chore(deps): update dependency numpy to v1.26.4 #16

Open
renovate-bot wants to merge 1 commits from renovate/numpy-1.x into master
Owner

This PR contains the following updates:

Package Type Update Change
numpy (changelog) dependencies minor 1.22.3 -> 1.26.4

Release Notes

numpy/numpy

v1.26.4

Compare Source

NumPy 1.26.4 Release Notes

NumPy 1.26.4 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.3 release. The Python versions supported by
this release are 3.9-3.12. This is the last planned release in the
1.26.x series.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Elliott Sales de Andrade
  • Lucas Colley +
  • Mark Ryan +
  • Matti Picus
  • Nathan Goldbaum
  • Ola x Nilsson +
  • Pieter Eendebak
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg
  • Stefan van der Walt
  • Stefano Rivera

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​25323: BUG: Restore missing asstr import
  • #​25523: MAINT: prepare 1.26.x for further development
  • #​25539: BUG: numpy.array_api: fix linalg.cholesky upper decomp...
  • #​25584: CI: Bump azure pipeline timeout to 120 minutes
  • #​25585: MAINT, BLD: Fix unused inline functions warnings on clang
  • #​25599: BLD: include fix for MinGW platform detection
  • #​25618: TST: Fix test_numeric on riscv64
  • #​25619: BLD: fix building for windows ARM64
  • #​25620: MAINT: add newaxis to __all__ in numpy.array_api
  • #​25630: BUG: Use large file fallocate on 32 bit linux platforms
  • #​25643: TST: Fix test_warning_calls on Python 3.12
  • #​25645: TST: Bump pytz to 2023.3.post1
  • #​25658: BUG: Fix AVX512 build flags on Intel Classic Compiler
  • #​25670: BLD: fix potential issue with escape sequences in __config__.py
  • #​25718: CI: pin cygwin python to 3.9.16-1 and fix typing tests [skip...
  • #​25720: MAINT: Bump cibuildwheel to v2.16.4
  • #​25748: BLD: unvendor meson-python on 1.26.x and upgrade to meson-python...
  • #​25755: MAINT: Include header defining backtrace
  • #​25756: BUG: Fix np.quantile([Fraction(2,1)], 0.5) (#​24711)

Checksums

MD5
90f33cdd8934cd07192d6ede114d8d4d  numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
63ac60767f6724490e587f6010bd6839  numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
ad4e82b225aaaf5898ea9798b50978d8  numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d428e3da2df4fa359313348302cf003a  numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
89937c3bb596193f8ca9eae2ff84181e  numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
de4f9da0a4e6dfd4cec39c7ad5139803  numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
2c1f73fd9b3acf4b9b0c23e985cdd38f  numpy-1.26.4-cp310-cp310-win32.whl
920ad1f50e478b1a877fe7b7a46cc520  numpy-1.26.4-cp310-cp310-win_amd64.whl
719d1ff12db38903dcfd6749078fb11d  numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
eb601e80194d2e1c00d8daedd8dc68c4  numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
71a7ab11996fa370dc28e28731bd5c32  numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eb0cdd03e1ee2eb45c57c7340c98cf48  numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9d4ae1b0b27a625400f81ed1846a5667  numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
1b6771350d2f496157430437a895ba4b  numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
1e4a18612ee4d0e54e0833574ebc6d25  numpy-1.26.4-cp311-cp311-win32.whl
5fd325dd8704023c1110835d7a1b095a  numpy-1.26.4-cp311-cp311-win_amd64.whl
d95ce582923d24dbddbc108aa5fd2128  numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
6f16f3d70e0d95ce2b032167c546cc95  numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
5369536d4c45fbe384147ff23185b48a  numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1ceb224096686831ad731e472b65e96a  numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cd8d3c00bbc89f9bc07e2df762f9e2ae  numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
5bd81ce840bb2e42befe01efb0402b79  numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
2cc3b0757228078395da3efa3dc99f23  numpy-1.26.4-cp312-cp312-win32.whl
305155bd5ae879344c58968879584ed1  numpy-1.26.4-cp312-cp312-win_amd64.whl
ec2310f67215743e9c5d16b6c9fb87b6  numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
406aea6081c1affbebdb6ad56b5deaf4  numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
fee12f0a3cbac7bbf1a1c2d82d3b02a9  numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baf4b7143c7b9ce170e62b33380fb573  numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
376ff29f90b7840ae19ecd59ad1ddf53  numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
86785b3a7cd156c08c2ebc26f7816fb3  numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
ab8a9ab69f16b7005f238cda76bc0bac  numpy-1.26.4-cp39-cp39-win32.whl
fafa4453e820c7ff40907e5dc79d8199  numpy-1.26.4-cp39-cp39-win_amd64.whl
7f13e2f07bd3e4a439ade0e4d27905c6  numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
928954b41c1cd0e856f1a31d41722661  numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
57bbd5c0b3848d804c416cbcab4a0ae8  numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
19550cbe7bedd96a928da9d4ad69509d  numpy-1.26.4.tar.gz
SHA256
9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0  numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a  numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4  numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f  numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a  numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2  numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07  numpy-1.26.4-cp310-cp310-win32.whl
b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5  numpy-1.26.4-cp310-cp310-win_amd64.whl
4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71  numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef  numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e  numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5  numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a  numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a  numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20  numpy-1.26.4-cp311-cp311-win32.whl
cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2  numpy-1.26.4-cp311-cp311-win_amd64.whl
b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218  numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b  numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b  numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed  numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a  numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0  numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110  numpy-1.26.4-cp312-cp312-win32.whl
08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818  numpy-1.26.4-cp312-cp312-win_amd64.whl
7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c  numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be  numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764  numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3  numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd  numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c  numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6  numpy-1.26.4-cp39-cp39-win32.whl
3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea  numpy-1.26.4-cp39-cp39-win_amd64.whl
afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30  numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c  numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0  numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010  numpy-1.26.4.tar.gz

v1.26.3

Compare Source

NumPy 1.26.3 Release Notes

NumPy 1.26.3 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.2 release. The most notable changes are the
f2py bug fixes. The Python versions supported by this release are
3.9-3.12.

Compatibility

f2py will no longer accept ambiguous -m and .pyf CLI combinations.
When more than one .pyf file is passed, an error is raised. When both
-m and a .pyf is passed, a warning is emitted and the -m provided
name is ignored.

Improvements

f2py now handles common blocks which have kind specifications from
modules. This further expands the usability of intrinsics like
iso_fortran_env and iso_c_binding.

Contributors

A total of 18 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • @​Illviljan
  • Alexander Grund
  • Andrea Bianchi +
  • Charles Harris
  • Daniel Vanzo
  • Johann Rohwer +
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg
  • Stefano Rivera +
  • Thomas A Caswell
  • matoro

Pull requests merged

A total of 42 pull requests were merged for this release.

  • #​25130: MAINT: prepare 1.26.x for further development
  • #​25188: TYP: add None to __getitem__ in numpy.array_api
  • #​25189: BLD,BUG: quadmath required where available [f2py]
  • #​25190: BUG: alpha doesn't use REAL(10)
  • #​25191: BUG: Fix FP overflow error in division when the divisor is scalar
  • #​25192: MAINT: Pin scipy-openblas version.
  • #​25201: BUG: Fix f2py to enable use of string optional inout argument
  • #​25202: BUG: Fix -fsanitize=alignment issue in numpy/_core/src/multiarray/arraytypes.c.src
  • #​25203: TST: Explicitly pass NumPy path to cython during tests (also...
  • #​25204: BUG: fix issues with newaxis and linalg.solve in numpy.array_api
  • #​25205: BUG: Disallow shadowed modulenames
  • #​25217: BUG: Handle common blocks with kind specifications from modules
  • #​25218: BUG: Fix moving compiled executable to root with f2py -c on Windows
  • #​25219: BUG: Fix single to half-precision conversion on PPC64/VSX3
  • #​25227: TST: f2py: fix issue in test skip condition
  • #​25240: Revert "MAINT: Pin scipy-openblas version."
  • #​25249: MAINT: do not use long type
  • #​25377: TST: PyPy needs another gc.collect on latest versions
  • #​25378: CI: Install Lapack runtime on Cygwin.
  • #​25379: MAINT: Bump conda-incubator/setup-miniconda from 2.2.0 to 3.0.1
  • #​25380: BLD: update vendored Meson for AIX shared library fix
  • #​25419: MAINT: Init base in cpu_avx512_kn
  • #​25420: BUG: Fix failing test_features on SapphireRapids
  • #​25422: BUG: Fix non-contiguous memory load when ARM/Neon is enabled
  • #​25428: MAINT,BUG: Never import distutils above 3.12 [f2py]
  • #​25452: MAINT: make the import-time check for old Accelerate more specific
  • #​25458: BUG: fix macOS version checks for Accelerate support
  • #​25465: MAINT: Bump actions/setup-node and larsoner/circleci-artifacts-redirector-action
  • #​25466: BUG: avoid seg fault from OOB access in RandomState.set_state()
  • #​25467: BUG: Fix two errors related to not checking for failed allocations
  • #​25468: BUG: Fix regression with f2py wrappers when modules and subroutines...
  • #​25475: BUG: Fix build issues on SPR
  • #​25478: BLD: fix uninitialized variable warnings from simd/neon/memory.h
  • #​25480: BUG: Handle iso_c_type mappings more consistently
  • #​25481: BUG: Fix module name bug in signature files [urgent] [f2py]
  • #​25482: BUG: Handle .pyf.src and fix SciPy [urgent]
  • #​25483: DOC: f2py rewrite with meson details
  • #​25485: BUG: Add external library handling for meson [f2py]
  • #​25486: MAINT: Run f2py's meson backend with the same python that ran...
  • #​25489: MAINT: Update numpy/f2py/_backends from main.
  • #​25490: MAINT: Easy updates of f2py/*.py from main.
  • #​25491: MAINT: Update crackfortran.py and f2py2e.py from main

Checksums

MD5
7660db27715df261948e7f0f13634f16  numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
98d5b98c822de4bed0cf1b0b8f367192  numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
b71cd0710cec5460292a97a02fa349cd  numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0f98a05c92598f849b1be2595f4a52a8  numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b866c6aea8070c0753b776d2b521e875  numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
cfdde5868e469fb27655ea73b0b9593b  numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
2655440d61671b5e32b049d30397c58f  numpy-1.26.3-cp310-cp310-win32.whl
7718a5d33344784ca7821f3bdd467550  numpy-1.26.3-cp310-cp310-win_amd64.whl
28e4b2ed9192c392f792d88b3c246d1c  numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
fb1ae72749463e2c82f0127699728364  numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
304dec822b508a1d495917610e7562bf  numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0d8b073dfd55946a60ba8ed4369f6  numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c99962375c599501820899c8ccab6960  numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
47ed42d067ce4863bbf1f40da61ba7d1  numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
3ab3757255feb54ca3793fb9db226586  numpy-1.26.3-cp311-cp311-win32.whl
c33f2a4518bae535645357a08a93be1a  numpy-1.26.3-cp311-cp311-win_amd64.whl
bea43600aaff3a4d9978611ccfa44198  numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
c678d909ebe737fdabf215d8622ce2a3  numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
9f21f1875c92425cec1060564b3abb1c  numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44a1998965d45ec136078ee09d880f2  numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9274f5c51fa4f3c8fac5efa3d78acd63  numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
07c9f8f86f45077febc46c87ebc0b644  numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
a4857b2f7b6a23bca41178bd344bb28a  numpy-1.26.3-cp312-cp312-win32.whl
495d9534961d7b10f16fec4515a3d72b  numpy-1.26.3-cp312-cp312-win_amd64.whl
6494f2d94fd1f184923a33e634692b5e  numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
515a7314a0ff6aaba8d53a7a1aaa73ab  numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
c856adc6a6a78773c43e9c738d662ed5  numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
09848456158a01feff28f88c6106aef1  numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
adec00ea2bc98580a436f82e188c0e2f  numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
718bd35dd0431a6434bb30bf8d91d77d  numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
e813aa59cb807efb4a8fee52a6dd41ba  numpy-1.26.3-cp39-cp39-win32.whl
08e1b0973d0ae5976b38563eaec1253f  numpy-1.26.3-cp39-cp39-win_amd64.whl
e8887a14750161709636e9fb87df4f36  numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0bdb19040525451553fb5758b65caf4c  numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b931c14d06cc37d85d63ed1ddd88e875  numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
1c915dc6c36dd4c674d9379e9470ff8b  numpy-1.26.3.tar.gz
SHA256
806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf  numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd  numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6  numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b  numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178  numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485  numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3  numpy-1.26.3-cp310-cp310-win32.whl
9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce  numpy-1.26.3-cp310-cp310-win_amd64.whl
b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374  numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6  numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2  numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda  numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e  numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00  numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b  numpy-1.26.3-cp311-cp311-win32.whl
39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4  numpy-1.26.3-cp311-cp311-win_amd64.whl
a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13  numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e  numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3  numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419  numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166  numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36  numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511  numpy-1.26.3-cp312-cp312-win32.whl
da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b  numpy-1.26.3-cp312-cp312-win_amd64.whl
1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f  numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f  numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b  numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137  numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58  numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb  numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03  numpy-1.26.3-cp39-cp39-win32.whl
867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2  numpy-1.26.3-cp39-cp39-win_amd64.whl
3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e  numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0  numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5  numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4  numpy-1.26.3.tar.gz

v1.26.2

Compare Source

NumPy 1.26.2 Release Notes

NumPy 1.26.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.1 release. The 1.26.release series is the last
planned minor release series before NumPy 2.0. The Python versions
supported by this release are 3.9-3.12.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​stefan6419846
  • @​thalassemia +
  • Andrew Nelson
  • Charles Bousseau +
  • Charles Harris
  • Marcel Bargull +
  • Mark Mentovai +
  • Matti Picus
  • Nathan Goldbaum
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg
  • William Ayd +

Pull requests merged

A total of 25 pull requests were merged for this release.

