self.ss_mcmc_seed,
self.ss_use_adaptive_steps,
self.ss_default_phi_step,
self.ss_default_theta_step,
self.ss_default_r_step,
self.ss_default_w_log_step,
self.ss_default_upper_w_log_step,
initial_cost_chunk_size=self.ss_initial_costs_chunk_size,
keep_probs_list=False,
dump_last_generation_to_file=self.ss_dump_last_generation,
)
results.append(subset_run.execute())
_logger.debug("Done, constructing output now")
row = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row[f"dipole_moment_{i+1}"] = current_dipoles.p
row[f"dipole_location_{i+1}"] = current_dipoles.s
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
likelihoods: List[float] = []
for (name, result) in zip(self.model_names, results):
if result.over_target_likelihood is None:
if result.lowest_likelihood is None:
_logger.error(f"result {result} looks bad")
clamped_likelihood = 10**-15
else:
clamped_likelihood = result.lowest_likelihood / CLAMPING_FACTOR
_logger.warning(
f"got a none result, clamping to {clamped_likelihood}"
)
else:
clamped_likelihood = result.over_target_likelihood
likelihoods.append(clamped_likelihood)
row[f"{name}_likelihood"] = clamped_likelihood
success_weight = sum(
[
likelihood * prob
for likelihood, prob in zip(likelihoods, self.probabilities)
]
)
new_probabilities = [
likelihood * old_prob / success_weight
for likelihood, old_prob in zip(likelihoods, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
return_result.append(row)
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break
return return_result

View File

@@ -30,18 +30,6 @@ def parse_args() -> argparse.Namespace:
help="A json file with the indexify config for parsing job indexes. Will skip if not present", help="A json file with the indexify config for parsing job indexes. Will skip if not present",
default="", default="",
) )
parser.add_argument(
"--seed-index",
type=int,
help='take an integer to append as a "seed" key with range at end of indexify dict. Skip if <= 0',
default=0,
)
parser.add_argument(
"--seed-fieldname",
type=str,
help='if --seed-index is set, the fieldname to append to the indexifier. "seed" by default',
default="seed",
)
parser.add_argument( parser.add_argument(
"--coalesced-keys", "--coalesced-keys",
type=str, type=str,

View File

@@ -61,7 +61,7 @@ def write_uncoalesced_dict(
if not (set(model_field_names).isdisjoint(calculation_field_names)): if not (set(model_field_names).isdisjoint(calculation_field_names)):
_logger.info(f"Detected model field names {model_field_names}") _logger.info(f"Detected model field names {model_field_names}")
_logger.info(f"Detected calculation field names {calculation_field_names}") _logger.info(f"Detected calculation field names {calculation_field_names}")
raise ValueError( _logger.warning(
f"model field names {model_field_names} and calculation {calculation_field_names} have an overlap, which is possibly a problem" f"model field names {model_field_names} and calculation {calculation_field_names} have an overlap, which is possibly a problem"
) )
collected_fieldnames = list(model_field_names) collected_fieldnames = list(model_field_names)

View File

@@ -51,9 +51,13 @@ def main(args: argparse.Namespace):
indexifier = None indexifier = None
if args.indexify_json: if args.indexify_json:
with open(args.indexify_json, "r") as indexify_json_file: with open(args.indexify_json, "r") as indexify_json_file:
indexify_data = json.load(indexify_json_file) indexify_spec = json.load(indexify_json_file)
if args.seed_index > 0: indexify_data = indexify_spec["indexes"]
indexify_data[args.seed_fieldname] = list(range(args.seed_index)) if "seed_spec" in indexify_spec:
seed_spec = indexify_spec["seed_spec"]
indexify_data[seed_spec["field_name"]] = list(
range(seed_spec["num_seeds"])
)
# _logger.debug(f"Indexifier data looks like {indexify_data}") # _logger.debug(f"Indexifier data looks like {indexify_data}")
indexifier = deepdog.indexify.Indexifier(indexify_data) indexifier = deepdog.indexify.Indexifier(indexify_data)
@@ -68,6 +72,7 @@ def main(args: argparse.Namespace):
for f in tqdm.tqdm(out_files, desc="reading files", leave=False) for f in tqdm.tqdm(out_files, desc="reading files", leave=False)
] ]
# Refactor here to allow for arbitrary likelihood file sources
_logger.info("building uncoalesced dict") _logger.info("building uncoalesced dict")
uncoalesced_dict = deepdog.cli.probs.dicts.build_model_dict(parsed_output_files) uncoalesced_dict = deepdog.cli.probs.dicts.build_model_dict(parsed_output_files)

View File

@@ -0,0 +1,24 @@
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
from typing import Callable
import numpy
class CostFunctionTargetFilter(DirectMonteCarloFilter):
def __init__(
self,
cost_function: Callable[[numpy.ndarray], numpy.ndarray],
target_cost: float,
):
"""
Filters dipoles by cost, only leaving dipoles with cost below target_cost
"""
self.cost_function = cost_function
self.target_cost = target_cost
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
current_sample = samples
costs = self.cost_function(current_sample)
current_sample = current_sample[costs < self.target_cost]
return current_sample

View File

@@ -1,22 +1,28 @@
import csv
import pdme.model import pdme.model
import pdme.measurement import pdme.measurement
import pdme.measurement.input_types import pdme.measurement.input_types
import pdme.subspace_simulation import pdme.subspace_simulation
from typing import Tuple, Dict, NewType, Any import datetime
from typing import Tuple, Dict, NewType, Any, Sequence
from dataclasses import dataclass from dataclasses import dataclass
import logging import logging
import numpy import numpy
import numpy.random import numpy.random
import pdme.util.fast_v_calc import pdme.util.fast_v_calc
import multiprocessing
_logger = logging.getLogger(__name__) _logger = logging.getLogger(__name__)
ANTI_ZERO_SUCCESS_THRES = 0.1
@dataclass @dataclass
class DirectMonteCarloResult: class DirectMonteCarloResult:
successes: int successes: int
monte_carlo_count: int monte_carlo_count: int
likelihood: float likelihood: float
model_name: str
@dataclass @dataclass
@@ -28,6 +34,11 @@ class DirectMonteCarloConfig:
monte_carlo_seed: int = 1234 monte_carlo_seed: int = 1234
write_successes_to_file: bool = False write_successes_to_file: bool = False
tag: str = "" tag: str = ""
cap_core_count: int = 0 # 0 means cap at num cores - 1
chunk_size: int = 50
write_bayesrun_file = True
bayesrun_file_timestamp = True
# chunk size of some kind
# Aliasing dict as a generic data container # Aliasing dict as a generic data container
@@ -51,8 +62,8 @@ class DirectMonteCarloRun:
Parameters Parameters
---------- ----------
model_name_pair : Sequence[Tuple(str, pdme.model.DipoleModel)] model_name_pairs : Sequence[Tuple(str, pdme.model.DipoleModel)]
The model to evaluate, with name. The models to evaluate, with names
measurements: Sequence[pdme.measurement.DotRangeMeasurement] measurements: Sequence[pdme.measurement.DotRangeMeasurement]
The measurements as dot ranges to use as the bounds for the Monte Carlo calculation. The measurements as dot ranges to use as the bounds for the Monte Carlo calculation.
@@ -78,11 +89,11 @@ class DirectMonteCarloRun:
def __init__( def __init__(
self, self,
model_name_pair: Tuple[str, pdme.model.DipoleModel], model_name_pairs: Sequence[Tuple[str, pdme.model.DipoleModel]],
filter: DirectMonteCarloFilter, filter: DirectMonteCarloFilter,
config: DirectMonteCarloConfig, config: DirectMonteCarloConfig,
): ):
self.model_name, self.model = model_name_pair self.model_name_pairs = model_name_pairs
# self.measurements = measurements # self.measurements = measurements
# self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements] # self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
@@ -100,10 +111,16 @@ class DirectMonteCarloRun:
# self.measurements # self.measurements
# ) # )
def _single_run(self, seed) -> numpy.ndarray: def _single_run(
self, model_name_pair: Tuple[str, pdme.model.DipoleModel], seed
) -> numpy.ndarray:
rng = numpy.random.default_rng(seed) rng = numpy.random.default_rng(seed)
sample_dipoles = self.model.get_monte_carlo_dipole_inputs( _, model = model_name_pair
# don't log here it's madness
# _logger.info(f"Executing for model {model_name}")
sample_dipoles = model.get_monte_carlo_dipole_inputs(
self.config.monte_carlo_count_per_cycle, -1, rng self.config.monte_carlo_count_per_cycle, -1, rng
) )
@@ -123,15 +140,38 @@ class DirectMonteCarloRun:
# ] # ]
# return current_sample # return current_sample
def execute(self) -> DirectMonteCarloResult: def _wrapped_single_run(self, args: Tuple):
step_count = 0 """
total_success = 0 single run wrapped up for multiprocessing call.
total_count = 0
takes in a tuple of arguments corresponding to
(model_name_pair, seed)
"""
# here's where we do our work
model_name_pair, seed = args
cycle_success_configs = self._single_run(model_name_pair, seed)
cycle_success_count = len(cycle_success_configs)
return cycle_success_count
def execute_no_multiprocessing(self) -> Sequence[DirectMonteCarloResult]:
count_per_step = ( count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
) )
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed) seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
# core count etc. logic here
results = []
for model_name_pair in self.model_name_pairs:
step_count = 0
total_success = 0
total_count = 0
_logger.info(f"Working on model {model_name_pair[0]}")
# This is probably where multiprocessing logic should go
while (step_count < self.config.max_monte_carlo_cycles_steps) and ( while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success total_success < self.config.target_success
): ):
@@ -139,13 +179,14 @@ class DirectMonteCarloRun:
for cycle_i, seed in enumerate( for cycle_i, seed in enumerate(
seed_sequence.spawn(self.config.monte_carlo_cycles) seed_sequence.spawn(self.config.monte_carlo_cycles)
): ):
cycle_success_configs = self._single_run(seed) # here's where we do our work
cycle_success_configs = self._single_run(model_name_pair, seed)
cycle_success_count = len(cycle_success_configs) cycle_success_count = len(cycle_success_configs)
if cycle_success_count > 0: if cycle_success_count > 0:
_logger.debug( _logger.debug(
f"For cycle {cycle_i} received {cycle_success_count} successes" f"For cycle {cycle_i} received {cycle_success_count} successes"
) )
_logger.debug(cycle_success_configs) # _logger.debug(cycle_success_configs)
if self.config.write_successes_to_file: if self.config.write_successes_to_file:
sorted_by_freq = numpy.array( sorted_by_freq = numpy.array(
[ [
@@ -163,12 +204,129 @@ class DirectMonteCarloRun:
delimiter=",", delimiter=",",
) )
total_success += cycle_success_count total_success += cycle_success_count
_logger.debug(f"At end of step {step_count} have {total_success} successes") _logger.debug(
f"At end of step {step_count} have {total_success} successes"
)
step_count += 1 step_count += 1
total_count += count_per_step total_count += count_per_step
return DirectMonteCarloResult( results.append(
DirectMonteCarloResult(
successes=total_success, successes=total_success,
monte_carlo_count=total_count, monte_carlo_count=total_count,
likelihood=total_success / total_count, likelihood=total_success / total_count,
model_name=model_name_pair[0],
) )
)
return results
def execute(self) -> Sequence[DirectMonteCarloResult]:
# set starting execution timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
)
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
# core count etc. logic here
core_count = multiprocessing.cpu_count() - 1 or 1
if (self.config.cap_core_count >= 1) and (
self.config.cap_core_count < core_count
):
core_count = self.config.cap_core_count
_logger.info(f"Using {core_count} cores")
results = []
with multiprocessing.Pool(core_count) as pool:
for model_name_pair in self.model_name_pairs:
_logger.info(f"Working on model {model_name_pair[0]}")
# This is probably where multiprocessing logic should go
step_count = 0
total_success = 0
total_count = 0
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
step_count += 1
_logger.debug(f"Executing step {step_count}")
seeds = seed_sequence.spawn(self.config.monte_carlo_cycles)
pool_results = sum(
pool.imap_unordered(
self._wrapped_single_run,
[(model_name_pair, seed) for seed in seeds],
self.config.chunk_size,
)
)
_logger.debug(f"Pool results: {pool_results}")
total_success += pool_results
total_count += count_per_step
_logger.debug(
f"At end of step {step_count} have {total_success} successes"
)
results.append(
DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
model_name=model_name_pair[0],
)
)
if self.config.write_bayesrun_file:
if self.config.bayesrun_file_timestamp:
timestamp_str = f"{timestamp}-"
else:
timestamp_str = ""
filename = (
f"{timestamp_str}{self.config.tag}.realdata.fast_filter.bayesrun.csv"
)
_logger.info(f"Going to write to file [{filename}]")
# row: Dict[str, Union[int, float, str]] = {}
row = {}
num_models = len(self.model_name_pairs)
success_weight = sum(
[
(
max(ANTI_ZERO_SUCCESS_THRES, res.successes)
/ res.monte_carlo_count
)
/ num_models
for res in results
]
)
for res in results:
row.update(
{
f"{res.model_name}_success": res.successes,
f"{res.model_name}_count": res.monte_carlo_count,
f"{res.model_name}_prob": (
max(ANTI_ZERO_SUCCESS_THRES, res.successes)
/ res.monte_carlo_count
)
/ (num_models * success_weight),
}
)
_logger.info(f"Writing row {row}")
fieldnames = list(row.keys())
with open(filename, "w", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=fieldnames, dialect="unix")
writer.writeheader()
writer.writerow(row)
return results

View File

@@ -39,6 +39,39 @@ class SingleDotPotentialFilter(DirectMonteCarloFilter):
return current_sample return current_sample
class SingleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__(self, measurements: Sequence[pdme.measurement.DotRangeMeasurement]):
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
(
self.lows,
self.highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_efieldxs_for_dipoleses(
numpy.array([di]), current_sample
)
# _logger.info(vals)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
# _logger.info(f"leaving with {len(current_sample)}")
return current_sample
class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter): class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__( def __init__(
self, self,
@@ -59,59 +92,6 @@ class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
self.pair_phase_measurements self.pair_phase_measurements
) )
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
self, dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# Don't actually need this
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
def filter_samples(self, samples: ndarray) -> ndarray: def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples current_sample = samples
@@ -121,16 +101,8 @@ class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
if len(current_sample) < 1: if len(current_sample) < 1:
break break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg( vals = pdme.util.fast_nonlocal_spectrum.signarg(
self.fast_s_spin_qubit_tarucha_nonlocal_dipoleses( pdme.util.fast_nonlocal_spectrum.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample numpy.array([pi]), current_sample
) )
) )

View File

@@ -31,10 +31,10 @@ class Indexifier:
def __init__(self, list_dict: typing.Dict[str, typing.Sequence]): def __init__(self, list_dict: typing.Dict[str, typing.Sequence]):
self.dict = list_dict self.dict = list_dict
self.product_dict = _dict_product(self.dict)
def indexify(self, n: int) -> typing.Dict[str, typing.Any]: def indexify(self, n: int) -> typing.Dict[str, typing.Any]:
product_dict = _dict_product(self.dict) return self.product_dict[n]
return product_dict[n]
def _indexify_indices(self, n: int) -> typing.Sequence[int]: def _indexify_indices(self, n: int) -> typing.Sequence[int]:
""" """

View File

@@ -112,59 +112,6 @@ def get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only(input) -> int:
seed, seed,
) = input ) = input
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# don't actually need, because we're assuming they're the same frequencies across the pair
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, numpy.newaxis, :, 0]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, numpy.newaxis, :, 0]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
rng = numpy.random.default_rng(seed) rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models. # TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs( sample_dipoles = model.get_monte_carlo_dipole_inputs(
@@ -186,7 +133,7 @@ def get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only(input) -> int:
# ) # )
# #
vals = pdme.util.fast_nonlocal_spectrum.signarg( vals = pdme.util.fast_nonlocal_spectrum.signarg(
fast_s_spin_qubit_tarucha_nonlocal_dipoleses( pdme.util.fast_nonlocal_spectrum.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample numpy.array([pi]), current_sample
) )
) )

View File

@@ -8,16 +8,30 @@ import csv
_logger = logging.getLogger(__name__) _logger = logging.getLogger(__name__)
FILENAME_REGEX = r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv" FILENAME_REGEX = re.compile(
r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv"
)
MODEL_REGEXES = [ MODEL_REGEXES = [
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)" re.compile(pattern)
for pattern in [
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-magnitude_(?P<log_magnitude>\d*\.?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
r"geom_(?P<xmin>-?\d*\.?\d+)_(?P<xmax>-?\d*\.?\d+)_(?P<ymin>-?\d*\.?\d+)_(?P<ymax>-?\d*\.?\d+)_(?P<zmin>-?\d*\.?\d+)_(?P<zmax>-?\d*\.?\d+)-magnitude_(?P<log_magnitude>\d*\.?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)",
]
] ]
FILE_SLUG_REGEXES = [ FILE_SLUG_REGEXES = [
re.compile(pattern)
for pattern in [
r"(?P<tag>\w+)-(?P<job_index>\d+)",
r"mock_tarucha-(?P<job_index>\d+)", r"mock_tarucha-(?P<job_index>\d+)",
r"(?:(?P<mock>mock)_)?tarucha(?:_(?P<tarucha_run_id>\d+))?-(?P<job_index>\d+)",
]
] ]
SIMPLE_TAG_REGEX = re.compile(r"\w+-\d+")
@dataclasses.dataclass @dataclasses.dataclass
class BayesrunOutputFilename: class BayesrunOutputFilename:
@@ -26,7 +40,6 @@ class BayesrunOutputFilename:
path: pathlib.Path path: pathlib.Path
@dataclasses.dataclass
class BayesrunColumnParsed: class BayesrunColumnParsed:
""" """
class for parsing a bayesrun while pulling certain special fields out class for parsing a bayesrun while pulling certain special fields out
@@ -37,10 +50,21 @@ class BayesrunColumnParsed:
self.model_field_dict = { self.model_field_dict = {
k: v for k, v in groupdict.items() if k != "field_name" k: v for k, v in groupdict.items() if k != "field_name"
} }
self._groupdict_str = repr(groupdict)
def __str__(self): def __str__(self):
return f"BayesrunColumnParsed[{self.column_field}: {self.model_field_dict}]" return f"BayesrunColumnParsed[{self.column_field}: {self.model_field_dict}]"
def __repr__(self):
return f"BayesrunColumnParsed({self._groupdict_str})"
def __eq__(self, other):
if isinstance(other, BayesrunColumnParsed):
return (self.column_field == other.column_field) and (
self.model_field_dict == other.model_field_dict
)
return NotImplemented
@dataclasses.dataclass @dataclasses.dataclass
class BayesrunModelResult: class BayesrunModelResult:
@@ -72,7 +96,7 @@ def _parse_bayesrun_column(
Returns the groupdict for the first match, or None if no match found. Returns the groupdict for the first match, or None if no match found.
""" """
for pattern in MODEL_REGEXES: for pattern in MODEL_REGEXES:
match = re.match(pattern, column) match = pattern.match(column)
if match: if match:
return BayesrunColumnParsed(match.groupdict()) return BayesrunColumnParsed(match.groupdict())
else: else:
@@ -111,7 +135,7 @@ def _parse_bayesrun_row(
def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename: def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
filename = file.name filename = file.name
match = re.match(FILENAME_REGEX, filename) match = FILENAME_REGEX.match(filename)
if not match: if not match:
raise ValueError(f"{filename} was not a valid bayesrun output") raise ValueError(f"{filename} was not a valid bayesrun output")
groups = match.groupdict() groups = match.groupdict()
@@ -122,7 +146,7 @@ def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
def _parse_file_slug(slug: str) -> typing.Optional[typing.Dict[str, str]]: def _parse_file_slug(slug: str) -> typing.Optional[typing.Dict[str, str]]:
for pattern in FILE_SLUG_REGEXES: for pattern in FILE_SLUG_REGEXES:
match = re.match(pattern, slug) match = pattern.match(slug)
if match: if match:
return match.groupdict() return match.groupdict()
else: else:

View File

@@ -1,9 +1,11 @@
import logging import logging
import multiprocessing
import numpy import numpy
import pdme.measurement import pdme.measurement
import pdme.measurement.input_types import pdme.measurement.input_types
import pdme.model
import pdme.subspace_simulation import pdme.subspace_simulation
from typing import Sequence, Tuple, Optional from typing import Sequence, Tuple, Optional, Callable, Union, List
from dataclasses import dataclass from dataclasses import dataclass
@@ -18,47 +20,63 @@ class SubsetSimulationResult:
under_target_cost: Optional[float] under_target_cost: Optional[float]
under_target_likelihood: Optional[float] under_target_likelihood: Optional[float]
lowest_likelihood: Optional[float] lowest_likelihood: Optional[float]
messages: Sequence[str]
@dataclass
class MultiSubsetSimulationResult:
child_results: Sequence[SubsetSimulationResult]
model_name: str
estimated_likelihood: float
arithmetic_mean_estimated_likelihood: float
num_children: int
num_finished_children: int
clean_estimate: bool
class SubsetSimulation: class SubsetSimulation:
def __init__( def __init__(
self, self,
model_name_pair, model_name_pair,
dot_inputs, # actual_measurements: Sequence[pdme.measurement.DotMeasurement],
actual_measurements: Sequence[pdme.measurement.DotMeasurement], cost_function: Callable[[numpy.ndarray], numpy.ndarray],
n_c: int, n_c: int,
n_s: int, n_s: int,
m_max: int, m_max: int,
target_cost: Optional[float] = None, target_cost: Optional[float] = None,
level_0_seed: int = 200, level_0_seed: Union[int, Sequence[int]] = 200,
mcmc_seed: int = 20, mcmc_seed: Union[int, Sequence[int]] = 20,
use_adaptive_steps=True, use_adaptive_steps=True,
default_phi_step=0.01, default_phi_step=0.01,
default_theta_step=0.01, default_theta_step=0.01,
default_r_step=0.01, default_r_step=0.01,
default_w_log_step=0.01, default_w_log_step=0.01,
default_upper_w_log_step=4, default_upper_w_log_step=4,
num_initial_dmc_gens=1,
keep_probs_list=True, keep_probs_list=True,
dump_last_generation_to_file=False, dump_last_generation_to_file=False,
initial_cost_chunk_size=100, initial_cost_chunk_size=100,
initial_cost_multiprocess=True,
cap_core_count: int = 0, # 0 means cap at num cores - 1
): ):
name, model = model_name_pair name, model = model_name_pair
self.model_name = name self.model_name = name
self.model = model self.model = model
_logger.info(f"got model {self.model_name}") _logger.info(f"got model {self.model_name}")
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array( # dot_inputs = [(meas.r, meas.f) for meas in actual_measurements]
dot_inputs # self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
) # dot_inputs
# )
# _logger.debug(f"actual measurements: {actual_measurements}") # _logger.debug(f"actual measurements: {actual_measurements}")
self.actual_measurement_array = numpy.array([m.v for m in actual_measurements]) # self.actual_measurement_array = numpy.array([m.v for m in actual_measurements])
def cost_function_to_use(dipoles_to_test): # def cost_function_to_use(dipoles_to_test):
return pdme.subspace_simulation.proportional_costs_vs_actual_measurement( # return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
self.dot_inputs_array, self.actual_measurement_array, dipoles_to_test # self.dot_inputs_array, self.actual_measurement_array, dipoles_to_test
) # )
self.cost_function_to_use = cost_function_to_use self.cost_function_to_use = cost_function
self.n_c = n_c self.n_c = n_c
self.n_s = n_s self.n_s = n_s
@@ -68,16 +86,25 @@ class SubsetSimulation:
self.mcmc_seed = mcmc_seed self.mcmc_seed = mcmc_seed
self.use_adaptive_steps = use_adaptive_steps self.use_adaptive_steps = use_adaptive_steps
self.default_phi_step = default_phi_step self.default_phi_step = (
default_phi_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_theta_step = default_theta_step self.default_theta_step = default_theta_step
self.default_r_step = default_r_step self.default_r_step = (
self.default_w_log_step = default_w_log_step default_r_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_w_log_step = (
default_w_log_step * 1.73
) # this is a hack to fix a missing sqrt 3 in the proposal function code.
self.default_upper_w_log_step = default_upper_w_log_step self.default_upper_w_log_step = default_upper_w_log_step
_logger.info("using params:") _logger.info("using params:")
_logger.info(f"\tn_c: {self.n_c}") _logger.info(f"\tn_c: {self.n_c}")
_logger.info(f"\tn_s: {self.n_s}") _logger.info(f"\tn_s: {self.n_s}")
_logger.info(f"\tm: {self.m_max}") _logger.info(f"\tm: {self.m_max}")
_logger.info(f"\t{num_initial_dmc_gens=}")
_logger.info(f"\t{mcmc_seed=}")
_logger.info(f"\t{level_0_seed=}")
_logger.info("let's do level 0...") _logger.info("let's do level 0...")
self.target_cost = target_cost self.target_cost = target_cost
@@ -87,44 +114,91 @@ class SubsetSimulation:
self.dump_last_generations = dump_last_generation_to_file self.dump_last_generations = dump_last_generation_to_file
self.initial_cost_chunk_size = initial_cost_chunk_size self.initial_cost_chunk_size = initial_cost_chunk_size
self.initial_cost_multiprocess = initial_cost_multiprocess
self.cap_core_count = cap_core_count
self.num_dmc_gens = num_initial_dmc_gens
def _single_chain_gen(self, args: Tuple):
threshold_cost, stdevs, rng_seed, (c, s) = args
rng = numpy.random.default_rng(rng_seed)
return self.model.get_repeat_counting_mcmc_chain(
s,
self.cost_function_to_use,
self.n_s,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=rng,
)
def execute(self) -> SubsetSimulationResult: def execute(self) -> SubsetSimulationResult:
probs_list = [] probs_list = []
output_messages = []
# If we have n_s = 10 and n_c = 100, then our big N = 1000 and p = 1/10
# The DMC stage would normally generate 1000, then pick the best 100 and start counting prob = p/10.
# Let's say we want our DMC stage to go down to level 2.
# Then we need to filter out p^2, so our initial has to be N_0 = N / p = n_c * n_s^2
initial_dmc_n = self.n_c * (self.n_s**self.num_dmc_gens)
initial_level = (
self.num_dmc_gens - 1
) # This is perfunctory but let's label it here really explicitly
_logger.info(f"Generating {initial_dmc_n} for DMC stage")
sample_dipoles = self.model.get_monte_carlo_dipole_inputs( sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
self.n_c * self.n_s, initial_dmc_n,
-1, -1,
rng_to_use=numpy.random.default_rng(self.level_0_seed), rng_to_use=numpy.random.default_rng(self.level_0_seed),
) )
# _logger.debug(sample_dipoles) # _logger.debug(sample_dipoles)
# _logger.debug(sample_dipoles.shape) # _logger.debug(sample_dipoles.shape)
raw_costs = [] _logger.debug("Finished dipole generation")
_logger.debug( _logger.debug(
f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}" f"Using iterated multiprocessing cost function thing with chunk size {self.initial_cost_chunk_size}"
) )
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size): # core count etc. logic here
_logger.debug(f"doing chunk {x}") core_count = multiprocessing.cpu_count() - 1 or 1
raw_costs.extend( if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
self.cost_function_to_use( core_count = self.cap_core_count
sample_dipoles[x : x + self.initial_cost_chunk_size] _logger.info(f"Using {core_count} cores")
)
)
costs = numpy.array(raw_costs)
_logger.debug(f"costs: {costs}") with multiprocessing.Pool(core_count) as pool:
# Do the initial DMC calculation in a multiprocessing
chunks = numpy.array_split(
sample_dipoles,
range(
self.initial_cost_chunk_size,
len(sample_dipoles),
self.initial_cost_chunk_size,
),
)
if self.initial_cost_multiprocess:
_logger.debug("Multiprocessing initial costs")
raw_costs = pool.map(self.cost_function_to_use, chunks)
else:
_logger.debug("Single process initial costs")
raw_costs = []
for chunk_idx, chunk in enumerate(chunks):
_logger.debug(f"doing chunk #{chunk_idx}")
raw_costs.append(self.cost_function_to_use(chunk))
costs = numpy.concatenate(raw_costs)
_logger.debug("finished initial dmc cost calculation")
# _logger.debug(f"costs: {costs}")
sorted_indexes = costs.argsort()[::-1] sorted_indexes = costs.argsort()[::-1]
_logger.debug(costs[sorted_indexes]) # _logger.debug(costs[sorted_indexes])
_logger.debug(sample_dipoles[sorted_indexes]) # _logger.debug(sample_dipoles[sorted_indexes])
sorted_costs = costs[sorted_indexes] sorted_costs = costs[sorted_indexes]
sorted_dipoles = sample_dipoles[sorted_indexes] sorted_dipoles = sample_dipoles[sorted_indexes]
threshold_cost = sorted_costs[-self.n_c]
all_dipoles = numpy.array( all_dipoles = numpy.array(
[ [
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(samp) pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(samp)
@@ -132,10 +206,36 @@ class SubsetSimulation:
] ]
) )
all_chains = list(zip(sorted_costs, all_dipoles)) all_chains = list(zip(sorted_costs, all_dipoles))
for dmc_level in range(initial_level):
# if initial level is 1, we want to print out what the level 0 threshold would have been?
_logger.debug(f"Get the pseudo statistics for level {dmc_level}")
_logger.debug(f"Whole chain has length {len(all_chains)}")
pseudo_threshold_index = -(
self.n_c * (self.n_s ** (self.num_dmc_gens - dmc_level - 1))
)
_logger.debug(
f"Have a pseudo_threshold_index of {pseudo_threshold_index}, or {len(all_chains) + pseudo_threshold_index}"
)
pseudo_threshold_cost = all_chains[-pseudo_threshold_index][0]
_logger.info(
f"Pseudo-level {dmc_level} threshold cost {pseudo_threshold_cost}, at P = (1 / {self.n_s})^{dmc_level + 1}"
)
all_chains = all_chains[pseudo_threshold_index:]
mcmc_rng = numpy.random.default_rng(self.mcmc_seed) long_mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
mcmc_rng_seed_sequence = numpy.random.SeedSequence(self.mcmc_seed)
for i in range(self.m_max): threshold_cost = all_chains[-self.n_c][0]
_logger.info(
f"Finishing DMC threshold cost {threshold_cost} at level {initial_level}, at P = (1 / {self.n_s})^{initial_level + 1}"