  • #​24814: MAINT: align test_dispatcher s390x targets with _umath_tests_mtargets
  • #​24929: MAINT: prepare 1.26.x for further development
  • #​24955: ENH: Add Cython enumeration for NPY_FR_GENERIC
  • #​24962: REL: Remove Python upper version from the release branch
  • #​24971: BLD: Use the correct Python interpreter when running tempita.py
  • #​24972: MAINT: Remove unhelpful error replacements from import_array()
  • #​24977: BLD: use classic linker on macOS, the new one in XCode 15 has...
  • #​25003: BLD: musllinux_aarch64 [wheel build]
  • #​25043: MAINT: Update mailmap
  • #​25049: MAINT: Update meson build infrastructure.
  • #​25071: MAINT: Split up .github/workflows to match main
  • #​25083: BUG: Backport fix build on ppc64 when the baseline set to Power9...
  • #​25093: BLD: Fix features.h detection for Meson builds [1.26.x Backport]
  • #​25095: BUG: Avoid intp conversion regression in Cython 3 (backport)
  • #​25107: CI: remove obsolete jobs, and move macOS and conda Azure jobs...
  • #​25108: CI: Add linux_qemu action and remove travis testing.
  • #​25112: MAINT: Update .spin/cmds.py from main.
  • #​25113: DOC: Visually divide main license and bundled licenses in wheels
  • #​25115: MAINT: Add missing noexcept to shuffle helpers
  • #​25116: DOC: Fix license identifier for OpenBLAS
  • #​25117: BLD: improve detection of Netlib libblas/libcblas/liblapack
  • #​25118: MAINT: Make bitfield integers unsigned
  • #​25119: BUG: Make n a long int for np.random.multinomial
  • #​25120: BLD: change default of the allow-noblas option to true.
  • #​25121: BUG: ensure passing np.dtype to itself doesn't crash

Checksums

MD5
1a5dc6b5b3bf11ad40a59eedb3b69fa1  numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
4b741c6dfe4e6e22e34e9c5c788d4f04  numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
2953687fb26e1dd8a2d1bb7109551fcd  numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea9127a3a03f27fd101c62425c661d8d  numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a6be7c6c1cc3e1ff73f64052fe30677  numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
4f45d3f69f54fd1638609fde34c33a5c  numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
f22f5ea26c86eb126ff502fff75d6c21  numpy-1.26.2-cp310-cp310-win32.whl
49871452488e1a55d15ab54c6f3e546e  numpy-1.26.2-cp310-cp310-win_amd64.whl
676740bf60fb1c8f5a6b31e00b9a4e9b  numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
7170545dcc2a38a1c2386a6081043b64  numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
feae1190c73d811e2e7ebcad4baf6edf  numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
03131896abade61b77e0f6e53abb988a  numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f160632f128a3fd46787aa02d8731fbb  numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
014250db593d589b5533ef7127839c46  numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
fb437346dac24d0cb23f5314db043c8b  numpy-1.26.2-cp311-cp311-win32.whl
7359adc233874898ea768cd4aec28bb3  numpy-1.26.2-cp311-cp311-win_amd64.whl
207a678bea75227428e7fb84d4dc457a  numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
302ff6cc047a408cdf21981bd7b26056  numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
7526faaea58c76aed395c7128dd6e14d  numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
28d3b1943d3a8ad4bbb2ae9da0a77cb9  numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d91f5b2bb2c931e41ae7c80ec7509a31  numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
b2504d4239419f012c08fa1eab12f940  numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
57944ba30adc07f33e83a9b45f5c625a  numpy-1.26.2-cp312-cp312-win32.whl
fe38cd95bbee405ce0cf51c8753a2676  numpy-1.26.2-cp312-cp312-win_amd64.whl
28e1bc3efaf89cf6f0a2b616c0e16401  numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
9932ccff54855f12ee24f60528279bf1  numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
b52c1e987074dad100ad234122a397b9  numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1d1bd7e0d2a89ce795a9566a38ed9bb5  numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01d2abfe8e9b35415efb791ac6c5865e  numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
5a6d6ac287ebd93a221e59590329e202  numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
4e4e4d8cf661a8d2838ee700fabae87e  numpy-1.26.2-cp39-cp39-win32.whl
b8e52ecac110471502686abbdf774b78  numpy-1.26.2-cp39-cp39-win_amd64.whl
aed2d2914be293f60fedda360b64abf8  numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
6bd88e0f33933445d0e18c1a850f60e0  numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
010aeb2a50af0af1f7ef56f76f8cf463  numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
8f6446a32e47953a03f8fe8533e21e98  numpy-1.26.2.tar.gz
SHA256
3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f  numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440  numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75  numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00  numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe  numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523  numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9  numpy-1.26.2-cp310-cp310-win32.whl
26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919  numpy-1.26.2-cp310-cp310-win_amd64.whl
b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841  numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1  numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a  numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b  numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7  numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8  numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186  numpy-1.26.2-cp311-cp311-win32.whl
2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d  numpy-1.26.2-cp311-cp311-win_amd64.whl
a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0  numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75  numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7  numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6  numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6  numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec  numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167  numpy-1.26.2-cp312-cp312-win32.whl
b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e  numpy-1.26.2-cp312-cp312-win_amd64.whl
4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef  numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2  numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3  numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818  numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210  numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36  numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80  numpy-1.26.2-cp39-cp39-win32.whl
2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060  numpy-1.26.2-cp39-cp39-win_amd64.whl
1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79  numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d  numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841  numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea  numpy-1.26.2.tar.gz

v1.26.1

Compare Source

NumPy 1.26.1 Release Notes

NumPy 1.26.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.0 release. In addition, it adds new
functionality for detecting BLAS and LAPACK when building from source.
Highlights are:

  • Improved detection of BLAS and LAPACK libraries for meson builds
  • Pickle compatibility with the upcoming NumPy 2.0.

The 1.26.release series is the last planned minor release series before
NumPy 2.0. The Python versions supported by this release are 3.9-3.12.

Build system changes

Improved BLAS/LAPACK detection and control

Auto-detection for a number of BLAS and LAPACK is now implemented for
Meson. By default, the build system will try to detect MKL, Accelerate
(on macOS >=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK.
Support for MKL was significantly improved, and support for FlexiBLAS
was added.

New command-line flags are available to further control the selection of
the BLAS and LAPACK libraries to build against.

To select a specific library, use the config-settings interface via
pip or pypa/build. E.g., to select libblas/liblapack, use:

$ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
$ # OR
$ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack

This works not only for the libraries named above, but for any library
that Meson is able to detect with the given name through pkg-config or
CMake.

Besides -Dblas and -Dlapack, a number of other new flags are
available to control BLAS/LAPACK selection and behavior:

  • -Dblas-order and -Dlapack-order: a list of library names to
    search for in order, overriding the default search order.
  • -Duse-ilp64: if set to true, use ILP64 (64-bit integer) BLAS and
    LAPACK. Note that with this release, ILP64 support has been extended
    to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported
    in previous releases.
  • -Dallow-noblas: if set to true, allow NumPy to build with its
    internal (very slow) fallback routines instead of linking against an
    external BLAS/LAPACK library. The default for this flag may be
    changed to ``true`` in a future 1.26.x release, however for
    1.26.1 we'd prefer to keep it as ``false`` because if failures
    to detect an installed library are happening, we'd like a bug
    report for that, so we can quickly assess whether the new
    auto-detection machinery needs further improvements.
  • -Dmkl-threading: to select the threading layer for MKL. There are
    four options: seq, iomp, gomp and tbb. The default is
    auto, which selects from those four as appropriate given the
    version of MKL selected.
  • -Dblas-symbol-suffix: manually select the symbol suffix to use for
    the library - should only be needed for linking against libraries
    built in a non-standard way.

New features

numpy._core submodule stubs

numpy._core submodule stubs were added to provide compatibility with
pickled arrays created using NumPy 2.0 when running Numpy 1.26.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Anton Prosekin +
  • Charles Harris
  • Chongyun Lee +
  • Ivan A. Melnikov +
  • Jake Lishman +
  • Mahder Gebremedhin +
  • Mateusz Sokół
  • Matti Picus
  • Munira Alduraibi +
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel

Pull requests merged

A total of 20 pull requests were merged for this release.

  • #​24742: MAINT: Update cibuildwheel version
  • #​24748: MAINT: fix version string in wheels built with setup.py
  • #​24771: BLD, BUG: Fix build failure for host flags e.g. -march=native...
  • #​24773: DOC: Updated the f2py docs to remove a note on -fimplicit-none
  • #​24776: BUG: Fix SIMD f32 trunc test on s390x when baseline is none
  • #​24785: BLD: add libquadmath to licences and other tweaks (#​24753)
  • #​24786: MAINT: Activate use-compute-credits for Cirrus.
  • #​24803: BLD: updated vendored-meson/meson for mips64 fix
  • #​24804: MAINT: fix licence path win
  • #​24813: BUG: Fix order of Windows OS detection macros.
  • #​24831: BUG, SIMD: use scalar cmul on bad Apple clang x86_64 (#​24828)
  • #​24840: BUG: Fix DATA statements for f2py
  • #​24870: API: Add NumpyUnpickler for backporting
  • #​24872: MAINT: Xfail test failing on PyPy.
  • #​24879: BLD: fix math func feature checks, fix FreeBSD build, add CI...
  • #​24899: ENH: meson: implement BLAS/LAPACK auto-detection and many CI...
  • #​24902: DOC: add a 1.26.1 release notes section for BLAS/LAPACK build...
  • #​24906: MAINT: Backport numpy._core stubs. Remove NumpyUnpickler
  • #​24911: MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2
  • #​24912: BUG: loongarch doesn't use REAL(10)

Checksums

MD5
bda38de1a047dd9fdddae16c0d9fb358  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
196d2e39047da64ab28e177760c95461  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
9d25010a7bf50e624d2fed742790afbd  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b22fa3d030807f0708007d9c0659f65  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea626b8b930acb4b32302a9e95714f5  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
3c40ef068f50d2ac2913c5b9fa1233fa  numpy-1.26.1-cp310-cp310-win32.whl
315c251d2f284af25761a37ce6dd4d10  numpy-1.26.1-cp310-cp310-win_amd64.whl
ebdd5046937df50e9f54a6d38c5775dd  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
682f9beebe8547f205d6cdc8ff96a984  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
e86da9b6040ea88b3835c4d8f8578658  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ebcb6cf7f64454215e29d8a89829c8e1  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8c89e13dc9a63712104e2fb06fb63a6  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
339795930404988dbc664ff4cc72b399  numpy-1.26.1-cp311-cp311-win32.whl
4ef5e1bdd7726c19615843f5ac72e618  numpy-1.26.1-cp311-cp311-win_amd64.whl
3aad6bc72db50e9cc88aa5813e8f35bd  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
fd62f65ae7798dbda9a3f7af7aa5c8db  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
104d939e080f1baf0a56aed1de0e79e3  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44b56c96097f910bbec1420abcf3db5  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1dce230368ae5fc47dd0fe8de8ff771d  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
d93338e7d60e1d294ca326450e99806b  numpy-1.26.1-cp312-cp312-win32.whl
a1832f46521335c1ee4c56dbf12e600b  numpy-1.26.1-cp312-cp312-win_amd64.whl
946fbb0b6caca9258985495532d3f9ab  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
78c2ab13d395d67d90bcd6583a6f61a8  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
0a9d80d8b646abf4ffe51fff3e075d10  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0229ba8145d4f58500873b540a55d60e  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9179fc57c03260374c86e18867c24463  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
246a3103fdbe5d891d7a8aee28875a26  numpy-1.26.1-cp39-cp39-win32.whl
4589dcb7f754fade6ea3946416bee638  numpy-1.26.1-cp39-cp39-win_amd64.whl
3af340d5487a6c045f00fe5eb889957c  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
28aece4f1ceb92ec463aa353d4a91c8b  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bbd0461a1e31017b05509e9971b3478e  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
2d770f4c281d405b690c4bcb3dbe99e2  numpy-1.26.1.tar.gz
SHA256
82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297  numpy-1.26.1-cp310-cp310-win32.whl
d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab  numpy-1.26.1-cp310-cp310-win_amd64.whl
cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b  numpy-1.26.1-cp311-cp311-win32.whl
3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53  numpy-1.26.1-cp311-cp311-win_amd64.whl
1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66  numpy-1.26.1-cp312-cp312-win32.whl
9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7  numpy-1.26.1-cp312-cp312-win_amd64.whl
bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104  numpy-1.26.1-cp39-cp39-win32.whl
59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2  numpy-1.26.1-cp39-cp39-win_amd64.whl
06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe  numpy-1.26.1.tar.gz

v1.26.0

Compare Source

NumPy 1.26.0 Release Notes

The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle
with the addition of Python 3.12.0 support. Python 3.12 dropped
distutils, consequently supporting it required finding a replacement for
the setup.py/distutils based build system NumPy was using. We have
chosen to use the Meson build system instead, and this is the first
NumPy release supporting it. This is also the first release that
supports Cython 3.0 in addition to retaining 0.29.X compatibility.
Supporting those two upgrades was a large project, over 100 files have
been touched in this release. The changelog doesn't capture the full
extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan
van der Walt, and Matti Picus who did much of the work in the main
development branch.

The highlights of this release are:

  • Python 3.12.0 support.
  • Cython 3.0.0 compatibility.
  • Use of the Meson build system
  • Updated SIMD support
  • f2py fixes, meson and bind(x) support
  • Support for the updated Accelerate BLAS/LAPACK library

The Python versions supported in this release are 3.9-3.12.

New Features

Array API v2022.12 support in numpy.array_api

numpy.array_api now full supports the
v2022.12 version of the array API standard. Note that this does not
yet include the optional fft extension in the standard.

(gh-23789)

Support for the updated Accelerate BLAS/LAPACK library

Support for the updated Accelerate BLAS/LAPACK library, including ILP64
(64-bit integer) support, in macOS 13.3 has been added. This brings
arm64 support, and significant performance improvements of up to 10x for
commonly used linear algebra operations. When Accelerate is selected at
build time, the 13.3+ version will automatically be used if available.