)
_logger.debug(f"Executing the MCMC with chains of length {len(all_chains)}")
# Now we move on to the MCMC part of the algorithm
# This is important, we want to allow some extra initial levels so we need to account for that here!
for i in range(self.num_dmc_gens, self.m_max):
_logger.info(f"Starting level {i}")
next_seeds = all_chains[-self.n_c :] next_seeds = all_chains[-self.n_c :]
if self.dump_last_generations: if self.dump_last_generations:
@@ -158,7 +258,9 @@ class SubsetSimulation:
): ):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs) # chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do # until new version gotta do
_logger.debug(f"\t{seed_index}: doing long chain on the next seed") _logger.debug(
f"\t{seed_index}: doing long chain on the next seed"
)
long_chain = self.model.get_mcmc_chain( long_chain = self.model.get_mcmc_chain(
s, s,
@@ -167,7 +269,7 @@ class SubsetSimulation:
threshold_cost, threshold_cost,
stdevs, stdevs,
initial_cost=c, initial_cost=c,
rng_arg=mcmc_rng, rng_arg=long_mcmc_rng,
) )
for _, chained in long_chain: for _, chained in long_chain:
all_long_chains.append(chained) all_long_chains.append(chained)
@@ -184,7 +286,10 @@ class SubsetSimulation:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]): for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append( probs_list.append(
( (
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s)) (
(self.n_c * self.n_s - cost_index)
/ (self.n_c * self.n_s)
)
/ (self.n_s ** (i)), / (self.n_s ** (i)),
cost_chain[0], cost_chain[0],
i + 1, i + 1,
@@ -194,31 +299,42 @@ class SubsetSimulation:
next_seeds_as_array = numpy.array([s for _, s in next_seeds]) next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array) stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}") _logger.debug(f"got stdevs, begin: {stdevs.stdevs[:10]}")
_logger.debug("Starting the MCMC") _logger.debug("Starting the MCMC")
all_chains = [] all_chains = []
for seed_index, (c, s) in enumerate(next_seeds):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs) seeds = mcmc_rng_seed_sequence.spawn(len(next_seeds))
# until new version gotta do pool_results = pool.imap_unordered(
_logger.debug( self._single_chain_gen,
f"\t{seed_index}: getting another chain from the next seed" [
) (threshold_cost, stdevs, rng_seed, test_seed)
chain = self.model.get_mcmc_chain( for rng_seed, test_seed in zip(seeds, next_seeds)
s, ],
self.cost_function_to_use, chunksize=50,
self.n_s,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
) )
# count for ergodicity analysis
samples_generated = 0
samples_rejected = 0
for rejected_count, chain in pool_results:
for cost, chained in chain: for cost, chained in chain:
try: try:
filtered_cost = cost[0] filtered_cost = cost[0]
except (IndexError, TypeError): except (IndexError, TypeError):
filtered_cost = cost filtered_cost = cost
all_chains.append((filtered_cost, chained)) all_chains.append((filtered_cost, chained))
samples_generated += self.n_s
samples_rejected += rejected_count
_logger.debug("finished mcmc") _logger.debug("finished mcmc")
_logger.debug(f"{samples_rejected=} out of {samples_generated=}")
if samples_rejected * 2 > samples_generated:
reject_ratio = samples_rejected / samples_generated
rejectionmessage = f"On level {i}, rejected {samples_rejected} out of {samples_generated}, {reject_ratio=} is too high and may indicate ergodicity problems"
output_messages.append(rejectionmessage)
_logger.warning(rejectionmessage)
# _logger.debug(all_chains) # _logger.debug(all_chains)
all_chains.sort(key=lambda c: c[0], reverse=True) all_chains.sort(key=lambda c: c[0], reverse=True)
@@ -228,7 +344,9 @@ class SubsetSimulation:
_logger.info( _logger.info(
f"current threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{i + 1}" f"current threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{i + 1}"
) )
if (self.target_cost is not None) and (threshold_cost < self.target_cost): if (self.target_cost is not None) and (
threshold_cost < self.target_cost
):
_logger.info( _logger.info(
f"got a threshold cost {threshold_cost}, less than {self.target_cost}. will leave early" f"got a threshold cost {threshold_cost}, less than {self.target_cost}. will leave early"
) )
@@ -236,6 +354,8 @@ class SubsetSimulation:
cost_list = [c[0] for c in all_chains] cost_list = [c[0] for c in all_chains]
over_index = reverse_bisect_right(cost_list, self.target_cost) over_index = reverse_bisect_right(cost_list, self.target_cost)
winner = all_chains[over_index][1]
_logger.info(f"Winner obtained: {winner}")
shorter_probs_list = [] shorter_probs_list = []
for cost_index, cost_chain in enumerate(all_chains): for cost_index, cost_chain in enumerate(all_chains):
if self.keep_probs_list: if self.keep_probs_list:
@@ -253,7 +373,10 @@ class SubsetSimulation:
shorter_probs_list.append( shorter_probs_list.append(
( (
cost_chain[0], cost_chain[0],
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s)) (
(self.n_c * self.n_s - cost_index)
/ (self.n_c * self.n_s)
)
/ (self.n_s ** (i)), / (self.n_s ** (i)),
) )
) )
@@ -265,6 +388,7 @@ class SubsetSimulation:
under_target_cost=shorter_probs_list[over_index][0], under_target_cost=shorter_probs_list[over_index][0],
under_target_likelihood=shorter_probs_list[over_index][1], under_target_likelihood=shorter_probs_list[over_index][1],
lowest_likelihood=shorter_probs_list[-1][1], lowest_likelihood=shorter_probs_list[-1][1],
messages=output_messages,
) )
return result return result
@@ -285,8 +409,8 @@ class SubsetSimulation:
_logger.info( _logger.info(
f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}" f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}"
) )
for a in all_chains[-10:]: # for a in all_chains[-10:]:
_logger.info(a) # _logger.info(a)
# for prob, prob_cost in probs_list: # for prob, prob_cost in probs_list:
# _logger.info(f"\t{prob}: {prob_cost}") # _logger.info(f"\t{prob}: {prob_cost}")
probs_list.sort(key=lambda c: c[0], reverse=True) probs_list.sort(key=lambda c: c[0], reverse=True)
@@ -300,6 +424,7 @@ class SubsetSimulation:
under_target_cost=None, under_target_cost=None,
under_target_likelihood=None, under_target_likelihood=None,
lowest_likelihood=min_likelihood, lowest_likelihood=min_likelihood,
messages=output_messages,
) )
return result return result
@@ -358,6 +483,116 @@ class SubsetSimulation:
return stdevs return stdevs
class MultiSubsetSimulations:
def __init__(
self,
model_name_pairs: Sequence[Tuple[str, pdme.model.DipoleModel]],
# actual_measurements: Sequence[pdme.measurement.DotMeasurement],
cost_function: Callable[[numpy.ndarray], numpy.ndarray],
num_runs: int,
n_c: int,
n_s: int,
m_max: int,
target_cost: float,
num_initial_dmc_gens: int = 1,
level_0_seed_seed: int = 200,
mcmc_seed_seed: int = 20,
use_adaptive_steps=True,
default_phi_step=0.01,
default_theta_step=0.01,
default_r_step=0.01,
default_w_log_step=0.01,
default_upper_w_log_step=4,
initial_cost_chunk_size=100,
cap_core_count: int = 0, # 0 means cap at num cores - 1
):
self.model_name_pairs = model_name_pairs
self.cost_function = cost_function
self.num_runs = num_runs
self.n_c = n_c
self.n_s = n_s
self.m_max = m_max
self.target_cost = target_cost # This is not optional here!
self.num_dmc_gens = num_initial_dmc_gens
self.level_0_seed_seed = level_0_seed_seed
self.mcmc_seed_seed = mcmc_seed_seed
self.use_adaptive_steps = use_adaptive_steps
self.default_phi_step = default_phi_step
self.default_theta_step = default_theta_step
self.default_r_step = default_r_step
self.default_w_log_step = default_w_log_step
self.default_upper_w_log_step = default_upper_w_log_step
self.initial_cost_chunk_size = initial_cost_chunk_size
self.cap_core_count = cap_core_count
def execute(self) -> Sequence[MultiSubsetSimulationResult]:
output: List[MultiSubsetSimulationResult] = []
for model_index, model_name_pair in enumerate(self.model_name_pairs):
ss_results = [
SubsetSimulation(
model_name_pair,
self.cost_function,
self.n_c,
self.n_s,
self.m_max,
self.target_cost,
num_initial_dmc_gens=self.num_dmc_gens,
level_0_seed=[model_index, run_index, self.level_0_seed_seed],
mcmc_seed=[model_index, run_index, self.mcmc_seed_seed],
use_adaptive_steps=self.use_adaptive_steps,
default_phi_step=self.default_phi_step,
default_theta_step=self.default_theta_step,
default_r_step=self.default_r_step,
default_w_log_step=self.default_w_log_step,
default_upper_w_log_step=self.default_upper_w_log_step,
keep_probs_list=False,
dump_last_generation_to_file=False,
initial_cost_chunk_size=self.initial_cost_chunk_size,
cap_core_count=self.cap_core_count,
).execute()
for run_index in range(self.num_runs)
]
output.append(coalesce_ss_results(model_name_pair[0], ss_results))
return output
def coalesce_ss_results(
model_name: str, results: Sequence[SubsetSimulationResult]
) -> MultiSubsetSimulationResult:
num_finished = sum(1 for res in results if res.under_target_likelihood is not None)
estimated_likelihoods = numpy.array(
[
res.under_target_likelihood
if res.under_target_likelihood is not None
else res.lowest_likelihood
for res in results
]
)
_logger.info(estimated_likelihoods)
geometric_mean_estimated_likelihoods = numpy.exp(
numpy.log(estimated_likelihoods).mean()
)
_logger.info(geometric_mean_estimated_likelihoods)
arithmetic_mean_estimated_likelihoods = estimated_likelihoods.mean()
result = MultiSubsetSimulationResult(
child_results=results,
model_name=model_name,
estimated_likelihood=geometric_mean_estimated_likelihoods,
arithmetic_mean_estimated_likelihood=arithmetic_mean_estimated_likelihoods,
num_children=len(results),
num_finished_children=num_finished,
clean_estimate=num_finished == len(results),
)
return result
def reverse_bisect_right(a, x, lo=0, hi=None): def reverse_bisect_right(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted in descending order. """Return the index where to insert item x in list a, assuming a is sorted in descending order.