(gh-24053)

meson backend for f2py

f2py in compile mode (i.e. f2py -c) now accepts the
--backend meson option. This is the default option for Python 3.12
on-wards. Older versions will still default to --backend distutils.

To support this in realistic use-cases, in compile mode f2py takes a
--dep flag one or many times which maps to dependency() calls in the
meson backend, and does nothing in the distutils backend.

There are no changes for users of f2py only as a code generator, i.e.
without -c.

(gh-24532)

bind(c) support for f2py

Both functions and subroutines can be annotated with bind(c). f2py
will handle both the correct type mapping, and preserve the unique label
for other C interfaces.

Note: bind(c, name = 'routine_name_other_than_fortran_routine') is
not honored by the f2py bindings by design, since bind(c) with the
name is meant to guarantee only the same name in C and Fortran,
not in Python and Fortran.

(gh-24555)

Improvements

iso_c_binding support for f2py

Previously, users would have to define their own custom f2cmap file to
use type mappings defined by the Fortran2003 iso_c_binding intrinsic
module. These type maps are now natively supported by f2py

(gh-24555)

Build system changes

In this release, NumPy has switched to Meson as the build system and
meson-python as the build backend. Installing NumPy or building a wheel
can be done with standard tools like pip and pypa/build. The
following are supported:

  • Regular installs: pip install numpy or (in a cloned repo)
    pip install .
  • Building a wheel: python -m build (preferred), or pip wheel .
  • Editable installs: pip install -e . --no-build-isolation
  • Development builds through the custom CLI implemented with
    spin: spin build.

All the regular pip and pypa/build flags (e.g.,
--no-build-isolation) should work as expected.

NumPy-specific build customization

Many of the NumPy-specific ways of customizing builds have changed. The
NPY_* environment variables which control BLAS/LAPACK, SIMD,
threading, and other such options are no longer supported, nor is a
site.cfg file to select BLAS and LAPACK. Instead, there are
command-line flags that can be passed to the build via pip/build's
config-settings interface. These flags are all listed in the
meson_options.txt file in the root of the repo. Detailed documented
will be available before the final 1.26.0 release; for now please see
the SciPy "building from source" docs
since most build customization works in an almost identical way in SciPy as it
does in NumPy.

Build dependencies

While the runtime dependencies of NumPy have not changed, the build
dependencies have. Because we temporarily vendor Meson and meson-python,
there are several new dependencies - please see the [build-system]
section of pyproject.toml for details.

Troubleshooting

This build system change is quite large. In case of unexpected issues,
it is still possible to use a setup.py-based build as a temporary
workaround (on Python 3.9-3.11, not 3.12), by copying
pyproject.toml.setuppy to pyproject.toml. However, please open an
issue with details on the NumPy issue tracker. We aim to phase out
setup.py builds as soon as possible, and therefore would like to see
all potential blockers surfaced early on in the 1.26.0 release cycle.

Contributors

A total of 20 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • Albert Steppi +
  • Bas van Beek
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • Filipe Laíns +
  • Jake Vanderplas
  • Liang Yan +
  • Marten van Kerkwijk
  • Matti Picus
  • Melissa Weber Mendonça
  • Namami Shanker
  • Nathan Goldbaum
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg
  • Stefan van der Walt
  • Tyler Reddy
  • Warren Weckesser

Pull requests merged

A total of 59 pull requests were merged for this release.

  • #​24305: MAINT: Prepare 1.26.x branch for development
  • #​24308: MAINT: Massive update of files from main for numpy 1.26
  • #​24322: CI: fix wheel builds on the 1.26.x branch
  • #​24326: BLD: update openblas to newer version
  • #​24327: TYP: Trim down the _NestedSequence.__getitem__ signature
  • #​24328: BUG: fix choose refcount leak
  • #​24337: TST: fix running the test suite in builds without BLAS/LAPACK
  • #​24338: BUG: random: Fix generation of nan by dirichlet.
  • #​24340: MAINT: Dependabot updates from main
  • #​24342: MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1
  • #​24353: MAINT: Update extbuild.py from main.
  • #​24356: TST: fix distutils tests for deprecations in recent setuptools...
  • #​24375: MAINT: Update cibuildwheel to version 2.15.0
  • #​24381: MAINT: Fix codespaces setup.sh script
  • #​24403: ENH: Vendor meson for multi-target build support
  • #​24404: BLD: vendor meson-python to make the Windows builds with SIMD...
  • #​24405: BLD, SIMD: The meson CPU dispatcher implementation
  • #​24406: MAINT: Remove versioneer
  • #​24409: REL: Prepare for the NumPy 1.26.0b1 release.
  • #​24453: MAINT: Pin upper version of sphinx.
  • #​24455: ENH: Add prefix to _ALIGN Macro
  • #​24456: BUG: cleanup warnings
  • #​24460: MAINT: Upgrade to spin 0.5
  • #​24495: BUG: asv dev has been removed, use asv run.
  • #​24496: BUG: Fix meson build failure due to unchanged inplace auto-generated...
  • #​24521: BUG: fix issue with git-version script, needs a shebang to run
  • #​24522: BUG: Use a default assignment for git_hash
  • #​24524: BUG: fix NPY_cast_info error handling in choose
  • #​24526: BUG: Fix common block handling in f2py
  • #​24541: CI,TYP: Bump mypy to 1.4.1
  • #​24542: BUG: Fix assumed length f2py regression
  • #​24544: MAINT: Harmonize fortranobject
  • #​24545: TYP: add kind argument to numpy.isin type specification
  • #​24561: BUG: fix comparisons between masked and unmasked structured arrays
  • #​24590: CI: Exclude import libraries from list of DLLs on Cygwin.
  • #​24591: BLD: fix _umath_linalg dependencies
  • #​24594: MAINT: Stop testing on ppc64le.
  • #​24602: BLD: meson-cpu: fix SIMD support on platforms with no features
  • #​24606: BUG: Change Cython binding directive to "False".
  • #​24613: ENH: Adopt new macOS Accelerate BLAS/LAPACK Interfaces, including...
  • #​24614: DOC: Update building docs to use Meson
  • #​24615: TYP: Add the missing casting keyword to np.clip
  • #​24616: TST: convert cython test from setup.py to meson
  • #​24617: MAINT: Fixup fromnumeric.pyi
  • #​24622: BUG, ENH: Fix iso_c_binding type maps and fix bind(c)...
  • #​24629: TYP: Allow binary_repr to accept any object implementing...
  • #​24630: TYP: Explicitly declare dtype and generic hashable
  • #​24637: ENH: Refactor the typing "reveal" tests using typing.assert_type
  • #​24638: MAINT: Bump actions/checkout from 3.6.0 to 4.0.0
  • #​24647: ENH: meson backend for f2py
  • #​24648: MAINT: Refactor partial load Workaround for Clang
  • #​24653: REL: Prepare for the NumPy 1.26.0rc1 release.
  • #​24659: BLD: allow specifying the long double format to avoid the runtime...
  • #​24665: BLD: fix bug in random.mtrand extension, don't link libnpyrandom
  • #​24675: BLD: build wheels for 32-bit Python on Windows, using MSVC
  • #​24700: BLD: fix issue with compiler selection during cross compilation
  • #​24701: BUG: Fix data stmt handling for complex values in f2py
  • #​24707: TYP: Add annotations for the py3.12 buffer protocol
  • #​24718: DOC: fix a few doc build issues on 1.26.x and update spin docs...

Checksums

MD5
052d84a2aaad4d5a455b64f5ff3f160b  numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl
874567083be194080e97bea39ea7befd  numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl
1a5fa023e05e050b95549d355890fbb6  numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2af03fbadd96360b26b993975709d072  numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
32717dd51a915e9aee4dcca72acb00d0  numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl
3f101e51b3b5f8c3f01256da645a1962  numpy-1.26.0-cp310-cp310-win32.whl
d523a40f0a5f5ba94f09679adbabf825  numpy-1.26.0-cp310-cp310-win_amd64.whl
6115698fdf5fb8cf895540a57d12bfb9  numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl
207603ee822d8af4542f239b8c0a7a67  numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl
0cc5f95c4aebab0ca4f9f66463981016  numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a4654b46bc10738825f37a1797e1eba5  numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3b037dc746499f2a19bb58b55fdd0bfb  numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl
7bfb0c44e95f765e7fc5a7a86968a56c  numpy-1.26.0-cp311-cp311-win32.whl
3355b510410cb20bacfb3c87632a731a  numpy-1.26.0-cp311-cp311-win_amd64.whl
9624a97f1df9f64054409d274c1502f3  numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl
53429b1349542c38b2f3822c7f2904d5  numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl
66a21bf4d8a6372cc3c4c89a67b96279  numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cb9abc312090046563eae619c0b68210  numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
49e3498e0e0ec5c1f6314fb86d7f006e  numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl
f4a31765889478341597a7140044db85  numpy-1.26.0-cp312-cp312-win32.whl
e7d7ded11f89baf760e5ba69249606e4  numpy-1.26.0-cp312-cp312-win_amd64.whl
19698f330ae322c4813eed6e790a04d5  numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl
a3628f551d851fbcde6551adb8fcfe2b  numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl
b34af2ddf43b28207ec7e2c837cbe35f  numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3d888129c86357ccfb779d9f0c1256f5  numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e49d00c779df59a786d9f41e0d73c520  numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl
69f6aa8a0f3919797cb28fab7069a578  numpy-1.26.0-cp39-cp39-win32.whl
8233224840dcdda49b08da1d5e91a730  numpy-1.26.0-cp39-cp39-win_amd64.whl
c11b4d1181b825407b71a1ac8ec04a10  numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
1515773d4f569d44c6a757cb5a636cb2  numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60dc766d863d8ab561b494a7a759d562  numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl
69bd28f07afbeed2bb6ecd467afcd469  numpy-1.26.0.tar.gz
SHA256
f8db2f125746e44dce707dd44d4f4efeea8d7e2b43aace3f8d1f235cfa2733dd  numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl
0621f7daf973d34d18b4e4bafb210bbaf1ef5e0100b5fa750bd9cde84c7ac292  numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl
51be5f8c349fdd1a5568e72713a21f518e7d6707bcf8503b528b88d33b57dc68  numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
767254ad364991ccfc4d81b8152912e53e103ec192d1bb4ea6b1f5a7117040be  numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
436c8e9a4bdeeee84e3e59614d38c3dbd3235838a877af8c211cfcac8a80b8d3  numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl
c2e698cb0c6dda9372ea98a0344245ee65bdc1c9dd939cceed6bb91256837896  numpy-1.26.0-cp310-cp310-win32.whl
09aaee96c2cbdea95de76ecb8a586cb687d281c881f5f17bfc0fb7f5890f6b91  numpy-1.26.0-cp310-cp310-win_amd64.whl
637c58b468a69869258b8ae26f4a4c6ff8abffd4a8334c830ffb63e0feefe99a  numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl
306545e234503a24fe9ae95ebf84d25cba1fdc27db971aa2d9f1ab6bba19a9dd  numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl
8c6adc33561bd1d46f81131d5352348350fc23df4d742bb246cdfca606ea1208  numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e062aa24638bb5018b7841977c360d2f5917268d125c833a686b7cbabbec496c  numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
546b7dd7e22f3c6861463bebb000646fa730e55df5ee4a0224408b5694cc6148  numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl
c0b45c8b65b79337dee5134d038346d30e109e9e2e9d43464a2970e5c0e93229  numpy-1.26.0-cp311-cp311-win32.whl
eae430ecf5794cb7ae7fa3808740b015aa80747e5266153128ef055975a72b99  numpy-1.26.0-cp311-cp311-win_amd64.whl
166b36197e9debc4e384e9c652ba60c0bacc216d0fc89e78f973a9760b503388  numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl
f042f66d0b4ae6d48e70e28d487376204d3cbf43b84c03bac57e28dac6151581  numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl
e5e18e5b14a7560d8acf1c596688f4dfd19b4f2945b245a71e5af4ddb7422feb  numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f6bad22a791226d0a5c7c27a80a20e11cfe09ad5ef9084d4d3fc4a299cca505  numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4acc65dd65da28060e206c8f27a573455ed724e6179941edb19f97e58161bb69  numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl
bb0d9a1aaf5f1cb7967320e80690a1d7ff69f1d47ebc5a9bea013e3a21faec95  numpy-1.26.0-cp312-cp312-win32.whl
ee84ca3c58fe48b8ddafdeb1db87388dce2c3c3f701bf447b05e4cfcc3679112  numpy-1.26.0-cp312-cp312-win_amd64.whl
4a873a8180479bc829313e8d9798d5234dfacfc2e8a7ac188418189bb8eafbd2  numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl
914b28d3215e0c721dc75db3ad6d62f51f630cb0c277e6b3bcb39519bed10bd8  numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl
c78a22e95182fb2e7874712433eaa610478a3caf86f28c621708d35fa4fd6e7f  numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
86f737708b366c36b76e953c46ba5827d8c27b7a8c9d0f471810728e5a2fe57c  numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b44e6a09afc12952a7d2a58ca0a2429ee0d49a4f89d83a0a11052da696440e49  numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl
5671338034b820c8d58c81ad1dafc0ed5a00771a82fccc71d6438df00302094b  numpy-1.26.0-cp39-cp39-win32.whl
020cdbee66ed46b671429c7265cf00d8ac91c046901c55684954c3958525dab2  numpy-1.26.0-cp39-cp39-win_amd64.whl
0792824ce2f7ea0c82ed2e4fecc29bb86bee0567a080dacaf2e0a01fe7654369  numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
7d484292eaeb3e84a51432a94f53578689ffdea3f90e10c8b203a99be5af57d8  numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
186ba67fad3c60dbe8a3abff3b67a91351100f2661c8e2a80364ae6279720299  numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl
f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf  numpy-1.26.0.tar.gz

v1.25.2

Compare Source

NumPy 1.25.2 Release Notes

NumPy 1.25.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.25.1 release. This is the last planned release in
the 1.25.x series, the next release will be 1.26.0, which will use the
meson build system and support Python 3.12. The Python versions
supported by this release are 3.9-3.11.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aaron Meurer
  • Andrew Nelson
  • Charles Harris
  • Kevin Sheppard
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Ralf Gommers
  • Randy Eckenrode +
  • Sam James +
  • Sebastian Berg
  • Tyler Reddy
  • dependabot[bot]