View File

@@ -36,6 +36,7 @@
self.packages.${system}.deepdogEnv self.packages.${system}.deepdogEnv
self.packages.${system}.deepdogApp self.packages.${system}.deepdogApp
pkgs.just pkgs.just
pkgs.nodejs
]; ];
shellHook = '' shellHook = ''
export DO_NIX_CUSTOM=1 export DO_NIX_CUSTOM=1

View File

@@ -46,9 +46,15 @@ fmt:
find deepdog -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \; find deepdog -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
find tests -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \; find tests -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
# release the app, checking that our working tree is clean and ready for release # release the app, checking that our working tree is clean and ready for release, optionally takes target version
release: release version="":
#!/usr/bin/env bash
set -euxo pipefail
if [[ -n "{{version}}" ]]; then
./scripts/release.sh {{version}}
else
./scripts/release.sh ./scripts/release.sh
fi
htmlcov: htmlcov:
poetry run pytest --cov-report=html poetry run pytest --cov-report=html

327
poetry.lock generated
View File

@@ -1,5 +1,20 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. # This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "backports-tarfile"
version = "1.1.1"
description = "Backport of CPython tarfile module"
optional = false
python-versions = ">=3.8"
files = [
{file = "backports.tarfile-1.1.1-py3-none-any.whl", hash = "sha256:73e0179647803d3726d82e76089d01d8549ceca9bace469953fcb4d97cf2d417"},
{file = "backports_tarfile-1.1.1.tar.gz", hash = "sha256:9c2ef9696cb73374f7164e17fc761389393ca76777036f5aad42e8b93fcd8009"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["jaraco.test", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)"]
[[package]] [[package]]
name = "black" name = "black"
version = "22.12.0" version = "22.12.0"
@@ -250,63 +265,63 @@ files = [
[[package]] [[package]]
name = "coverage" name = "coverage"
version = "7.4.3" version = "7.5.0"
description = "Code coverage measurement for Python" description = "Code coverage measurement for Python"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "coverage-7.4.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8580b827d4746d47294c0e0b92854c85a92c2227927433998f0d3320ae8a71b6"}, {file = "coverage-7.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:432949a32c3e3f820af808db1833d6d1631664d53dd3ce487aa25d574e18ad1c"},
{file = "coverage-7.4.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:718187eeb9849fc6cc23e0d9b092bc2348821c5e1a901c9f8975df0bc785bfd4"}, {file = "coverage-7.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2bd7065249703cbeb6d4ce679c734bef0ee69baa7bff9724361ada04a15b7e3b"},
{file = "coverage-7.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:767b35c3a246bcb55b8044fd3a43b8cd553dd1f9f2c1eeb87a302b1f8daa0524"}, {file = "coverage-7.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbfe6389c5522b99768a93d89aca52ef92310a96b99782973b9d11e80511f932"},
{file = "coverage-7.4.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae7f19afe0cce50039e2c782bff379c7e347cba335429678450b8fe81c4ef96d"}, {file = "coverage-7.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39793731182c4be939b4be0cdecde074b833f6171313cf53481f869937129ed3"},
{file = "coverage-7.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba3a8aaed13770e970b3df46980cb068d1c24af1a1968b7818b69af8c4347efb"}, {file = "coverage-7.5.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85a5dbe1ba1bf38d6c63b6d2c42132d45cbee6d9f0c51b52c59aa4afba057517"},
{file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ee866acc0861caebb4f2ab79f0b94dbfbdbfadc19f82e6e9c93930f74e11d7a0"}, {file = "coverage-7.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:357754dcdfd811462a725e7501a9b4556388e8ecf66e79df6f4b988fa3d0b39a"},
{file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:506edb1dd49e13a2d4cac6a5173317b82a23c9d6e8df63efb4f0380de0fbccbc"}, {file = "coverage-7.5.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a81eb64feded34f40c8986869a2f764f0fe2db58c0530d3a4afbcde50f314880"},
{file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd6545d97c98a192c5ac995d21c894b581f1fd14cf389be90724d21808b657e2"}, {file = "coverage-7.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:51431d0abbed3a868e967f8257c5faf283d41ec882f58413cf295a389bb22e58"},
{file = "coverage-7.4.3-cp310-cp310-win32.whl", hash = "sha256:f6a09b360d67e589236a44f0c39218a8efba2593b6abdccc300a8862cffc2f94"}, {file = "coverage-7.5.0-cp310-cp310-win32.whl", hash = "sha256:f609ebcb0242d84b7adeee2b06c11a2ddaec5464d21888b2c8255f5fd6a98ae4"},
{file = "coverage-7.4.3-cp310-cp310-win_amd64.whl", hash = "sha256:18d90523ce7553dd0b7e23cbb28865db23cddfd683a38fb224115f7826de78d0"}, {file = "coverage-7.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:6782cd6216fab5a83216cc39f13ebe30adfac2fa72688c5a4d8d180cd52e8f6a"},
{file = "coverage-7.4.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cbbe5e739d45a52f3200a771c6d2c7acf89eb2524890a4a3aa1a7fa0695d2a47"}, {file = "coverage-7.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e768d870801f68c74c2b669fc909839660180c366501d4cc4b87efd6b0eee375"},
{file = "coverage-7.4.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:489763b2d037b164846ebac0cbd368b8a4ca56385c4090807ff9fad817de4113"}, {file = "coverage-7.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:84921b10aeb2dd453247fd10de22907984eaf80901b578a5cf0bb1e279a587cb"},
{file = "coverage-7.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:451f433ad901b3bb00184d83fd83d135fb682d780b38af7944c9faeecb1e0bfe"}, {file = "coverage-7.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:710c62b6e35a9a766b99b15cdc56d5aeda0914edae8bb467e9c355f75d14ee95"},
{file = "coverage-7.4.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fcc66e222cf4c719fe7722a403888b1f5e1682d1679bd780e2b26c18bb648cdc"}, {file = "coverage-7.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c379cdd3efc0658e652a14112d51a7668f6bfca7445c5a10dee7eabecabba19d"},
{file = "coverage-7.4.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3ec74cfef2d985e145baae90d9b1b32f85e1741b04cd967aaf9cfa84c1334f3"}, {file = "coverage-7.5.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fea9d3ca80bcf17edb2c08a4704259dadac196fe5e9274067e7a20511fad1743"},
{file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:abbbd8093c5229c72d4c2926afaee0e6e3140de69d5dcd918b2921f2f0c8baba"}, {file = "coverage-7.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:41327143c5b1d715f5f98a397608f90ab9ebba606ae4e6f3389c2145410c52b1"},
{file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:35eb581efdacf7b7422af677b92170da4ef34500467381e805944a3201df2079"}, {file = "coverage-7.5.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:565b2e82d0968c977e0b0f7cbf25fd06d78d4856289abc79694c8edcce6eb2de"},
{file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8249b1c7334be8f8c3abcaaa996e1e4927b0e5a23b65f5bf6cfe3180d8ca7840"}, {file = "coverage-7.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cf3539007202ebfe03923128fedfdd245db5860a36810136ad95a564a2fdffff"},
{file = "coverage-7.4.3-cp311-cp311-win32.whl", hash = "sha256:cf30900aa1ba595312ae41978b95e256e419d8a823af79ce670835409fc02ad3"}, {file = "coverage-7.5.0-cp311-cp311-win32.whl", hash = "sha256:bf0b4b8d9caa8d64df838e0f8dcf68fb570c5733b726d1494b87f3da85db3a2d"},
{file = "coverage-7.4.3-cp311-cp311-win_amd64.whl", hash = "sha256:18c7320695c949de11a351742ee001849912fd57e62a706d83dfc1581897fa2e"}, {file = "coverage-7.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:9c6384cc90e37cfb60435bbbe0488444e54b98700f727f16f64d8bfda0b84656"},
{file = "coverage-7.4.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b51bfc348925e92a9bd9b2e48dad13431b57011fd1038f08316e6bf1df107d10"}, {file = "coverage-7.5.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fed7a72d54bd52f4aeb6c6e951f363903bd7d70bc1cad64dd1f087980d309ab9"},
{file = "coverage-7.4.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d6cdecaedea1ea9e033d8adf6a0ab11107b49571bbb9737175444cea6eb72328"}, {file = "coverage-7.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cbe6581fcff7c8e262eb574244f81f5faaea539e712a058e6707a9d272fe5b64"},
{file = "coverage-7.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b2eccb883368f9e972e216c7b4c7c06cabda925b5f06dde0650281cb7666a30"}, {file = "coverage-7.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad97ec0da94b378e593ef532b980c15e377df9b9608c7c6da3506953182398af"},
{file = "coverage-7.4.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c00cdc8fa4e50e1cc1f941a7f2e3e0f26cb2a1233c9696f26963ff58445bac7"}, {file = "coverage-7.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd4bacd62aa2f1a1627352fe68885d6ee694bdaebb16038b6e680f2924a9b2cc"},
{file = "coverage-7.4.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9a4a8dd3dcf4cbd3165737358e4d7dfbd9d59902ad11e3b15eebb6393b0446e"}, {file = "coverage-7.5.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adf032b6c105881f9d77fa17d9eebe0ad1f9bfb2ad25777811f97c5362aa07f2"},
{file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:062b0a75d9261e2f9c6d071753f7eef0fc9caf3a2c82d36d76667ba7b6470003"}, {file = "coverage-7.5.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:4ba01d9ba112b55bfa4b24808ec431197bb34f09f66f7cb4fd0258ff9d3711b1"},
{file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:ebe7c9e67a2d15fa97b77ea6571ce5e1e1f6b0db71d1d5e96f8d2bf134303c1d"}, {file = "coverage-7.5.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:f0bfe42523893c188e9616d853c47685e1c575fe25f737adf473d0405dcfa7eb"},
{file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c0a120238dd71c68484f02562f6d446d736adcc6ca0993712289b102705a9a3a"}, {file = "coverage-7.5.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a9a7ef30a1b02547c1b23fa9a5564f03c9982fc71eb2ecb7f98c96d7a0db5cf2"},
{file = "coverage-7.4.3-cp312-cp312-win32.whl", hash = "sha256:37389611ba54fd6d278fde86eb2c013c8e50232e38f5c68235d09d0a3f8aa352"}, {file = "coverage-7.5.0-cp312-cp312-win32.whl", hash = "sha256:3c2b77f295edb9fcdb6a250f83e6481c679335ca7e6e4a955e4290350f2d22a4"},
{file = "coverage-7.4.3-cp312-cp312-win_amd64.whl", hash = "sha256:d25b937a5d9ffa857d41be042b4238dd61db888533b53bc76dc082cb5a15e914"}, {file = "coverage-7.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:427e1e627b0963ac02d7c8730ca6d935df10280d230508c0ba059505e9233475"},
{file = "coverage-7.4.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:28ca2098939eabab044ad68850aac8f8db6bf0b29bc7f2887d05889b17346454"}, {file = "coverage-7.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9dd88fce54abbdbf4c42fb1fea0e498973d07816f24c0e27a1ecaf91883ce69e"},
{file = "coverage-7.4.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:280459f0a03cecbe8800786cdc23067a8fc64c0bd51dc614008d9c36e1659d7e"}, {file = "coverage-7.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a898c11dca8f8c97b467138004a30133974aacd572818c383596f8d5b2eb04a9"},
{file = "coverage-7.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c0cdedd3500e0511eac1517bf560149764b7d8e65cb800d8bf1c63ebf39edd2"}, {file = "coverage-7.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07dfdd492d645eea1bd70fb1d6febdcf47db178b0d99161d8e4eed18e7f62fe7"},
{file = "coverage-7.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a9babb9466fe1da12417a4aed923e90124a534736de6201794a3aea9d98484e"}, {file = "coverage-7.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3d117890b6eee85887b1eed41eefe2e598ad6e40523d9f94c4c4b213258e4a4"},
{file = "coverage-7.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dec9de46a33cf2dd87a5254af095a409ea3bf952d85ad339751e7de6d962cde6"}, {file = "coverage-7.5.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6afd2e84e7da40fe23ca588379f815fb6dbbb1b757c883935ed11647205111cb"},
{file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:16bae383a9cc5abab9bb05c10a3e5a52e0a788325dc9ba8499e821885928968c"}, {file = "coverage-7.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a9960dd1891b2ddf13a7fe45339cd59ecee3abb6b8326d8b932d0c5da208104f"},
{file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2c854ce44e1ee31bda4e318af1dbcfc929026d12c5ed030095ad98197eeeaed0"}, {file = "coverage-7.5.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ced268e82af993d7801a9db2dbc1d2322e786c5dc76295d8e89473d46c6b84d4"},
{file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:ce8c50520f57ec57aa21a63ea4f325c7b657386b3f02ccaedeccf9ebe27686e1"}, {file = "coverage-7.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:e7c211f25777746d468d76f11719e64acb40eed410d81c26cefac641975beb88"},
{file = "coverage-7.4.3-cp38-cp38-win32.whl", hash = "sha256:708a3369dcf055c00ddeeaa2b20f0dd1ce664eeabde6623e516c5228b753654f"}, {file = "coverage-7.5.0-cp38-cp38-win32.whl", hash = "sha256:262fffc1f6c1a26125d5d573e1ec379285a3723363f3bd9c83923c9593a2ac25"},
{file = "coverage-7.4.3-cp38-cp38-win_amd64.whl", hash = "sha256:1bf25fbca0c8d121a3e92a2a0555c7e5bc981aee5c3fdaf4bb7809f410f696b9"}, {file = "coverage-7.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:eed462b4541c540d63ab57b3fc69e7d8c84d5957668854ee4e408b50e92ce26a"},
{file = "coverage-7.4.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b253094dbe1b431d3a4ac2f053b6d7ede2664ac559705a704f621742e034f1f"}, {file = "coverage-7.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d0194d654e360b3e6cc9b774e83235bae6b9b2cac3be09040880bb0e8a88f4a1"},
{file = "coverage-7.4.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:77fbfc5720cceac9c200054b9fab50cb2a7d79660609200ab83f5db96162d20c"}, {file = "coverage-7.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33c020d3322662e74bc507fb11488773a96894aa82a622c35a5a28673c0c26f5"},
{file = "coverage-7.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6679060424faa9c11808598504c3ab472de4531c571ab2befa32f4971835788e"}, {file = "coverage-7.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cbdf2cae14a06827bec50bd58e49249452d211d9caddd8bd80e35b53cb04631"},
{file = "coverage-7.4.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4af154d617c875b52651dd8dd17a31270c495082f3d55f6128e7629658d63765"}, {file = "coverage-7.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3235d7c781232e525b0761730e052388a01548bd7f67d0067a253887c6e8df46"},
{file = "coverage-7.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8640f1fde5e1b8e3439fe482cdc2b0bb6c329f4bb161927c28d2e8879c6029ee"}, {file = "coverage-7.5.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2de4e546f0ec4b2787d625e0b16b78e99c3e21bc1722b4977c0dddf11ca84e"},
{file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:69b9f6f66c0af29642e73a520b6fed25ff9fd69a25975ebe6acb297234eda501"}, {file = "coverage-7.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0e206259b73af35c4ec1319fd04003776e11e859936658cb6ceffdeba0f5be"},
{file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:0842571634f39016a6c03e9d4aba502be652a6e4455fadb73cd3a3a49173e38f"}, {file = "coverage-7.5.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2055c4fb9a6ff624253d432aa471a37202cd8f458c033d6d989be4499aed037b"},
{file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a78ed23b08e8ab524551f52953a8a05d61c3a760781762aac49f8de6eede8c45"}, {file = "coverage-7.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:075299460948cd12722a970c7eae43d25d37989da682997687b34ae6b87c0ef0"},
{file = "coverage-7.4.3-cp39-cp39-win32.whl", hash = "sha256:c0524de3ff096e15fcbfe8f056fdb4ea0bf497d584454f344d59fce069d3e6e9"}, {file = "coverage-7.5.0-cp39-cp39-win32.whl", hash = "sha256:280132aada3bc2f0fac939a5771db4fbb84f245cb35b94fae4994d4c1f80dae7"},
{file = "coverage-7.4.3-cp39-cp39-win_amd64.whl", hash = "sha256:0209a6369ccce576b43bb227dc8322d8ef9e323d089c6f3f26a597b09cb4d2aa"}, {file = "coverage-7.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:c58536f6892559e030e6924896a44098bc1290663ea12532c78cef71d0df8493"},
{file = "coverage-7.4.3-pp38.pp39.pp310-none-any.whl", hash = "sha256:7cbde573904625509a3f37b6fecea974e363460b556a627c60dc2f47e2fffa51"}, {file = "coverage-7.5.0-pp38.pp39.pp310-none-any.whl", hash = "sha256:2b57780b51084d5223eee7b59f0d4911c31c16ee5aa12737c7a02455829ff067"},
{file = "coverage-7.4.3.tar.gz", hash = "sha256:276f6077a5c61447a48d133ed13e759c09e62aff0dc84274a68dc18660104d52"}, {file = "coverage-7.5.0.tar.gz", hash = "sha256:cf62d17310f34084c59c01e027259076479128d11e4661bb6c9acb38c5e19bb8"},
] ]
[package.dependencies] [package.dependencies]
@@ -393,13 +408,13 @@ files = [
[[package]] [[package]]
name = "exceptiongroup" name = "exceptiongroup"
version = "1.2.0" version = "1.2.1"
description = "Backport of PEP 654 (exception groups)" description = "Backport of PEP 654 (exception groups)"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"},
{file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"},
] ]
[package.extras] [package.extras]
@@ -437,60 +452,61 @@ smmap = ">=3.0.1,<6"
[[package]] [[package]]
name = "gitpython" name = "gitpython"
version = "3.1.42" version = "3.1.43"
description = "GitPython is a Python library used to interact with Git repositories" description = "GitPython is a Python library used to interact with Git repositories"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "GitPython-3.1.42-py3-none-any.whl", hash = "sha256:1bf9cd7c9e7255f77778ea54359e54ac22a72a5b51288c457c881057b7bb9ecd"}, {file = "GitPython-3.1.43-py3-none-any.whl", hash = "sha256:eec7ec56b92aad751f9912a73404bc02ba212a23adb2c7098ee668417051a1ff"},
{file = "GitPython-3.1.42.tar.gz", hash = "sha256:2d99869e0fef71a73cbd242528105af1d6c1b108c60dfabd994bf292f76c3ceb"}, {file = "GitPython-3.1.43.tar.gz", hash = "sha256:35f314a9f878467f5453cc1fee295c3e18e52f1b99f10f6cf5b1682e968a9e7c"},
] ]
[package.dependencies] [package.dependencies]
gitdb = ">=4.0.1,<5" gitdb = ">=4.0.1,<5"
[package.extras] [package.extras]
test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar"] doc = ["sphinx (==4.3.2)", "sphinx-autodoc-typehints", "sphinx-rtd-theme", "sphinxcontrib-applehelp (>=1.0.2,<=1.0.4)", "sphinxcontrib-devhelp (==1.0.2)", "sphinxcontrib-htmlhelp (>=2.0.0,<=2.0.1)", "sphinxcontrib-qthelp (==1.0.3)", "sphinxcontrib-serializinghtml (==1.1.5)"]
test = ["coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar", "typing-extensions"]
[[package]] [[package]]
name = "idna" name = "idna"
version = "3.6" version = "3.7"
description = "Internationalized Domain Names in Applications (IDNA)" description = "Internationalized Domain Names in Applications (IDNA)"
optional = false optional = false
python-versions = ">=3.5" python-versions = ">=3.5"
files = [ files = [
{file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"}, {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
{file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"}, {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
] ]
[[package]] [[package]]
name = "importlib-metadata" name = "importlib-metadata"
version = "7.0.1" version = "7.1.0"
description = "Read metadata from Python packages" description = "Read metadata from Python packages"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "importlib_metadata-7.0.1-py3-none-any.whl", hash = "sha256:4805911c3a4ec7c3966410053e9ec6a1fecd629117df5adee56dfc9432a1081e"}, {file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"},
{file = "importlib_metadata-7.0.1.tar.gz", hash = "sha256:f238736bb06590ae52ac1fab06a3a9ef1d8dce2b7a35b5ab329371d6c8f5d2cc"}, {file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"},
] ]
[package.dependencies] [package.dependencies]
zipp = ">=0.5" zipp = ">=0.5"
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
perf = ["ipython"] perf = ["ipython"]
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] testing = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
[[package]] [[package]]
name = "importlib-resources" name = "importlib-resources"
version = "6.1.2" version = "6.4.0"
description = "Read resources from Python packages" description = "Read resources from Python packages"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "importlib_resources-6.1.2-py3-none-any.whl", hash = "sha256:9a0a862501dc38b68adebc82970140c9e4209fc99601782925178f8386339938"}, {file = "importlib_resources-6.4.0-py3-none-any.whl", hash = "sha256:50d10f043df931902d4194ea07ec57960f66a80449ff867bfe782b4c486ba78c"},
{file = "importlib_resources-6.1.2.tar.gz", hash = "sha256:308abf8474e2dba5f867d279237cd4076482c3de7104a40b41426370e891549b"}, {file = "importlib_resources-6.4.0.tar.gz", hash = "sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145"},
] ]
[package.dependencies] [package.dependencies]
@@ -498,7 +514,7 @@ zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""}
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] testing = ["jaraco.test (>=5.4)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"]
[[package]] [[package]]
name = "iniconfig" name = "iniconfig"
@@ -523,14 +539,50 @@ files = [
] ]
[[package]] [[package]]
name = "jaraco.classes" name = "jaraco-classes"
version = "3.3.1" version = "3.4.0"
description = "Utility functions for Python class constructs" description = "Utility functions for Python class constructs"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "jaraco.classes-3.3.1-py3-none-any.whl", hash = "sha256:86b534de565381f6b3c1c830d13f931d7be1a75f0081c57dff615578676e2206"}, {file = "jaraco.classes-3.4.0-py3-none-any.whl", hash = "sha256:f662826b6bed8cace05e7ff873ce0f9283b5c924470fe664fff1c2f00f581790"},
{file = "jaraco.classes-3.3.1.tar.gz", hash = "sha256:cb28a5ebda8bc47d8c8015307d93163464f9f2b91ab4006e09ff0ce07e8bfb30"}, {file = "jaraco.classes-3.4.0.tar.gz", hash = "sha256:47a024b51d0239c0dd8c8540c6c7f484be3b8fcf0b2d85c13825780d3b3f3acd"},
]
[package.dependencies]
more-itertools = "*"
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[[package]]
name = "jaraco-context"
version = "5.3.0"
description = "Useful decorators and context managers"
optional = false
python-versions = ">=3.8"
files = [
{file = "jaraco.context-5.3.0-py3-none-any.whl", hash = "sha256:3e16388f7da43d384a1a7cd3452e72e14732ac9fe459678773a3608a812bf266"},
{file = "jaraco.context-5.3.0.tar.gz", hash = "sha256:c2f67165ce1f9be20f32f650f25d8edfc1646a8aeee48ae06fb35f90763576d2"},
]
[package.dependencies]
"backports.tarfile" = {version = "*", markers = "python_version < \"3.12\""}
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["portend", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[[package]]
name = "jaraco-functools"
version = "4.0.1"
description = "Functools like those found in stdlib"
optional = false
python-versions = ">=3.8"
files = [
{file = "jaraco.functools-4.0.1-py3-none-any.whl", hash = "sha256:3b24ccb921d6b593bdceb56ce14799204f473976e2a9d4b15b04d0f2c2326664"},
{file = "jaraco_functools-4.0.1.tar.gz", hash = "sha256:d33fa765374c0611b52f8b3a795f8900869aa88c84769d4d1746cd68fb28c3e8"},
] ]
[package.dependencies] [package.dependencies]
@@ -538,7 +590,7 @@ more-itertools = "*"
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"] testing = ["jaraco.classes", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[[package]] [[package]]
name = "jeepney" name = "jeepney"
@@ -557,27 +609,29 @@ trio = ["async_generator", "trio"]
[[package]] [[package]]
name = "keyring" name = "keyring"
version = "24.3.1" version = "25.2.0"
description = "Store and access your passwords safely." description = "Store and access your passwords safely."
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "keyring-24.3.1-py3-none-any.whl", hash = "sha256:df38a4d7419a6a60fea5cef1e45a948a3e8430dd12ad88b0f423c5c143906218"}, {file = "keyring-25.2.0-py3-none-any.whl", hash = "sha256:19f17d40335444aab84b19a0d16a77ec0758a9c384e3446ae2ed8bd6d53b67a5"},
{file = "keyring-24.3.1.tar.gz", hash = "sha256:c3327b6ffafc0e8befbdb597cacdb4928ffe5c1212f7645f186e6d9957a898db"}, {file = "keyring-25.2.0.tar.gz", hash = "sha256:7045f367268ce42dba44745050164b431e46f6e92f99ef2937dfadaef368d8cf"},
] ]
[package.dependencies] [package.dependencies]
importlib-metadata = {version = ">=4.11.4", markers = "python_version < \"3.12\""} importlib-metadata = {version = ">=4.11.4", markers = "python_version < \"3.12\""}
importlib-resources = {version = "*", markers = "python_version < \"3.9\""} importlib-resources = {version = "*", markers = "python_version < \"3.9\""}
"jaraco.classes" = "*" "jaraco.classes" = "*"
"jaraco.context" = "*"
"jaraco.functools" = "*"
jeepney = {version = ">=0.4.2", markers = "sys_platform == \"linux\""} jeepney = {version = ">=0.4.2", markers = "sys_platform == \"linux\""}
pywin32-ctypes = {version = ">=0.2.0", markers = "sys_platform == \"win32\""} pywin32-ctypes = {version = ">=0.2.0", markers = "sys_platform == \"win32\""}