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​24148: MAINT: prepare 1.25.x for further development
  • #​24174: ENH: Improve clang-cl compliance
  • #​24179: MAINT: Upgrade various build dependencies.
  • #​24182: BLD: use -ftrapping-math with Clang on macOS
  • #​24183: BUG: properly handle negative indexes in ufunc_at fast path
  • #​24184: BUG: PyObject_IsTrue and PyObject_Not error handling in setflags
  • #​24185: BUG: histogram small range robust
  • #​24186: MAINT: Update meson.build files from main branch
  • #​24234: MAINT: exclude min, max and round from np.__all__
  • #​24241: MAINT: Dependabot updates
  • #​24242: BUG: Fix the signature for np.array_api.take
  • #​24243: BLD: update OpenBLAS to an intermeidate commit
  • #​24244: BUG: Fix reference count leak in str(scalar).
  • #​24245: BUG: fix invalid function pointer conversion error
  • #​24255: BUG: Factor out slow getenv call used for memory policy warning
  • #​24292: CI: correct URL in cirrus.star
  • #​24293: BUG: Fix C types in scalartypes
  • #​24294: BUG: do not modify the input to ufunc_at
  • #​24295: BUG: Further fixes to indexing loop and added tests

Checksums

MD5
33518ccb4da8ee11f1dee4b9fef1e468  numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
b5cb0c3b33ef6d93ec2888f25b065636  numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
ae027dd38bd73f09c07220b2f516f148  numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88cf69dc3c0d293492c4c7e75dccf3d8  numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e4e3ad02375ba71ae2cd05ccd97aba4  numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
f52bb644682deb26c35ddec77198b65c  numpy-1.25.2-cp310-cp310-win32.whl
4944cf36652be7560a6bcd0d5d56e8ea  numpy-1.25.2-cp310-cp310-win_amd64.whl
5a56e639defebb7b871c8c5613960ca3  numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
3988b96944e7218e629255214f2598bd  numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
302d65015ddd908a862fb3761a2a0363  numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e54a2e23272d1c5e5b278bd7e304c948  numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
961d390e8ccaf11b1b0d6200d2c8b1c0  numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
e113865b90f97079d344100c41226fbe  numpy-1.25.2-cp311-cp311-win32.whl
834a147aa1adaec97655018b882232bd  numpy-1.25.2-cp311-cp311-win_amd64.whl
fb55f93a8033bde854c8a2b994045686  numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
d96e754217d29bf045e082b695667e62  numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
beab540edebecbb257e482dd9e498b44  numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d608c9e09cd8feba48567586cfefc0  numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe1fc32c8bb005ca04b8f10ebdcff6dd  numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
41df58a9935c8ed869c92307c95f02eb  numpy-1.25.2-cp39-cp39-win32.whl
a4371272c64493beb8b04ac46c4c1521  numpy-1.25.2-cp39-cp39-win_amd64.whl
bbe051cbd5f8661dd054277f0b0f0c3d  numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
3f68e6b4af6922989dc0133e37db34ee  numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fc89421b79e8800240999d3a1d06a4d2  numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
cee1996a80032d47bdf1d9d17249c34e  numpy-1.25.2.tar.gz
SHA256
db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3  numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f  numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187  numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357  numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9  numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044  numpy-1.25.2-cp310-cp310-win32.whl
834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545  numpy-1.25.2-cp310-cp310-win_amd64.whl
c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418  numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f  numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2  numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf  numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364  numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d  numpy-1.25.2-cp311-cp311-win32.whl
5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4  numpy-1.25.2-cp311-cp311-win_amd64.whl
b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3  numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926  numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca  numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295  numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f  numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01  numpy-1.25.2-cp39-cp39-win32.whl
76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380  numpy-1.25.2-cp39-cp39-win_amd64.whl
1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55  numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901  numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf  numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760  numpy-1.25.2.tar.gz

v1.25.1

Compare Source

NumPy 1.25.1 Release Notes

NumPy 1.25.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.25.0 release. The Python versions supported by
this release are 3.9-3.11.

Contributors

A total of 10 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • Hood Chatham
  • Nathan Goldbaum
  • Rohit Goswami
  • Sebastian Berg
  • Tim Paine +
  • dependabot[bot]
  • matoro +

Pull requests merged

A total of 14 pull requests were merged for this release.

  • #​23968: MAINT: prepare 1.25.x for further development
  • #​24036: BLD: Port long double identification to C for meson
  • #​24037: BUG: Fix reduction return NULL to be goto fail
  • #​24038: BUG: Avoid undefined behavior in array.astype()
  • #​24039: BUG: Ensure __array_ufunc__ works without any kwargs passed
  • #​24117: MAINT: Pin urllib3 to avoid anaconda-client bug.
  • #​24118: TST: Pin pydantic<2 in Pyodide workflow
  • #​24119: MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1
  • #​24120: MAINT: Bump actions/checkout from 3.5.2 to 3.5.3
  • #​24122: BUG: Multiply or Divides using SIMD without a full vector can...
  • #​24127: MAINT: testing for IS_MUSL closes #​24074
  • #​24128: BUG: Only replace dtype temporarily if dimensions changed
  • #​24129: MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0
  • #​24134: BUG: Fix private procedures in f2py modules

Checksums

MD5
d09d98643db31e892fad11b8c2b7af22  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d5b8d3b0424e2af41018f35a087c4500  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
1007893b1a8bfd97d445a63d29d33642  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6a62d7a6cee310b41dc872aa7f3d7e8b  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e81f6264aecfa2269c5d29d10c362cbc  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
ab8ecd125ca86eac0b3ada67ab66dad6  numpy-1.25.1-cp310-cp310-win32.whl
5466bebeaafcc3d6e1b98858d77ff945  numpy-1.25.1-cp310-cp310-win_amd64.whl
f31b059256ae09b7b83df63f52d8371e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
099f74d654888869704469c321af845d  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
20d04dccd2bfca5cfd88780d1dc9a3f8  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
61dfd7c00638e83a7af59b86615ee9d2  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4eb459c3d9479c4da2fdf20e4c4085d0  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
5e84e797866c68ba65fa89a4bf4ba8ce  numpy-1.25.1-cp311-cp311-win32.whl
87bb1633b2e8029dbfa1e59f7ab22625  numpy-1.25.1-cp311-cp311-win_amd64.whl
3fcf2eb5970d848a26abdff1b10228e7  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
d71e1cbe18fe05944219e5a5be1796bf  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
5b457e10834c991bca84aae7eaa49f34  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5cbb4c2f2892fafdf6f34fcb37c9e743  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7d9d1ae23cf5420652088bfe8e048d89  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
7e5bed491b85f0d7c718d6809f9b3ed2  numpy-1.25.1-cp39-cp39-win32.whl
838e97b751bebadf47e2196b2c88ffa2  numpy-1.25.1-cp39-cp39-win_amd64.whl
9ba95d8d6004d9659d7728fe93f67be9  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
fbccb20254a2dc85bdec549a03b8eb56  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
95e36689e6dd078caf11e7e2a2d5f5f1  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
768d0ebf15e2242f4c7ca7565bb5dd3e  numpy-1.25.1.tar.gz
SHA256
77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503  numpy-1.25.1-cp310-cp310-win32.whl
c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57  numpy-1.25.1-cp310-cp310-win_amd64.whl
6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb  numpy-1.25.1-cp311-cp311-win32.whl
c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171  numpy-1.25.1-cp311-cp311-win_amd64.whl
3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c  numpy-1.25.1-cp39-cp39-win32.whl
1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631  numpy-1.25.1-cp39-cp39-win_amd64.whl
35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf  numpy-1.25.1.tar.gz

v1.25.0

Compare Source

NumPy 1.25.0 Release Notes

The NumPy 1.25.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There has also been work to prepare for the
future NumPy 2.0.0 release, resulting in a large number of new and
expired deprecation. Highlights are:

  • Support for MUSL, there are now MUSL wheels.
  • Support the Fujitsu C/C++ compiler.
  • Object arrays are now supported in einsum
  • Support for inplace matrix multiplication (@=).

We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is
needed because distutils has been dropped by Python 3.12 and we will be
switching to using meson for future builds. The next mainline release
will be NumPy 2.0.0. We plan that the 2.0 series will still support
downstream projects built against earlier versions of NumPy.

The Python versions supported in this release are 3.9-3.11.

Deprecations

  • np.core.MachAr is deprecated. It is private API. In names defined
    in np.core should generally be considered private.

    (gh-22638)

  • np.finfo(None) is deprecated.

    (gh-23011)

  • np.round_ is deprecated. Use np.round instead.

    (gh-23302)

  • np.product is deprecated. Use np.prod instead.

    (gh-23314)

  • np.cumproduct is deprecated. Use np.cumprod instead.

    (gh-23314)

  • np.sometrue is deprecated. Use np.any instead.

    (gh-23314)

  • np.alltrue is deprecated. Use np.all instead.

    (gh-23314)

  • Only ndim-0 arrays are treated as scalars. NumPy used to treat all
    arrays of size 1 (e.g., np.array([3.14])) as scalars. In the
    future, this will be limited to arrays of ndim 0 (e.g.,
    np.array(3.14)). The following expressions will report a
    deprecation warning:

    a = np.array([3.14])
    float(a)  # better: a[0] to get the numpy.float or a.item()
    
    b = np.array([[3.14]])
    c = numpy.random.rand(10)
    c[0] = b  # better: c[0] = b[0, 0]
    

    (gh-10615)

  • numpy.find_common_type is now deprecated and its use
    should be replaced with either numpy.result_type or
    numpy.promote_types. Most users leave the second
    scalar_types argument to find_common_type as [] in which case
    np.result_type and np.promote_types are both faster and more
    robust. When not using scalar_types the main difference is that
    the replacement intentionally converts non-native byte-order to
    native byte order. Further, find_common_type returns object
    dtype rather than failing promotion. This leads to differences when
    the inputs are not all numeric. Importantly, this also happens for
    e.g. timedelta/datetime for which NumPy promotion rules are
    currently sometimes surprising.

    When the scalar_types argument is not [] things are more
    complicated. In most cases, using np.result_type and passing the
    Python values 0, 0.0, or 0j has the same result as using
    int, float, or complex in scalar_types.

    When scalar_types is constructed, np.result_type is the correct
    replacement and it may be passed scalar values like
    np.float32(0.0). Passing values other than 0, may lead to
    value-inspecting behavior (which np.find_common_type never used
    and NEP 50 may change in the future). The main possible change in
    behavior in this case, is when the array types are signed integers
    and scalar types are unsigned.

    If you are unsure about how to replace a use of scalar_types or
    when non-numeric dtypes are likely, please do not hesitate to open a
    NumPy issue to ask for help.

    (gh-22539)

Expired deprecations

  • np.core.machar and np.finfo.machar have been removed.

    (gh-22638)

  • +arr will now raise an error when the dtype is not numeric (and
    positive is undefined).

    (gh-22998)

  • A sequence must now be passed into the stacking family of functions
    (stack, vstack, hstack, dstack and column_stack).

    (gh-23019)

  • np.clip now defaults to same-kind casting. Falling back to unsafe
    casting was deprecated in NumPy 1.17.

    (gh-23403)

  • np.clip will now propagate np.nan values passed as min or
    max. Previously, a scalar NaN was usually ignored. This was
    deprecated in NumPy 1.17.

    (gh-23403)

  • The np.dual submodule has been removed.

    (gh-23480)

  • NumPy now always ignores sequence behavior for an array-like
    (defining one of the array protocols). (Deprecation started NumPy
    1.20)

    (gh-23660)

  • The niche FutureWarning when casting to a subarray dtype in
    astype or the array creation functions such as asarray is now
    finalized. The behavior is now always the same as if the subarray
    dtype was wrapped into a single field (which was the workaround,
    previously). (FutureWarning since NumPy 1.20)

    (gh-23666)

  • == and != warnings have been finalized. The == and !=
    operators on arrays now always:

    • raise errors that occur during comparisons such as when the
      arrays have incompatible shapes
      (np.array([1, 2]) == np.array([1, 2, 3])).

    • return an array of all True or all False when values are
      fundamentally not comparable (e.g. have different dtypes). An
      example is np.array(["a"]) == np.array([1]).

      This mimics the Python behavior of returning False and True
      when comparing incompatible types like "a" == 1 and
      "a" != 1. For a long time these gave DeprecationWarning or
      FutureWarning.

    (gh-22707)

  • Nose support has been removed. NumPy switched to using pytest in
    2018 and nose has been unmaintained for many years. We have kept
    NumPy's nose support to avoid breaking downstream projects who
    might have been using it and not yet switched to pytest or some
    other testing framework. With the arrival of Python 3.12, unpatched
    nose will raise an error. It is time to move on.

    Decorators removed:

    • raises
    • slow
    • setastest
    • skipif
    • knownfailif
    • deprecated
    • parametrize
    • _needs_refcount

    These are not to be confused with pytest versions with similar
    names, e.g., pytest.mark.slow, pytest.mark.skipif,
    pytest.mark.parametrize.

    Functions removed:

    • Tester
    • import_nose
    • run_module_suite

    (gh-23041)

  • The numpy.testing.utils shim has been removed. Importing from the
    numpy.testing.utils shim has been deprecated since 2019, the shim
    has now been removed. All imports should be made directly from
    numpy.testing.

    (gh-23060)

  • The environment variable to disable dispatching has been removed.
    Support for the NUMPY_EXPERIMENTAL_ARRAY_FUNCTION environment
    variable has been removed. This variable disabled dispatching with
    __array_function__.

    (gh-23376)

  • Support for y= as an alias of out= has been removed. The fix,
    isposinf and isneginf functions allowed using y= as a
    (deprecated) alias for out=. This is no longer supported.