SecretStorage = {version = ">=3.2", markers = "sys_platform == \"linux\""} SecretStorage = {version = ">=3.2", markers = "sys_platform == \"linux\""}
[package.extras] [package.extras]
completion = ["shtab (>=1.1.0)"] completion = ["shtab (>=1.1.0)"]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"] testing = ["pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[[package]] [[package]]
name = "mccabe" name = "mccabe"
@@ -656,27 +710,27 @@ files = [
[[package]] [[package]]
name = "nh3" name = "nh3"
version = "0.2.15" version = "0.2.17"
description = "Python bindings to the ammonia HTML sanitization library." description = "Python bindings to the ammonia HTML sanitization library."
optional = false optional = false
python-versions = "*" python-versions = "*"
files = [ files = [
{file = "nh3-0.2.15-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:9c0d415f6b7f2338f93035bba5c0d8c1b464e538bfbb1d598acd47d7969284f0"}, {file = "nh3-0.2.17-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:551672fd71d06cd828e282abdb810d1be24e1abb7ae2543a8fa36a71c1006fe9"},
{file = "nh3-0.2.15-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:6f42f99f0cf6312e470b6c09e04da31f9abaadcd3eb591d7d1a88ea931dca7f3"}, {file = "nh3-0.2.17-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:c551eb2a3876e8ff2ac63dff1585236ed5dfec5ffd82216a7a174f7c5082a78a"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac19c0d68cd42ecd7ead91a3a032fdfff23d29302dbb1311e641a130dfefba97"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:66f17d78826096291bd264f260213d2b3905e3c7fae6dfc5337d49429f1dc9f3"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f0d77272ce6d34db6c87b4f894f037d55183d9518f948bba236fe81e2bb4e28"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0316c25b76289cf23be6b66c77d3608a4fdf537b35426280032f432f14291b9a"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:8d595df02413aa38586c24811237e95937ef18304e108b7e92c890a06793e3bf"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:22c26e20acbb253a5bdd33d432a326d18508a910e4dcf9a3316179860d53345a"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86e447a63ca0b16318deb62498db4f76fc60699ce0a1231262880b38b6cff911"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:85cdbcca8ef10733bd31f931956f7fbb85145a4d11ab9e6742bbf44d88b7e351"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3277481293b868b2715907310c7be0f1b9d10491d5adf9fce11756a97e97eddf"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:40015514022af31975c0b3bca4014634fa13cb5dc4dbcbc00570acc781316dcc"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60684857cfa8fdbb74daa867e5cad3f0c9789415aba660614fe16cd66cbb9ec7"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ba73a2f8d3a1b966e9cdba7b211779ad8a2561d2dba9674b8a19ed817923f65f"},
{file = "nh3-0.2.15-cp37-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3b803a5875e7234907f7d64777dfde2b93db992376f3d6d7af7f3bc347deb305"}, {file = "nh3-0.2.17-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c21bac1a7245cbd88c0b0e4a420221b7bfa838a2814ee5bb924e9c2f10a1120b"},
{file = "nh3-0.2.15-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:0d02d0ff79dfd8208ed25a39c12cbda092388fff7f1662466e27d97ad011b770"}, {file = "nh3-0.2.17-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:d7a25fd8c86657f5d9d576268e3b3767c5cd4f42867c9383618be8517f0f022a"},
{file = "nh3-0.2.15-cp37-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:f3b53ba93bb7725acab1e030bc2ecd012a817040fd7851b332f86e2f9bb98dc6"}, {file = "nh3-0.2.17-cp37-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:c790769152308421283679a142dbdb3d1c46c79c823008ecea8e8141db1a2062"},
{file = "nh3-0.2.15-cp37-abi3-musllinux_1_2_i686.whl", hash = "sha256:b1e97221cedaf15a54f5243f2c5894bb12ca951ae4ddfd02a9d4ea9df9e1a29d"}, {file = "nh3-0.2.17-cp37-abi3-musllinux_1_2_i686.whl", hash = "sha256:b4427ef0d2dfdec10b641ed0bdaf17957eb625b2ec0ea9329b3d28806c153d71"},
{file = "nh3-0.2.15-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a5167a6403d19c515217b6bcaaa9be420974a6ac30e0da9e84d4fc67a5d474c5"}, {file = "nh3-0.2.17-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a3f55fabe29164ba6026b5ad5c3151c314d136fd67415a17660b4aaddacf1b10"},
{file = "nh3-0.2.15-cp37-abi3-win32.whl", hash = "sha256:427fecbb1031db085eaac9931362adf4a796428ef0163070c484b5a768e71601"}, {file = "nh3-0.2.17-cp37-abi3-win32.whl", hash = "sha256:1a814dd7bba1cb0aba5bcb9bebcc88fd801b63e21e2450ae6c52d3b3336bc911"},
{file = "nh3-0.2.15-cp37-abi3-win_amd64.whl", hash = "sha256:bc2d086fb540d0fa52ce35afaded4ea526b8fc4d3339f783db55c95de40ef02e"}, {file = "nh3-0.2.17-cp37-abi3-win_amd64.whl", hash = "sha256:1aa52a7def528297f256de0844e8dd680ee279e79583c76d6fa73a978186ddfb"},
{file = "nh3-0.2.15.tar.gz", hash = "sha256:d1e30ff2d8d58fb2a14961f7aac1bbb1c51f9bdd7da727be35c63826060b0bf3"}, {file = "nh3-0.2.17.tar.gz", hash = "sha256:40d0741a19c3d645e54efba71cb0d8c475b59135c1e3c580f879ad5514cbf028"},
] ]
[[package]] [[package]]
@@ -710,13 +764,13 @@ files = [
[[package]] [[package]]
name = "packaging" name = "packaging"
version = "23.2" version = "24.0"
description = "Core utilities for Python packages" description = "Core utilities for Python packages"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, {file = "packaging-24.0-py3-none-any.whl", hash = "sha256:2ddfb553fdf02fb784c234c7ba6ccc288296ceabec964ad2eae3777778130bc5"},
{file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, {file = "packaging-24.0.tar.gz", hash = "sha256:eb82c5e3e56209074766e6885bb04b8c38a0c015d0a30036ebe7ece34c9989e9"},
] ]
[[package]] [[package]]
@@ -732,13 +786,13 @@ files = [
[[package]] [[package]]
name = "pdme" name = "pdme"
version = "0.9.3" version = "1.5.0"
description = "Python dipole model evaluator" description = "Python dipole model evaluator"
optional = false optional = false
python-versions = ">=3.8.1,<3.10" python-versions = "<3.10,>=3.8.1"
files = [ files = [
{file = "pdme-0.9.3-py3-none-any.whl", hash = "sha256:0a11caa8ce18829695fa0457bbfc4d15210945fcb58be05ffb96eda8fdd7e9c8"}, {file = "pdme-1.5.0-py3-none-any.whl", hash = "sha256:1b4fa30ba98a336957b3029563552d73286a3a5f932809ac1330e65a1f61c363"},
{file = "pdme-0.9.3.tar.gz", hash = "sha256:0de948e301780e79bbe78887be8ac4165899cbca32fa845a1ace8c08e72e300b"}, {file = "pdme-1.5.0.tar.gz", hash = "sha256:cc0ac4ffab2994e08b4efde2991c6d9dccb2942c7e33c4be3b52e068366526d1"},
] ]
[package.dependencies] [package.dependencies]
@@ -747,42 +801,43 @@ scipy = ">=1.10,<1.11"
[[package]] [[package]]
name = "pkginfo" name = "pkginfo"
version = "1.9.6" version = "1.10.0"
description = "Query metadata from sdists / bdists / installed packages." description = "Query metadata from sdists / bdists / installed packages."
optional = false optional = false
python-versions = ">=3.6" python-versions = ">=3.6"
files = [ files = [
{file = "pkginfo-1.9.6-py3-none-any.whl", hash = "sha256:4b7a555a6d5a22169fcc9cf7bfd78d296b0361adad412a346c1226849af5e546"}, {file = "pkginfo-1.10.0-py3-none-any.whl", hash = "sha256:889a6da2ed7ffc58ab5b900d888ddce90bce912f2d2de1dc1c26f4cb9fe65097"},
{file = "pkginfo-1.9.6.tar.gz", hash = "sha256:8fd5896e8718a4372f0ea9cc9d96f6417c9b986e23a4d116dda26b62cc29d046"}, {file = "pkginfo-1.10.0.tar.gz", hash = "sha256:5df73835398d10db79f8eecd5cd86b1f6d29317589ea70796994d49399af6297"},
] ]
[package.extras] [package.extras]
testing = ["pytest", "pytest-cov"] testing = ["pytest", "pytest-cov", "wheel"]
[[package]] [[package]]
name = "platformdirs" name = "platformdirs"
version = "4.2.0" version = "4.2.1"
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`."
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"}, {file = "platformdirs-4.2.1-py3-none-any.whl", hash = "sha256:17d5a1161b3fd67b390023cb2d3b026bbd40abde6fdb052dfbd3a29c3ba22ee1"},
{file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"}, {file = "platformdirs-4.2.1.tar.gz", hash = "sha256:031cd18d4ec63ec53e82dceaac0417d218a6863f7745dfcc9efe7793b7039bdf"},
] ]
[package.extras] [package.extras]
docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"]
test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"]
type = ["mypy (>=1.8)"]
[[package]] [[package]]
name = "pluggy" name = "pluggy"
version = "1.4.0" version = "1.5.0"
description = "plugin and hook calling mechanisms for python" description = "plugin and hook calling mechanisms for python"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "pluggy-1.4.0-py3-none-any.whl", hash = "sha256:7db9f7b503d67d1c5b95f59773ebb58a8c1c288129a88665838012cfb07b8981"}, {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"},
{file = "pluggy-1.4.0.tar.gz", hash = "sha256:8c85c2876142a764e5b7548e7d9a0e0ddb46f5185161049a79b7e974454223be"}, {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"},
] ]
[package.extras] [package.extras]
@@ -802,13 +857,13 @@ files = [
[[package]] [[package]]
name = "pycparser" name = "pycparser"
version = "2.21" version = "2.22"
description = "C parser in Python" description = "C parser in Python"
optional = false optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" python-versions = ">=3.8"
files = [ files = [
{file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"},
{file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"},
] ]
[[package]] [[package]]
@@ -839,13 +894,13 @@ windows-terminal = ["colorama (>=0.4.6)"]
[[package]] [[package]]
name = "pytest" name = "pytest"
version = "8.0.2" version = "8.2.0"
description = "pytest: simple powerful testing with Python" description = "pytest: simple powerful testing with Python"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "pytest-8.0.2-py3-none-any.whl", hash = "sha256:edfaaef32ce5172d5466b5127b42e0d6d35ebbe4453f0e3505d96afd93f6b096"}, {file = "pytest-8.2.0-py3-none-any.whl", hash = "sha256:1733f0620f6cda4095bbf0d9ff8022486e91892245bb9e7d5542c018f612f233"},
{file = "pytest-8.0.2.tar.gz", hash = "sha256:d4051d623a2e0b7e51960ba963193b09ce6daeb9759a451844a21e4ddedfc1bd"}, {file = "pytest-8.2.0.tar.gz", hash = "sha256:d507d4482197eac0ba2bae2e9babf0672eb333017bcedaa5fb1a3d42c1174b3f"},
] ]
[package.dependencies] [package.dependencies]
@@ -853,11 +908,11 @@ colorama = {version = "*", markers = "sys_platform == \"win32\""}
exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""}
iniconfig = "*" iniconfig = "*"
packaging = "*" packaging = "*"
pluggy = ">=1.3.0,<2.0" pluggy = ">=1.5,<2.0"
tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} tomli = {version = ">=1", markers = "python_version < \"3.11\""}
[package.extras] [package.extras]
testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] dev = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"]
[[package]] [[package]]
name = "pytest-cov" name = "pytest-cov"
@@ -1162,13 +1217,13 @@ urllib3 = ">=1.26.0"
[[package]] [[package]]
name = "typing-extensions" name = "typing-extensions"
version = "4.10.0" version = "4.11.0"
description = "Backported and Experimental Type Hints for Python 3.8+" description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "typing_extensions-4.10.0-py3-none-any.whl", hash = "sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475"}, {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"},
{file = "typing_extensions-4.10.0.tar.gz", hash = "sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb"}, {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"},
] ]
[[package]] [[package]]
@@ -1204,20 +1259,20 @@ test = ["pytest (>=6.0.0)", "setuptools (>=65)"]
[[package]] [[package]]
name = "zipp" name = "zipp"
version = "3.17.0" version = "3.18.1"
description = "Backport of pathlib-compatible object wrapper for zip files" description = "Backport of pathlib-compatible object wrapper for zip files"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"}, {file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"},
{file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"}, {file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"},
] ]
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"] testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = ">=3.8.1,<3.10" python-versions = ">=3.8.1,<3.10"
content-hash = "828610d9447294e707a6df2affb6ee7947e2be3b567371217265a8b94a9768f6" content-hash = "85114054176aa164964acea6fdc085581ee7fc2f94c1cd03ad77611b82e52c79"

View File

@@ -1,19 +1,19 @@
[tool.poetry] [tool.poetry]
name = "deepdog" name = "deepdog"
version = "0.8.1" version = "1.3.0"
description = "" description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"] authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies] [tool.poetry.dependencies]
python = ">=3.8.1,<3.10" python = ">=3.8.1,<3.10"
pdme = "^0.9.3" pdme = "^1.5.0"
numpy = "1.22.3" numpy = "1.22.3"
scipy = "1.10" scipy = "1.10"
tqdm = "^4.66.2" tqdm = "^4.66.2"
[tool.poetry.dev-dependencies] [tool.poetry.dev-dependencies]
pytest = ">=6" pytest = ">=6"
flake8 = "^7.0.0" flake8 = "^4.0.1"
pytest-cov = "^4.1.0" pytest-cov = "^4.1.0"
mypy = "^0.971" mypy = "^0.971"
python-semantic-release = "^7.24.0" python-semantic-release = "^7.24.0"

View File

@@ -25,15 +25,22 @@ if [ -z "$(git status --porcelain)" ]; then
exit 0 exit 0
fi fi
std_version_args=()
if [[ -n "${1:-}" ]]; then
std_version_args+=( "--release-as" "$1" )
echo "Parameter $1 was supplied, so we should use release-as"
else
echo "No release-as parameter specifed."
fi
# Working directory clean # Working directory clean
echo "Doing a dry run..." echo "Doing a dry run..."
npx standard-version --dry-run npx standard-version --dry-run "${std_version_args[@]}"
read -p "Does that look good? [y/N] " -n 1 -r read -p "Does that look good? [y/N] " -n 1 -r
echo # (optional) move to a new line echo # (optional) move to a new line
if [[ $REPLY =~ ^[Yy]$ ]] if [[ $REPLY =~ ^[Yy]$ ]]
then then
# do dangerous stuff # do dangerous stuff
npx standard-version npx standard-version "${std_version_args[@]}"
git push --follow-tags origin master git push --follow-tags origin master
else else
echo "okay, never mind then..." echo "okay, never mind then..."

View File

View File

@@ -0,0 +1,42 @@
import deepdog.direct_monte_carlo.cost_function_filter
import numpy
def test_px_cost_function_filter_example():
dipoles_1 = [
[1, 2, 3, 4, 5, 6, 7],
[2, 3, 2, 5, 4, 7, 6],
]
dipoles_2 = [
[15, 9, 8, 7, 6, 5, 3],
[30, 4, 4, 7, 3, 1, 4],
]
dipoleses = numpy.array([dipoles_1, dipoles_2])
def cost_function(dipoleses: numpy.ndarray) -> numpy.ndarray:
return dipoleses[:, :, 0].max(axis=-1)
expected_costs = numpy.array([2, 30])
numpy.testing.assert_array_equal(cost_function(dipoleses), expected_costs)
filter = deepdog.direct_monte_carlo.cost_function_filter.CostFunctionTargetFilter(
cost_function, 5
)
actual_filtered = filter.filter_samples(dipoleses)
expected_filtered = numpy.array([dipoles_1])
assert actual_filtered.size != 0
numpy.testing.assert_array_equal(actual_filtered, expected_filtered)
filter_stricter = (
deepdog.direct_monte_carlo.cost_function_filter.CostFunctionTargetFilter(
cost_function, 0.5
)
)
actual_filtered_stricter = filter_stricter.filter_samples(dipoleses)
assert actual_filtered_stricter.size == 0

View File

@@ -0,0 +1,137 @@
import pdme.measurement
import pdme.measurement.input_types
from pdme.model import (
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
)
import deepdog.direct_monte_carlo.dmc_filters
import numpy.random
import numpy.testing
import logging
_logger = logging.getLogger(__name__)
def fixed_z_model_func(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
n_max,
prob_occupancy,
):
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
0,
0,
n_max,
prob_occupancy,
)
def get_model(orientation):
model_funcs = {
"fixedz": fixed_z_model_func,
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
}
model = model_funcs[orientation](
-10,
10,
-17.5,
17.5,
5,
7.5,
-5,
6.5,
10**3,
2,
0.99999999,
)
model.n = 2
model.rng = numpy.random.default_rng(1234)
return (
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
model,
)
def test_electric_field_x_dmc_filter():
dipoles_raw = [
[(1, 2, 3), (4, 5, 6), 1],
[(-1, 5, 2), (6, 5, 4), 10],
]
dipoles = [
pdme.measurement.OscillatingDipole(numpy.array(d[0]), numpy.array(d[1]), d[2])
for d in dipoles_raw
]
_logger.debug(f"dipoles: {dipoles}")
dot_inputs_raw = [
([-1, -1, 0], 1),
([-1, -1, 0], 2),
([-1, -1, 0], 3),
([-1, -1, 0], 4),
]
dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(dot_inputs_raw)
_logger.debug(f"dot_inputs_array: {dot_inputs_array}")
arrangement = pdme.measurement.OscillatingDipoleArrangement(dipoles)
measurements = []
for input in dot_inputs_raw:
ex = sum(
[
dipole.s_electric_fieldx_at_position(*input)
for dipole in arrangement.dipoles
]
)
ex_low = ex * 0.5
ex_high = ex * 1.5
meas = pdme.measurement.DotRangeMeasurement(ex_low, ex_high, input[0], input[1])
measurements.append(meas)
filter = deepdog.direct_monte_carlo.dmc_filters.SingleDotSpinQubitFrequencyFilter(
measurements
)
samples = numpy.array(
[
[
[1, 2, 3, 4, 5, 6, 1],
[-1, 5, 2, 6, 5, 4, 10],
],
[
[10, 20, 30, 40, 50, 60, 1],
[-1, 5, 2, 6, 5, 4, 1],
],
[
[1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 1],
],
]
)
expected = samples[
0:1
] # only expect to see the first guy, because that's what generated our thing
filtered = filter.filter_samples(samples)
assert len(filtered) != len(samples), "Should have filtered some out!"
numpy.testing.assert_array_equal(
filtered, expected, "The filter should have only returned the first one"
)

View File

@@ -7,6 +7,7 @@ def test_parse_groupdict():
) )
parsed = deepdog.results._parse_bayesrun_column(example_column_name) parsed = deepdog.results._parse_bayesrun_column(example_column_name)
assert parsed is not None
expected = deepdog.results.BayesrunColumnParsed( expected = deepdog.results.BayesrunColumnParsed(
{ {
"xmin": "-20", "xmin": "-20",
@@ -23,6 +24,30 @@ def test_parse_groupdict():
assert parsed == expected assert parsed == expected
def test_parse_groupdict_with_magnitude():
example_column_name = (
"geom_-20_20_-10_10_0_5-magnitude_3.5-orientation_free-dipole_count_100_success"
)
parsed = deepdog.results._parse_bayesrun_column(example_column_name)
assert parsed is not None
expected = deepdog.results.BayesrunColumnParsed(
{
"xmin": "-20",
"xmax": "20",
"ymin": "-10",
"ymax": "10",
"zmin": "0",
"zmax": "5",
"orientation": "free",
"avg_filled": "100",
"log_magnitude": "3.5",
"field_name": "success",
}
)
assert parsed == expected
# def test_parse_no_match_column_name(): # def test_parse_no_match_column_name():
# parsed = deepdog.results.parse_bayesrun_column("There's nothing here") # parsed = deepdog.results.parse_bayesrun_column("There's nothing here")
# assert parsed is None # assert parsed is None

View File

@@ -0,0 +1,10 @@
# serializer version: 1
# name: test_subset_simulation_multi_result_coalescing_easy_arithmetic
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.8, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.6, lowest_likelihood=0.01, messages=[])], model_name='test', estimated_likelihood=0.6928203230275509, arithmetic_mean_estimated_likelihood=0.7, num_children=2, num_finished_children=2, clean_estimate=True)
# ---
# name: test_subset_simulation_multi_result_coalescing_easy_geometric
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.1, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.001, lowest_likelihood=0.01, messages=[])], model_name='test', estimated_likelihood=0.010000000000000004, arithmetic_mean_estimated_likelihood=0.0505, num_children=2, num_finished_children=2, clean_estimate=True)
# ---
# name: test_subset_simulation_multi_result_coalescing_include_dirty
MultiSubsetSimulationResult(child_results=[SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.8, lowest_likelihood=0.5, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=1, over_target_likelihood=1, under_target_cost=0.99, under_target_likelihood=0.08, lowest_likelihood=0.01, messages=[]), SubsetSimulationResult(probs_list=(), over_target_cost=None, over_target_likelihood=None, under_target_cost=None, under_target_likelihood=None, lowest_likelihood=0.0001, messages=[])], model_name='test', estimated_likelihood=0.01856635533445112, arithmetic_mean_estimated_likelihood=0.29336666666666666, num_children=3, num_finished_children=2, clean_estimate=False)
# ---

View File

@@ -0,0 +1,92 @@
import deepdog.subset_simulation.subset_simulation_impl as impl
import numpy
def test_subset_simulation_multi_result_coalescing_include_dirty(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.8,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.08,
lowest_likelihood=0.01,
messages=[],
)
res3 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=None,
over_target_likelihood=None,
under_target_cost=None,
under_target_likelihood=None,
lowest_likelihood=0.0001,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2, res3])
assert combined == snapshot
def test_subset_simulation_multi_result_coalescing_easy_arithmetic(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.8,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.6,
lowest_likelihood=0.01,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2])
assert combined.arithmetic_mean_estimated_likelihood == 0.7
assert combined == snapshot
def test_subset_simulation_multi_result_coalescing_easy_geometric(snapshot):
res1 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.1,
lowest_likelihood=0.5,
messages=[],
)
res2 = impl.SubsetSimulationResult(
probs_list=(),
over_target_cost=1,
over_target_likelihood=1,
under_target_cost=0.99,
under_target_likelihood=0.001,
lowest_likelihood=0.01,
messages=[],
)
combined = impl.coalesce_ss_results("test", [res1, res2])
numpy.testing.assert_allclose(combined.estimated_likelihood, 0.01)
assert combined == snapshot

View File

@@ -1,158 +0,0 @@
import deepdog
import logging
import logging.config
import numpy.random
from pdme.model import (
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
)
_logger = logging.getLogger(__name__)
def fixed_z_model_func(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
n_max,
prob_occupancy,
):
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
0,
0,
n_max,
prob_occupancy,
)
def get_model(orientation):
model_funcs = {
"fixedz": fixed_z_model_func,
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
}
model = model_funcs[orientation](
-10,
10,
-17.5,
17.5,
5,
7.5,
-5,
6.5,
10**3,
2,
0.99999999,
)
model.n = 2
model.rng = numpy.random.default_rng(1234)
return (
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
model,
)
def test_basic_analysis(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=150,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1000,
)
result = square_run.go()
assert result == snapshot
def test_bayesss_with_tighter_cost(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=1.5,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1,
)
result = square_run.go()
assert result == snapshot