    (gh-23376)

Compatibility notes

  • The busday_count method now correctly handles cases where the
    begindates is later in time than the enddates. Previously, the
    enddates was included, even though the documentation states it is
    always excluded.

    (gh-23229)

  • When comparing datetimes and timedelta using np.equal or
    np.not_equal numpy previously allowed the comparison with
    casting="unsafe". This operation now fails. Forcing the output
    dtype using the dtype kwarg can make the operation succeed, but we
    do not recommend it.

    (gh-22707)

  • When loading data from a file handle using np.load, if the handle
    is at the end of file, as can happen when reading multiple arrays by
    calling np.load repeatedly, numpy previously raised ValueError
    if allow_pickle=False, and OSError if allow_pickle=True. Now
    it raises EOFError instead, in both cases.

    (gh-23105)

np.pad with mode=wrap pads with strict multiples of original data

Code based on earlier version of pad that uses mode="wrap" will
return different results when the padding size is larger than initial
array.

np.pad with mode=wrap now always fills the space with strict
multiples of original data even if the padding size is larger than the
initial array.

(gh-22575)

Cython long_t and ulong_t removed

long_t and ulong_t were aliases for longlong_t and ulonglong_t
and confusing (a remainder from of Python 2). This change may lead to
the errors:

'long_t' is not a type identifier
'ulong_t' is not a type identifier

We recommend use of bit-sized types such as cnp.int64_t or the use of
cnp.intp_t which is 32 bits on 32 bit systems and 64 bits on 64 bit
systems (this is most compatible with indexing). If C long is desired,
use plain long or npy_long. cnp.int_t is also long (NumPy's
default integer). However, long is 32 bit on 64 bit windows and we may
wish to adjust this even in NumPy. (Please do not hesitate to contact
NumPy developers if you are curious about this.)

(gh-22637)

Changed error message and type for bad axes argument to ufunc

The error message and type when a wrong axes value is passed to
ufunc(..., axes=[...]) has changed. The message is now more
indicative of the problem, and if the value is mismatched an
AxisError will be raised. A TypeError will still be raised for
invalidinput types.

(gh-22675)

Array-likes that define __array_ufunc__ can now override ufuncs if used as where

If the where keyword argument of a numpy.ufunc{.interpreted-text
role="class"} is a subclass of numpy.ndarray{.interpreted-text
role="class"} or is a duck type that defines
numpy.class.__array_ufunc__{.interpreted-text role="func"} it can
override the behavior of the ufunc using the same mechanism as the input
and output arguments. Note that for this to work properly, the
where.__array_ufunc__ implementation will have to unwrap the where
argument to pass it into the default implementation of the ufunc or,
for numpy.ndarray{.interpreted-text role="class"} subclasses before
using super().__array_ufunc__.

(gh-23240)

Compiling against the NumPy C API is now backwards compatible by default

NumPy now defaults to exposing a backwards compatible subset of the
C-API. This makes the use of oldest-supported-numpy unnecessary.
Libraries can override the default minimal version to be compatible with
using:

#define NPY_TARGET_VERSION NPY_1_22_API_VERSION

before including NumPy or by passing the equivalent -D option to the
compiler. The NumPy 1.25 default is NPY_1_19_API_VERSION. Because the
NumPy 1.19 C API was identical to the NumPy 1.16 one resulting programs
will be compatible with NumPy 1.16 (from a C-API perspective). This
default will be increased in future non-bugfix releases. You can still
compile against an older NumPy version and run on a newer one.

For more details please see
for-downstream-package-authors{.interpreted-text role="ref"}.

(gh-23528)

New Features

np.einsum now accepts arrays with object dtype

The code path will call python operators on object dtype arrays, much
like np.dot and np.matmul.

(gh-18053)

Add support for inplace matrix multiplication

It is now possible to perform inplace matrix multiplication via the @=
operator.

>>> import numpy as np

>>> a = np.arange(6).reshape(3, 2)
>>> print(a)
[[0 1]
 [2 3]
 [4 5]]

>>> b = np.ones((2, 2), dtype=int)
>>> a @&#8203;= b
>>> print(a)
[[1 1]
 [5 5]
 [9 9]]

(gh-21120)

Added NPY_ENABLE_CPU_FEATURES environment variable

Users may now choose to enable only a subset of the built CPU features
at runtime by specifying the NPY_ENABLE_CPU_FEATURES
environment variable. Note that these specified features must be outside
the baseline, since those are always assumed. Errors will be raised if
attempting to enable a feature that is either not supported by your CPU,
or that NumPy was not built with.

(gh-22137)

NumPy now has an np.exceptions namespace

NumPy now has a dedicated namespace making most exceptions and warnings
available. All of these remain available in the main namespace, although
some may be moved slowly in the future. The main reason for this is to
increase discoverability and add future exceptions.

(gh-22644)

np.linalg functions return NamedTuples

np.linalg functions that return tuples now return namedtuples. These
functions are eig(), eigh(), qr(), slogdet(), and svd(). The
return type is unchanged in instances where these functions return
non-tuples with certain keyword arguments (like
svd(compute_uv=False)).

(gh-22786)

String functions in np.char are compatible with NEP 42 custom dtypes

Custom dtypes that represent unicode strings or byte strings can now be
passed to the string functions in np.char.

(gh-22863)

String dtype instances can be created from the string abstract dtype classes

It is now possible to create a string dtype instance with a size without
using the string name of the dtype. For example,
type(np.dtype('U'))(8) will create a dtype that is equivalent to
np.dtype('U8'). This feature is most useful when writing generic code
dealing with string dtype classes.

(gh-22963)

Fujitsu C/C++ compiler is now supported

Support for Fujitsu compiler has been added. To build with Fujitsu
compiler, run:

python setup.py build -c fujitsu

SSL2 is now supported

Support for SSL2 has been added. SSL2 is a library that provides
OpenBLAS compatible GEMM functions. To enable SSL2, it need to edit
site.cfg and build with Fujitsu compiler. See site.cfg.example.

(gh-22982)

Improvements

NDArrayOperatorsMixin specifies that it has no __slots__

The NDArrayOperatorsMixin class now specifies that it contains no
__slots__, ensuring that subclasses can now make use of this feature
in Python.

(gh-23113)

Fix power of complex zero

np.power now returns a different result for 0^{non-zero} for complex
numbers. Note that the value is only defined when the real part of the
exponent is larger than zero. Previously, NaN was returned unless the
imaginary part was strictly zero. The return value is either 0+0j or
0-0j.

(gh-18535)

New DTypePromotionError

NumPy now has a new DTypePromotionError which is used when two dtypes
cannot be promoted to a common one, for example:

np.result_type("M8[s]", np.complex128)

raises this new exception.

(gh-22707)

np.show_config uses information from Meson

Build and system information now contains information from Meson.
np.show_config now has a new optional parameter mode to
help customize the output.

(gh-22769)

Fix np.ma.diff not preserving the mask when called with arguments prepend/append.

Calling np.ma.diff with arguments prepend and/or append now returns a
MaskedArray with the input mask preserved.

Previously, a MaskedArray without the mask was returned.

(gh-22776)

Corrected error handling for NumPy C-API in Cython

Many NumPy C functions defined for use in Cython were lacking the
correct error indicator like except -1 or except *. These have now
been added.

(gh-22997)

Ability to directly spawn random number generators

numpy.random.Generator.spawn now allows to directly spawn new independent
child generators via the numpy.random.SeedSequence.spawn mechanism.
numpy.random.BitGenerator.spawn does the same for the underlying bit
generator.

Additionally, numpy.random.BitGenerator.seed_seq now gives
direct access to the seed sequence used for initializing the bit
generator. This allows for example:

seed = 0x2e09b90939db40c400f8f22dae617151
rng = np.random.default_rng(seed)
child_rng1, child_rng2 = rng.spawn(2)

safely use rng, child_rng1, and child_rng2

Previously, this was hard to do without passing the SeedSequence
explicitly. Please see numpy.random.SeedSequence for more
information.

(gh-23195)

numpy.logspace now supports a non-scalar base argument

The base argument of numpy.logspace can now be array-like if it is
broadcastable against the start and stop arguments.

(gh-23275)

np.ma.dot() now supports for non-2d arrays

Previously np.ma.dot() only worked if a and b were both 2d. Now it
works for non-2d arrays as well as np.dot().

(gh-23322)

Explicitly show keys of .npz file in repr

NpzFile shows keys of loaded .npz file when printed.

>>> npzfile = np.load('arr.npz')
>>> npzfile
NpzFile 'arr.npz' with keys arr_0, arr_1, arr_2, arr_3, arr_4...

(gh-23357)

NumPy now exposes DType classes in np.dtypes

The new numpy.dtypes module now exposes DType classes and will contain
future dtype related functionality. Most users should have no need to
use these classes directly.

(gh-23358)

Drop dtype metadata before saving in .npy or .npz files

Currently, a *.npy file containing a table with a dtype with metadata cannot
be read back. Now, np.save and np.savez drop metadata before saving.

(gh-23371)

numpy.lib.recfunctions.structured_to_unstructured returns views in more cases

structured_to_unstructured now returns a view, if the stride between
the fields is constant. Prior, padding between the fields or a reversed
field would lead to a copy. This change only applies to ndarray,
memmap and recarray. For all other array subclasses, the behavior
remains unchanged.

(gh-23652)

Signed and unsigned integers always compare correctly

When uint64 and int64 are mixed in NumPy, NumPy typically promotes
both to float64. This behavior may be argued about but is confusing
for comparisons ==, <=, since the results returned can be incorrect
but the conversion is hidden since the result is a boolean. NumPy will
now return the correct results for these by avoiding the cast to float.

(gh-23713)

Performance improvements and changes

Faster np.argsort on AVX-512 enabled processors

32-bit and 64-bit quicksort algorithm for np.argsort gain up to 6x speed
up on processors that support AVX-512 instruction set.

Thanks to Intel corporation for sponsoring
this work.

(gh-23707)

Faster np.sort on AVX-512 enabled processors

Quicksort for 16-bit and 64-bit dtypes gain up to 15x and 9x speed up on
processors that support AVX-512 instruction set.

Thanks to Intel corporation for sponsoring
this work.

(gh-22315)

__array_function__ machinery is now much faster

The overhead of the majority of functions in NumPy is now smaller
especially when keyword arguments are used. This change significantly
speeds up many simple function calls.

(gh-23020)

ufunc.at can be much faster

Generic ufunc.at can be up to 9x faster. The conditions for this
speedup:

  • operands are aligned
  • no casting

If ufuncs with appropriate indexed loops on 1d arguments with the above
conditions, ufunc.at can be up to 60x faster (an additional 7x
speedup). Appropriate indexed loops have been added to add,
subtract, multiply, floor_divide, maximum, minimum, fmax,
and fmin.

The internal logic is similar to the logic used for regular ufuncs,
which also have fast paths.

Thanks to the D. E. Shaw group for sponsoring
this work.

(gh-23136)

Faster membership test on NpzFile

Membership test on NpzFile will no longer decompress the archive if it
is successful.

(gh-23661)

Changes

np.r_[] and np.c_[] with certain scalar values

In rare cases, using mainly np.r_ with scalars can lead to different
results. The main potential changes are highlighted by the following:

>>> np.r_[np.arange(5, dtype=np.uint8), -1].dtype
int16  # rather than the default integer (int64 or int32)
>>> np.r_[np.arange(5, dtype=np.int8), 255]
array([  0,   1,   2,   3,   4, 255], dtype=int16)

Where the second example returned:

array([ 0,  1,  2,  3,  4, -1], dtype=int8)

The first one is due to a signed integer scalar with an unsigned integer
array, while the second is due to 255 not fitting into int8 and
NumPy currently inspecting values to make this work. (Note that the
second example is expected to change in the future due to
NEP 50 <NEP50>{.interpreted-text role="ref"}; it will then raise an
error.)

(gh-22539)

Most NumPy functions are wrapped into a C-callable

To speed up the __array_function__ dispatching, most NumPy functions
are now wrapped into C-callables and are not proper Python functions or
C methods. They still look and feel the same as before (like a Python
function), and this should only improve performance and user experience
(cleaner tracebacks). However, please inform the NumPy developers if
this change confuses your program for some reason.

(gh-23020)

C++ standard library usage

NumPy builds now depend on the C++ standard library, because the
numpy.core._multiarray_umath extension is linked with the C++ linker.

(gh-23601)

Checksums

MD5
4657f046d9d9d62e4baeae9b2cc1b4ea  numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
f57f98fee3da2d98f752f755a880a508  numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
72b0ad52f96a41a7a82f511cb35c7ef1  numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a61227341b8903fa66ab0e0fdaa15430  numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bfccabfbd866c59545ce11ecdac60701  numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
22402904f194376b8d2de01481f04b03  numpy-1.25.0-cp310-cp310-win32.whl
e983b193f7d63568eac85d8bda8be62e  numpy-1.25.0-cp310-cp310-win_amd64.whl
5f6477db172f59a4fd7f591e1007e632  numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
6a85cca47af69e3d45b4efab9490af4d  numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ad1c0b4b406c9a2f1b42792502bc456b  numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
39e241f265611a9c1e89499054ead1c9  numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e36b37acf1acfbc185face67c67bfe09  numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
67862d7849b4f0f943760142f1628aed  numpy-1.25.0-cp311-cp311-win32.whl
6e8ed7865792246cac2213bad404f4da  numpy-1.25.0-cp311-cp311-win_amd64.whl
25e843425697364f50dd7288ff9d2ce1  numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
58641e53bcb1e13dfed1f5af1aff94bc  numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
ce15327793c39beecee8401356bc6c9b  numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
34b734a2c7698d59954c29fe7c0536f3  numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6652d9df23c84e54466b10f4a2a290be  numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
c228105e3c4c8887823d99e35eea9d2b  numpy-1.25.0-cp39-cp39-win32.whl
1322210ae6a874293d13c4bb3abf24ee  numpy-1.25.0-cp39-cp39-win_amd64.whl
dc36096628e65077c2a44c493606c668  numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
942b4276f8d563efb111921d5995834c  numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0fa0734a8ff952dd643e7b9826168099  numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
b236497153bc19b4a560ac485e4c2754  numpy-1.25.0.tar.gz
SHA256
8aa130c3042052d656751df5e81f6d61edff3e289b5994edcf77f54118a8d9f4  numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
9e3f2b96e3b63c978bc29daaa3700c028fe3f049ea3031b58aa33fe2a5809d24  numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
d6b267f349a99d3908b56645eebf340cb58f01bd1e773b4eea1a905b3f0e4208  numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4aedd08f15d3045a4e9c648f1e04daca2ab1044256959f1f95aafeeb3d794c16  numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6d183b5c58513f74225c376643234c369468e02947b47942eacbb23c1671f25d  numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
d76a84998c51b8b68b40448ddd02bd1081bb33abcdc28beee6cd284fe11036c6  numpy-1.25.0-cp310-cp310-win32.whl
c0dc071017bc00abb7d7201bac06fa80333c6314477b3d10b52b58fa6a6e38f6  numpy-1.25.0-cp310-cp310-win_amd64.whl
4c69fe5f05eea336b7a740e114dec995e2f927003c30702d896892403df6dbf0  numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
9c7211d7920b97aeca7b3773a6783492b5b93baba39e7c36054f6e749fc7490c  numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ecc68f11404930e9c7ecfc937aa423e1e50158317bf67ca91736a9864eae0232  numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e559c6afbca484072a98a51b6fa466aae785cfe89b69e8b856c3191bc8872a82  numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6c284907e37f5e04d2412950960894b143a648dea3f79290757eb878b91acbd1  numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
95367ccd88c07af21b379be1725b5322362bb83679d36691f124a16357390153  numpy-1.25.0-cp311-cp311-win32.whl
b76aa836a952059d70a2788a2d98cb2a533ccd46222558b6970348939e55fc24  numpy-1.25.0-cp311-cp311-win_amd64.whl
b792164e539d99d93e4e5e09ae10f8cbe5466de7d759fc155e075237e0c274e4  numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
7cd981ccc0afe49b9883f14761bb57c964df71124dcd155b0cba2b591f0d64b9  numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
5aa48bebfb41f93043a796128854b84407d4df730d3fb6e5dc36402f5cd594c0  numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5177310ac2e63d6603f659fadc1e7bab33dd5a8db4e0596df34214eeab0fee3b  numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0ac6edfb35d2a99aaf102b509c8e9319c499ebd4978df4971b94419a116d0790  numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
7412125b4f18aeddca2ecd7219ea2d2708f697943e6f624be41aa5f8a9852cc4  numpy-1.25.0-cp39-cp39-win32.whl
26815c6c8498dc49d81faa76d61078c4f9f0859ce7817919021b9eba72b425e3  numpy-1.25.0-cp39-cp39-win_amd64.whl
5b1b90860bf7d8a8c313b372d4f27343a54f415b20fb69dd601b7efe1029c91e  numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
85cdae87d8c136fd4da4dad1e48064d700f63e923d5af6c8c782ac0df8044542  numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc3fda2b36482891db1060f00f881c77f9423eead4c3579629940a3e12095fe8  numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
f1accae9a28dc3cda46a91de86acf69de0d1b5f4edd44a9b0c3ceb8036dfff19  numpy-1.25.0.tar.gz

v1.24.4

Compare Source

NumPy 1.24.4 Release Notes

NumPy 1.24.4 is a maintenance release that fixes a few bugs
discovered after the 1.24.3 release. It is the last planned
release in the 1.24.x cycle. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 4 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Sebastian Berg
  • Hongyang Peng +

Pull requests merged

A total of 6 pull requests were merged for this release.

  • #​23720: MAINT, BLD: Pin rtools to version 4.0 for Windows builds.
  • #​23739: BUG: fix the method for checking local files for 1.24.x
  • #​23760: MAINT: Copy rtools installation from install-rtools.
  • #​23761: BUG: Fix masked array ravel order for A (and somewhat K)
  • #​23890: TYP,DOC: Annotate and document the metadata parameter of...
  • #​23994: MAINT: Update rtools installation

Checksums

MD5
25049e3aee79dde29e7a498d3ad13379  numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
579b5c357c918feaef4af03af8afb721  numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
c873a14fa4f0210884db9c05e2904286  numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
110a13ac016286059f0658b52b3646c0  numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fa67218966c0aef4094867cad7703648  numpy-1.24.4-cp310-cp310-win32.whl
6ee768803d8ebac43ee0a04e628a69f9  numpy-1.24.4-cp310-cp310-win_amd64.whl
0c918c16b58cb7f6773ea7d76e0bdaff  numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
20506ae8003faf097c6b3a8915b4140e  numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
902df9d5963e89d88a1939d94207857f  numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2543611d802c141c8276e4868b4d9619  numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
37b23a4e4e148d61dd3a515ac5dbf7ec  numpy-1.24.4-cp311-cp311-win32.whl
25e9f6bee2b65ff2a87588e717f15165  numpy-1.24.4-cp311-cp311-win_amd64.whl
f39a0cc3655a482af7d300bcaff5978e  numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
9ed27941388fdb392e8969169f3fc600  numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
dee3f0c7482f1dc8bd1cd27b9b028a2c  numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0967af29df3caef9fb3520f14e071  numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8572a3a0973fa78355bcb5f737745b47  numpy-1.24.4-cp38-cp38-win32.whl
771c63f2ef0d31466bbb12362a532265  numpy-1.24.4-cp38-cp38-win_amd64.whl
5713d9dc3dff287fb72121fe1960c48d  numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
4e6718e3b655219a2a733b4fa242ca32  numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
31487f9a52ef81f8f88ec7fce8738dad  numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea597b30187e55eb16ee31631e66f60d  numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98adbf30c67154056474001c125f6188  numpy-1.24.4-cp39-cp39-win32.whl
49c444b0e572ef45f1d92c106a36004e  numpy-1.24.4-cp39-cp39-win_amd64.whl
cdddfdeac437b0f20b4e366f00b5c42e  numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
3778338c15628caa3abd61e6f7bd46ec  numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e16bd49d5295dc1b01ed50d76229fb54  numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
3f3995540a17854a29dc79f8eeecd832  numpy-1.24.4.tar.gz
SHA256
c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64  numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1  numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4  numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6  numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc  numpy-1.24.4-cp310-cp310-win32.whl
b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e  numpy-1.24.4-cp310-cp310-win_amd64.whl
f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810  numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254  numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7  numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5  numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d  numpy-1.24.4-cp311-cp311-win32.whl
b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694  numpy-1.24.4-cp311-cp311-win_amd64.whl
1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61  numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f  numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e  numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc  numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2  numpy-1.24.4-cp38-cp38-win32.whl
692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706  numpy-1.24.4-cp38-cp38-win_amd64.whl
2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400  numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f  numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9  numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d  numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835  numpy-1.24.4-cp39-cp39-win32.whl
befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8  numpy-1.24.4-cp39-cp39-win_amd64.whl
31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef  numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a  numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2  numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463  numpy-1.24.4.tar.gz

v1.24.3

Compare Source

NumPy 1.24.3 Release Notes

NumPy 1.24.3 is a maintenance release that fixes bugs and regressions
discovered after the 1.24.2 release. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 12 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aleksei Nikiforov +
  • Alexander Heger
  • Bas van Beek
  • Bob Eldering
  • Brock Mendel
  • Charles Harris
  • Kyle Sunden
  • Peter Hawkins
  • Rohit Goswami
  • Sebastian Berg
  • Warren Weckesser
  • dependabot[bot]
Pull requests merged

A total of 17 pull requests were merged for this release.

  • #​23206: BUG: fix for f2py string scalars (#​23194)
  • #​23207: BUG: datetime64/timedelta64 comparisons return NotImplemented
  • #​23208: MAINT: Pin matplotlib to version 3.6.3 for refguide checks
  • #​23221: DOC: Fix matplotlib error in documentation
  • #​23226: CI: Ensure submodules are initialized in gitpod.
  • #​23341: TYP: Replace duplicate reduce in ufunc type signature with reduceat.
  • #​23342: TYP: Remove duplicate CLIP/WRAP/RAISE in __init__.pyi.
  • #​23343: TYP: Mark d argument to fftfreq and rfftfreq as optional...
  • #​23344: TYP: Add type annotations for comparison operators to MaskedArray.
  • #​23345: TYP: Remove some stray type-check-only imports of msort
  • #​23370: BUG: Ensure like is only stripped for like= dispatched functions
  • #​23543: BUG: fix loading and storing big arrays on s390x
  • #​23544: MAINT: Bump larsoner/circleci-artifacts-redirector-action
  • #​23634: BUG: Ignore invalid and overflow warnings in masked setitem
  • #​23635: BUG: Fix masked array raveling when order="A" or order="K"
  • #​23636: MAINT: Update conftest for newer hypothesis versions
  • #​23637: BUG: Fix bug in parsing F77 style string arrays.
Checksums
MD5
93a3ce07e3773842c54d831f18e3eb8d  numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl
39691ff3d1612438dfcd3266c9765aab  numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl
a99234799a239e7e9c6fa15c212996df  numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3673aa638746851dd19d5199e1eb3a91  numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3c72962360bcd0938a6bddee6cdca766  numpy-1.24.3-cp310-cp310-win32.whl
a3329efa646012fa4ee06ce5e08eadaf  numpy-1.24.3-cp310-cp310-win_amd64.whl
5323fb0323d1ec10ee3c35a2fa79cbcd  numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
cfa001dcd07cdf6414ced433e88959d4  numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl
d75bbfb06ed00d04232dce0e865eb42c  numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fe18b810bcf284572467ce585dbc533b  numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e97699a4ef96a81e0916bdf15440abe0  numpy-1.24.3-cp311-cp311-win32.whl
e6de5b7d77dc43ed47f516eb10bbe8b6  numpy-1.24.3-cp311-cp311-win_amd64.whl
dd04ebf441a8913f4900b56e7a33a75e  numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl
e47ac5521b0bfc3effb040072d8a7902  numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl
7b7dae3309e7ca8a8859633a5d337431  numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8cc87b88163ed84e70c48fd0f5f8f20e  numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
350934bae971d0ebe231a59b640069db  numpy-1.24.3-cp38-cp38-win32.whl
c4708ef009bb5d427ea94a4fc4a10e12  numpy-1.24.3-cp38-cp38-win_amd64.whl
44b08a293a4e12d62c27b8f15ba5664e  numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl
3ae7ac30f86c720e42b2324a0ae1adf5  numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl
065464a8d918c670c7863d1e72e3e6dd  numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1f163b9ea417c253e84480aa8d99dee6  numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c86e648389e333e062bea11c749b9a32  numpy-1.24.3-cp39-cp39-win32.whl
bfe332e577c604d6d62a57381e6aa0a6  numpy-1.24.3-cp39-cp39-win_amd64.whl
374695eeef5aca32a5b7f2f518dd3ba1  numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
6abd9dba54405182e6e7bb32dbe377bb  numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0848bd41c08dd5ebbc5a7f0788678e0e  numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl
89e5e2e78407032290ae6acf6dcaea46  numpy-1.24.3.tar.gz
SHA256
3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570  numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl
202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7  numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl
8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463  numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6  numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b  numpy-1.24.3-cp310-cp310-win32.whl
ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7  numpy-1.24.3-cp310-cp310-win_amd64.whl
9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3  numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf  numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl
76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385  numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950  numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096  numpy-1.24.3-cp311-cp311-win32.whl
5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80  numpy-1.24.3-cp311-cp311-win_amd64.whl
7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078  numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl
ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c  numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl
ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c  numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f  numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4  numpy-1.24.3-cp38-cp38-win32.whl
56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289  numpy-1.24.3-cp38-cp38-win_amd64.whl
4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4  numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl
0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187  numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl
ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02  numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4  numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c  numpy-1.24.3-cp39-cp39-win32.whl
d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17  numpy-1.24.3-cp39-cp39-win_amd64.whl
352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0  numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812  numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4  numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl
ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155  numpy-1.24.3.tar.gz

v1.24.2

Compare Source

NumPy 1.24.2 Release Notes

NumPy 1.24.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.24.1 release. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 14 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Khem Raj +
  • Mark Harfouche
  • Matti Picus
  • Panagiotis Zestanakis +
  • Peter Hawkins
  • Pradipta Ghosh
  • Ross Barnowski
  • Sayed Adel
  • Sebastian Berg
  • Syam Gadde +
  • dmbelov +
  • pkubaj +

Pull requests merged

A total of 17 pull requests were merged for this release.

  • #​22965: MAINT: Update python 3.11-dev to 3.11.
  • #​22966: DOC: Remove dangling deprecation warning
  • #​22967: ENH: Detect CPU features on FreeBSD/powerpc64*
  • #​22968: BUG: np.loadtxt cannot load text file with quoted fields separated...
  • #​22969: TST: Add fixture to avoid issue with randomizing test order.
  • #​22970: BUG: Fix fill violating read-only flag. (#​22959)
  • #​22971: MAINT: Add additional information to missing scalar AttributeError
  • #​22972: MAINT: Move export for scipy arm64 helper into main module
  • #​22976: BUG, SIMD: Fix spurious invalid exception for sin/cos on arm64/clang
  • #​22989: BUG: Ensure correct loop order in sin, cos, and arctan2
  • #​23030: DOC: Add version added information for the strict parameter in...
  • #​23031: BUG: use _Alignof rather than offsetof() on most compilers
  • #​23147: BUG: Fix for npyv__trunc_s32_f32 (VXE)
  • #​23148: BUG: Fix integer / float scalar promotion
  • #​23149: BUG: Add missing <type_traits> header.
  • #​23150: TYP, MAINT: Add a missing explicit Any parameter to the npt.ArrayLike...
  • #​23161: BLD: remove redundant definition of npy_nextafter [wheel build]

Checksums

MD5
73fe0b507f56c0baf43171a76ad2003f  numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl
2dbbe6f8a14e14978d24de9fcc8b49fe  numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl
9ddadbf9cac2742318d8b292cb9ca579  numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
969f4f33baaff53dbbbaf1a146c43534  numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6df575dff02feac835d22debb15d190e  numpy-1.24.2-cp310-cp310-win32.whl
2f939228a8c33265f2a8a1fce349d6f1  numpy-1.24.2-cp310-cp310-win_amd64.whl
c093e61421be01ffff435387839949f1  numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl
03d71e3d9a086b56837c461fd7c9188b  numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl
c0dc33697d156e2b9a029095efeb1b10  numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
13b57957a1f40e13f8826d14b031a6fe  numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5afd966db0b59655618c1859d98d87f6  numpy-1.24.2-cp311-cp311-win32.whl
e0b850f9c20871cd65ecb35235688f4d  numpy-1.24.2-cp311-cp311-win_amd64.whl
9a30452135ab0387b8ea9007e94e9f81  numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl
bdd6eede4524a230574b37e1f631f2c0  numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl
4f930a9030d77d45a1cb6f374c91fb53  numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e77155c010f9dd63ea2815579a28c503  numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1a45f4373945eaeabeaa4020ce04e8fd  numpy-1.24.2-cp38-cp38-win32.whl
66e93d70fad16b4ccb4531e31aad36e3  numpy-1.24.2-cp38-cp38-win_amd64.whl
93a4984da83c6811367d3daf709ed25c  numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl
e0281b96c490ba00f1382eb3984b4e51  numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl
ce97d81e4ae6e10241d471492391b1be  numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c0ea440190705f98abeaa856e7da690  numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c25f7fbb185f1b8f7761bc22082d9939  numpy-1.24.2-cp39-cp39-win32.whl
7705c6b0bcf22b5e64cf248144b2f554  numpy-1.24.2-cp39-cp39-win_amd64.whl
07b6361e36e0093b580dc05799b1f03d  numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4c1466ae486b39d1a35aacb46256ec1e  numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4fea9d95e0489d06c3a24a87697d2fc0  numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl
c4212a8da1ecf17ece37e2afd0319806  numpy-1.24.2.tar.gz
SHA256
eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d  numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl
e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5  numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl
6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253  numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978  numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9  numpy-1.24.2-cp310-cp310-win32.whl
97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0  numpy-1.24.2-cp310-cp310-win_amd64.whl
7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a  numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl
4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0  numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl
4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281  numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910  numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95  numpy-1.24.2-cp311-cp311-win32.whl
557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04  numpy-1.24.2-cp311-cp311-win_amd64.whl
d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2  numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl
c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5  numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl
c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a  numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96  numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d  numpy-1.24.2-cp38-cp38-win32.whl
76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756  numpy-1.24.2-cp38-cp38-win_amd64.whl
4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a  numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl
adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f  numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl
889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb  numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780  numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468  numpy-1.24.2-cp39-cp39-win32.whl
a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5  numpy-1.24.2-cp39-cp39-win_amd64.whl
92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d  numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa  numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f  numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl
003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22  numpy-1.24.2.tar.gz

v1.24.1

Compare Source

NumPy 1.24.1 Release Notes

NumPy 1.24.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.24.0 release. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 12 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Ben Greiner +
  • Charles Harris
  • Clément Robert
  • Matteo Raso
  • Matti Picus
  • Melissa Weber Mendonça
  • Miles Cranmer
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg

Pull requests merged

A total of 18 pull requests were merged for this release.

  • #​22820: BLD: add workaround in setup.py for newer setuptools
  • #​22830: BLD: CIRRUS_TAG redux
  • #​22831: DOC: fix a couple typos in 1.23 notes
  • #​22832: BUG: Fix refcounting errors found using pytest-leaks
  • #​22834: BUG, SIMD: Fix invalid value encountered in several ufuncs
  • #​22837: TST: ignore more np.distutils.log imports
  • #​22839: BUG: Do not use getdata() in np.ma.masked_invalid
  • #​22847: BUG: Ensure correct behavior for rows ending in delimiter in...
  • #​22848: BUG, SIMD: Fix the bitmask of the boolean comparison
  • #​22857: BLD: Help raspian arm + clang 13 about __builtin_mul_overflow
  • #​22858: API: Ensure a full mask is returned for masked_invalid
  • #​22866: BUG: Polynomials now copy properly (#​22669)
  • #​22867: BUG, SIMD: Fix memory overlap in ufunc comparison loops
  • #​22868: BUG: Fortify string casts against floating point warnings
  • #​22875: TST: Ignore nan-warnings in randomized out tests
  • #​22883: MAINT: restore npymath implementations needed for freebsd
  • #​22884: BUG: Fix integer overflow in in1d for mixed integer dtypes #​22877
  • #​22887: BUG: Use whole file for encoding checks with charset_normalizer.

Checksums

MD5
9e543db90493d6a00939bd54c2012085  numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
4ebd7af622bf617b4876087e500d7586  numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
0c0a3012b438bb455a6c2fadfb1be76a  numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0bddb527345449df624d3cb9aa0e1b75  numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b246beb773689d97307f7b4c2970f061  numpy-1.24.1-cp310-cp310-win32.whl
1f3823999fce821a28dee10ac6fdd721  numpy-1.24.1-cp310-cp310-win_amd64.whl
8eedcacd6b096a568e4cb393d43b3ae5  numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
50bddb05acd54b4396100a70522496dd  numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
2a76bd9da8a78b44eb816bd70fa3aee3  numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9e86658a414272f9749bde39344f9b76  numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
915dfb89054e1631574a22a9b53a2b25  numpy-1.24.1-cp311-cp311-win32.whl
ab7caa2c6c20e1fab977e1a94dede976  numpy-1.24.1-cp311-cp311-win_amd64.whl
8246de961f813f5aad89bca3d12f81e7  numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
58366b1a559baa0547ce976e416ed76d  numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
a96f29bf106a64f82b9ba412635727d1  numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c32a43bdb85121614ab3e99929e33c7  numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b20949ed21683ad7c9cbdf9ebb2439  numpy-1.24.1-cp38-cp38-win32.whl
9e9f1577f874286a8bdff8dc5551eb9f  numpy-1.24.1-cp38-cp38-win_amd64.whl
4383c1137f0287df67c364fbdba2bc72  numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
987f22c49b2be084b5d72f88f347d31e  numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
848ad020bba075ed8f19072c64dcd153  numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
864b159e644848bc25f881907dbcf062  numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
db339ec0b2693cac2d7cf9ca75c334b1  numpy-1.24.1-cp39-cp39-win32.whl
fec91d4c85066ad8a93816d71b627701  numpy-1.24.1-cp39-cp39-win_amd64.whl
619af9cd4f33b668822ae2350f446a15  numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
46f19b4b147f8836c2bd34262fabfffa  numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e85b245c57a10891b3025579bf0cf298  numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
dd3aaeeada8e95cc2edf9a3a4aa8b5af  numpy-1.24.1.tar.gz
SHA256
179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7  numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9  numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7  numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398  numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2  numpy-1.24.1-cp310-cp310-win32.whl
b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2  numpy-1.24.1-cp310-cp310-win_amd64.whl
7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8  numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032  numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1  numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9  numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36  numpy-1.24.1-cp311-cp311-win32.whl
de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51  numpy-1.24.1-cp311-cp311-win_amd64.whl
b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407  numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954  numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36  numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7  numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1  numpy-1.24.1-cp38-cp38-win32.whl
6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c  numpy-1.24.1-cp38-cp38-win_amd64.whl
28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6  numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7  numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700  numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf  numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f  numpy-1.24.1-cp39-cp39-win32.whl
ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e  numpy-1.24.1-cp39-cp39-win_amd64.whl
ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d  numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086  numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566  numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2  numpy-1.24.1.tar.gz

v1.24.0

Compare Source

NumPy 1.24 Release Notes

The NumPy 1.24.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There are also a large number of new and
expired deprecations due to changes in promotion and cleanups. This
might be called a deprecation release. Highlights are

  • Many new deprecations, check them out.
  • Many expired deprecations,
  • New F2PY features and fixes.
  • New "dtype" and "casting" keywords for stacking functions.

See below for the details,

This release supports Python versions 3.8-3.11.

Deprecations

Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose

The numpy.fastCopyAndTranspose function has been deprecated. Use the
corresponding copy and transpose methods directly:

arr.T.copy()

The underlying C function PyArray_CopyAndTranspose has also been
deprecated from the NumPy C-API.

(gh-22313)

Conversion of out-of-bound Python integers

Attempting a conversion from a Python integer to a NumPy value will now
always check whether the result can be represented by NumPy. This means
the following examples will fail in the future and give a
DeprecationWarning now:

np.uint8(-1)
np.array([3000], dtype=np.int8)

Many of these did succeed before. Such code was mainly useful for
unsigned integers with negative values such as np.uint8(-1) giving
np.iinfo(np.uint8).max.

Note that conversion between NumPy integers is unaffected, so that
np.array(-1).astype(np.uint8) continues to work and use C integer
overflow logic. For negative values, it will also work to view the
array: np.array(-1, dtype=np.int8).view(np.uint8). In some cases,
using np.iinfo(np.uint8).max or val % 2**8 may also work well.

In rare cases input data may mix both negative values and very large
unsigned values (i.e. -1 and 2**63). There it is unfortunately
necessary to use % on the Python value or use signed or unsigned
conversion depending on whether negative values are expected.

(gh-22385)

Deprecate msort

The numpy.msort function is deprecated. Use np.sort(a, axis=0)
instead.

(gh-22456)

np.str0 and similar are now deprecated

The scalar type aliases ending in a 0 bit size: np.object0, np.str0,
np.bytes0, np.void0, np.int0, np.uint0 as well as np.bool8 are
now deprecated and will eventually be removed.

(gh-22607)

Expired deprecations

  • The normed keyword argument has been removed from
    [np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and
    [np.histogramdd]{.title-ref}. Use density instead. If normed was
    passed by position, density is now used.

    (gh-21645)

  • Ragged array creation will now always raise a ValueError unless
    dtype=object is passed. This includes very deeply nested
    sequences.

    (gh-22004)

  • Support for Visual Studio 2015 and earlier has been removed.

  • Support for the Windows Interix POSIX interop layer has been
    removed.

    (gh-22139)

  • Support for Cygwin < 3.3 has been removed.

    (gh-22159)

  • The mini() method of np.ma.MaskedArray has been removed. Use
    either np.ma.MaskedArray.min() or np.ma.minimum.reduce().

  • The single-argument form of np.ma.minimum and np.ma.maximum has
    been removed. Use np.ma.minimum.reduce() or
    np.ma.maximum.reduce() instead.

    (gh-22228)

  • Passing dtype instances other than the canonical (mainly native
    byte-order) ones to dtype= or signature= in ufuncs will now
    raise a TypeError. We recommend passing the strings "int8" or
    scalar types np.int8 since the byte-order, datetime/timedelta
    unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.)

    (gh-22540)

  • The dtype= argument to comparison ufuncs is now applied correctly.
    That means that only bool and object are valid values and
    dtype=object is enforced.

    (gh-22541)

  • The deprecation for the aliases np.object, np.bool, np.float,
    np.complex, np.str, and np.int is expired (introduces NumPy
    1.20). Some of these will now give a FutureWarning in addition to
    raising an error since they will be mapped to the NumPy scalars in
    the future.

    (gh-22607)

Compatibility notes

array.fill(scalar) may behave slightly different

numpy.ndarray.fill may in some cases behave slightly different now due
to the fact that the logic is aligned with item assignment:

arr = np.array([1])  # with any dtype/value
arr.fill(scalar)

is now identical to:

arr[0] = scalar

Previously casting may have produced slightly different answers when
using values that could not be represented in the target dtype or when
the target had object dtype.

(gh-20924)

Subarray to object cast now copies

Casting a dtype that includes a subarray to an object will now ensure a
copy of the subarray. Previously an unsafe view was returned:

arr = np.ones(3, dtype=[("f", "i", 3)])
subarray_fields = arr.astype(object)[0]
subarray = subarray_fields[0]  # "f" field

np.may_share_memory(subarray, arr)

Is now always false. While previously it was true for the specific cast.

(gh-21925)

Returned arrays respect uniqueness of dtype kwarg objects

When the dtype keyword argument is used with
:pynp.array(){.interpreted-text role="func"} or
:pyasarray(){.interpreted-text role="func"}, the dtype of the returned
array now always exactly matches the dtype provided by the caller.

In some cases this change means that a view rather than the input
array is returned. The following is an example for this on 64bit Linux
where long and longlong are the same precision but different
dtypes:

>>> arr = np.array([1, 2, 3], dtype="long")
>>> new_dtype = np.dtype("longlong")
>>> new = np.asarray(arr, dtype=new_dtype)
>>> new.dtype is new_dtype
True
>>> new is arr
False

Before the change, the dtype did not match because new is arr was
True.

(gh-21995)

DLPack export raises BufferError

When an array buffer cannot be exported via DLPack a BufferError is
now always raised where previously TypeError or RuntimeError was
raised. This allows falling back to the buffer protocol or
__array_interface__ when DLPack was tried first.

(gh-22542)

NumPy builds are no longer tested on GCC-6

Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available
on Ubuntu 20.04, so builds using that compiler are no longer tested. We
still test builds using GCC-7 and GCC-8.

(gh-22598)

New Features

New attribute symbol added to polynomial classes

The polynomial classes in the numpy.polynomial package have a new
symbol attribute which is used to represent the indeterminate of the
polynomial. This can be used to change the value of the variable when
printing:

>>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y")
>>> print(P_y)
1.0 + 0.0·y¹ - 1.0·y²

Note that the polynomial classes only support 1D polynomials, so
operations that involve polynomials with different symbols are
disallowed when the result would be multivariate:

>>> P = np.polynomial.Polynomial([1, -1])  # default symbol is "x"
>>> P_z = np.polynomial.Polynomial([1, 1], symbol="z")
>>> P * P_z
Traceback (most recent call last)
   ...
ValueError: Polynomial symbols differ

The symbol can be any valid Python identifier. The default is
symbol=x, consistent with existing behavior.

(gh-16154)

F2PY support for Fortran character strings

F2PY now supports wrapping Fortran functions with:

  • character (e.g. character x)
  • character array (e.g. character, dimension(n) :: x)
  • character string (e.g. character(len=10) x)
  • and character string array (e.g.
    character(len=10), dimension(n, m) :: x)

arguments, including passing Python unicode strings as Fortran character
string arguments.

(gh-19388)

New function np.show_runtime

A new function numpy.show_runtime has been added to display the
runtime information of the machine in addition to numpy.show_config
which displays the build-related information.

(gh-21468)

strict option for testing.assert_array_equal

The strict option is now available for testing.assert_array_equal.
Setting strict=True will disable the broadcasting behaviour for
scalars and ensure that input arrays have the same data type.

(gh-21595)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and
return a single NaN. Setting equal_nan=False will restore pre-1.21
behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

casting and dtype keyword arguments for numpy.stack

The casting and dtype keyword arguments are now available for
numpy.stack. To use them, write
np.stack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.vstack

The casting and dtype keyword arguments are now available for
numpy.vstack. To use them, write
np.vstack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.hstack

The casting and dtype keyword arguments are now available for
numpy.hstack. To use them, write
np.hstack(..., dtype=None, casting='same_kind').

(gh-21627)

The bit generator underlying the singleton RandomState can be changed

The singleton RandomState instance exposed in the numpy.random
module is initialized at startup with the MT19937 bit generator. The
new function set_bit_generator allows the default bit generator to be
replaced with a user-provided bit generator. This function has been
introduced to provide a method allowing seamless integration of a
high-quality, modern bit generator in new code with existing code that
makes use of the singleton-provided random variate generating functions.
The companion function get_bit_generator returns the current bit
generator being used by the singleton RandomState. This is provided to
simplify restoring the original source of randomness if required.

The preferred method to generate reproducible random numbers is to use a
modern bit generator in an instance of Generator. The function
default_rng simplifies instantiation:

>>> rg = np.random.default_rng(3728973198)
>>> rg.random()

The same bit generator can then be shared with the singleton instance so
that calling functions in the random module will use the same bit
generator:

>>> orig_bit_gen = np.random.get_bit_generator()
>>> np.random.set_bit_generator(rg.bit_generator)
>>> np.random.normal()

The swap is permanent (until reversed) and so any call to functions in
the random module will use the new bit generator. The original can be
restored if required for code to run correctly:

>>> np.random.set_bit_generator(orig_bit_gen)

(gh-21976)

np.void now has a dtype argument

NumPy now allows constructing structured void scalars directly by
passing the dtype argument to np.void.

(gh-22316)

Improvements

F2PY Improvements
  • The generated extension modules don't use the deprecated NumPy-C
    API anymore
  • Improved f2py generated exception messages
  • Numerous bug and flake8 warning fixes
  • various CPP macros that one can use within C-expressions of
    signature files are prefixed with f2py_. For example, one should
    use f2py_len(x) instead of len(x)
  • A new construct character(f2py_len=...) is introduced to support
    returning assumed length character strings (e.g. character(len=*))
    from wrapper functions

A hook to support rewriting f2py internal data structures after
reading all its input files is introduced. This is required, for
instance, for BC of SciPy support where character arguments are treated
as character strings arguments in C expressions.

(gh-19388)

IBM zSystems Vector Extension Facility (SIMD)

Added support for SIMD extensions of zSystem (z13, z14, z15), through
the universal intrinsics interface. This support leads to performance
improvements for all SIMD kernels implemented using the universal
intrinsics, including the following operations: rint, floor, trunc,
ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal,
not_equal, greater, greater_equal, less, less_equal, maximum, minimum,
fmax, fmin, argmax, argmin, add, subtract, multiply, divide.

(gh-20913)

NumPy now gives floating point errors in casts

In most cases, NumPy previously did not give floating point warnings or
errors when these happened during casts. For examples, casts like:

np.array([2e300]).astype(np.float32)  # overflow for float32
np.array([np.inf]).astype(np.int64)

Should now generally give floating point warnings. These warnings should
warn that floating point overflow occurred. For errors when converting
floating point values to integers users should expect invalid value
warnings.

Users can modify the behavior of these warnings using np.errstate.

Note that for float to int casts, the exact warnings that are given may
be platform dependent. For example:

arr = np.full(100, value=1000, dtype=np.float64)
arr.astype(np.int8)

May give a result equivalent to (the intermediate cast means no warning
is given):

arr.astype(np.int64).astype(np.int8)

May return an undefined result, with a warning set:

RuntimeWarning: invalid value encountered in cast

The precise behavior is subject to the C99 standard and its
implementation in both software and hardware.

(gh-21437)

F2PY supports the value attribute

The Fortran standard requires that variables declared with the value
attribute must be passed by value instead of reference. F2PY now
supports this use pattern correctly. So
integer, intent(in), value :: x in Fortran codes will have correct
wrappers generated.

(gh-21807)

Added pickle support for third-party BitGenerators

The pickle format for bit generators was extended to allow each bit
generator to supply its own constructor when during pickling. Previous
versions of NumPy only supported unpickling Generator instances
created with one of the core set of bit generators supplied with NumPy.
Attempting to unpickle a Generator that used a third-party bit
generators would fail since the constructor used during the unpickling
was only aware of the bit generators included in NumPy.

(gh-22014)

arange() now explicitly fails with dtype=str

Previously, the np.arange(n, dtype=str) function worked for n=1 and
n=2, but would raise a non-specific exception message for other values
of n. Now, it raises a [TypeError]{.title-ref} informing that arange
does not support string dtypes:

>>> np.arange(2, dtype=str)
Traceback (most recent call last)
   ...
TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>.

(gh-22055)

numpy.typing protocols are now runtime checkable

The protocols used in numpy.typing.ArrayLike and
numpy.typing.DTypeLike are now properly marked as runtime checkable,
making them easier to use for runtime type checkers.

(gh-22357)

Performance improvements and changes

Faster version of np.isin and np.in1d for integer arrays

np.in1d (used by np.isin) can now switch to a faster algorithm (up
to >10x faster) when it is passed two integer arrays. This is often
automatically used, but you can use kind="sort" or kind="table" to
force the old or new method, respectively.

(gh-12065)

Faster comparison operators

The comparison functions (numpy.equal, numpy.not_equal,
numpy.less, numpy.less_equal, numpy.greater and
numpy.greater_equal) are now much faster as they are now vectorized
with universal intrinsics. For a CPU with SIMD extension AVX512BW, the
performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and
boolean data types, respectively (with N=50000).

(gh-21483)

Changes

Better reporting of integer division overflow

Integer division overflow of scalars and arrays used to provide a
RuntimeWarning and the return value was undefined leading to crashes
at rare occasions:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)

Integer division overflow now returns the input dtype's minimum value
and raise the following RuntimeWarning:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: overflow encountered in floor_divide
array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648,
       -2147483648, -2147483648, -2147483648, -2147483648, -2147483648],
      dtype=int32)

(gh-21506)

masked_invalid now modifies the mask in-place

When used with copy=False, numpy.ma.masked_invalid now modifies the
input masked array in-place. This makes it behave identically to
masked_where and better matches the documentation.

(gh-22046)

nditer/NpyIter allows all allocating all operands

The NumPy iterator available through np.nditer in Python and as
NpyIter in C now supports allocating all arrays. The iterator shape
defaults to () in this case. The operands dtype must be provided,
since a "common dtype" cannot be inferred from the other inputs.

(gh-22457)

Checksums

MD5
d60311246bd71b177258ce06e2a4ec57  numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
02022b335938af55cb83bbaebdbff8e1  numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
02b35d6612369fcc614c6223aaec0119  numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b8ad389a9619db3e1f8243fc0cfe63d  numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ff4acbb7b1258ccbd528c151eb0fe84  numpy-1.24.0-cp310-cp310-win32.whl
d194c96601222db97b0af54fce1cfb1d  numpy-1.24.0-cp310-cp310-win_amd64.whl
5fe4eb551a9312e37492da9f5bfb8545  numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
a8e836a768f73e9f509b11c3873c7e09  numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
10404d6d1a5a9624f85018f61110b2be  numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cfdb0cb844f1db9be2cde998be54d65f  numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
73bc66ad3ae8656ba18d64db98feb5e1  numpy-1.24.0-cp311-cp311-win32.whl
4bbc30a53009c48d364d4dc2c612af95  numpy-1.24.0-cp311-cp311-win_amd64.whl
94ce5f6a09605a9675a0d464b1ec6597  numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
e5e42b69a209eda7e6895dda39ea8610  numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
36eb6143d1e2aac3c618275edf636983  numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
712c3718e8b53ff04c626cc4c78492aa  numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0a1a48a8e458bd4ce581169484c17e4f  numpy-1.24.0-cp38-cp38-win32.whl
c8ab7e4b919548663568a5b5a8b5eab4  numpy-1.24.0-cp38-cp38-win_amd64.whl
1783a5d769566111d93c474c79892c01  numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
c9e77130674372c73f8209d58396624d  numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
14c0f2f52f20f13a81bba7df27f30145  numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c106393b46fa0302dbac49b14a4dfed4  numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c83e6d6946f32820f166c3f1ff010ab6  numpy-1.24.0-cp39-cp39-win32.whl
acd5a4737d1094d5f40afa584dbd6d79  numpy-1.24.0-cp39-cp39-win_amd64.whl
26e32f942c9fd62f64fd9bf6df95b5b1  numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4f027df0cc313ca626b106849999de13  numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ac58db9a90d0bec95bc7850b9e462f34  numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
1ca41c84ad9a116402a025d21e35bc64  numpy-1.24.0.tar.gz
SHA256
6e73a1f4f5b74a42abb55bc2b3d869f1b38cbc8776da5f8b66bf110284f7a437  numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
9387c7d6d50e8f8c31e7bfc034241e9c6f4b3eb5db8d118d6487047b922f82af  numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
7ad6a024a32ee61d18f5b402cd02e9c0e22c0fb9dc23751991b3a16d209d972e  numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
73cf2c5b5a07450f20a0c8e04d9955491970177dce8df8d6903bf253e53268e0  numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cec79ff3984b2d1d103183fc4a3361f5b55bbb66cb395cbf5a920a4bb1fd588d  numpy-1.24.0-cp310-cp310-win32.whl
4f5e78b8b710cd7cd1a8145994cfffc6ddd5911669a437777d8cedfce6c83a98  numpy-1.24.0-cp310-cp310-win_amd64.whl
4445f472b246cad6514cc09fbb5ecb7aab09ca2acc3c16f29f8dca6c468af501  numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
ec3e5e8172a0a6a4f3c2e7423d4a8434c41349141b04744b11a90e017a95bad5  numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
f9168790149f917ad8e3cf5047b353fefef753bd50b07c547da0bdf30bc15d91  numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ada6c1e9608ceadaf7020e1deea508b73ace85560a16f51bef26aecb93626a72  numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f3c4a9a9f92734a4728ddbd331e0124eabbc968a0359a506e8e74a9b0d2d419b  numpy-1.24.0-cp311-cp311-win32.whl
90075ef2c6ac6397d0035bcd8b298b26e481a7035f7a3f382c047eb9c3414db0  numpy-1.24.0-cp311-cp311-win_amd64.whl
0885d9a7666cafe5f9876c57bfee34226e2b2847bfb94c9505e18d81011e5401  numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
e63d2157f9fc98cc178870db83b0e0c85acdadd598b134b00ebec9e0db57a01f  numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
cf8960f72997e56781eb1c2ea256a70124f92a543b384f89e5fb3503a308b1d3  numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2f8e0df2ecc1928ef7256f18e309c9d6229b08b5be859163f5caa59c93d53646  numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe44e925c68fb5e8db1334bf30ac1a1b6b963b932a19cf41d2e899cf02f36aab  numpy-1.24.0-cp38-cp38-win32.whl
d7f223554aba7280e6057727333ed357b71b7da7422d02ff5e91b857888c25d1  numpy-1.24.0-cp38-cp38-win_amd64.whl
ab11f6a7602cf8ea4c093e091938207de3068c5693a0520168ecf4395750f7ea  numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
12bba5561d8118981f2f1ff069ecae200c05d7b6c78a5cdac0911f74bc71cbd1  numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
9af91f794d2d3007d91d749ebc955302889261db514eb24caef30e03e8ec1e41  numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b1ddfac6a82d4f3c8e99436c90b9c2c68c0bb14658d1684cdd00f05fab241f5  numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ac4fe68f1a5a18136acebd4eff91aab8bed00d1ef2fdb34b5d9192297ffbbdfc  numpy-1.24.0-cp39-cp39-win32.whl
667b5b1f6a352419e340f6475ef9930348ae5cb7fca15f2cc3afcb530823715e  numpy-1.24.0-cp39-cp39-win_amd64.whl
4d01f7832fa319a36fd75ba10ea4027c9338ede875792f7bf617f4b45056fc3a  numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
dbb0490f0a880700a6cc4d000384baf19c1f4df59fff158d9482d4dbbca2b239  numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0104d8adaa3a4cc60c2777cab5196593bf8a7f416eda133be1f3803dd0838886  numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
c4ab7c9711fe6b235e86487ca74c1b092a6dd59a3cb45b63241ea0a148501853  numpy-1.24.0.tar.gz

v1.23.5

Compare Source

NumPy 1.23.5 Release Notes

NumPy 1.23.5 is a maintenance release that fixes bugs discovered after
the 1.23.4 release and keeps the build infrastructure current. The
Python versions supported for this release are 3.8-3.11.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • Aayush Agrawal +
  • Adam Knapp +
  • Charles Harris
  • Navpreet Singh +
  • Sebastian Berg
  • Tania Allard

Pull requests merged

A total of 10 pull requests were merged for this release.

  • #​22489: TST, MAINT: Replace most setup with setup_method (also teardown)
  • #​22490: MAINT, CI: Switch to cygwin/cygwin-install-action@v2
  • #​22494: TST: Make test_partial_iteration_cleanup robust but require leak...
  • #​22592: MAINT: Ensure graceful handling of large header sizes
  • #​22593: TYP: Spelling alignment for array flag literal
  • #​22594: BUG: Fix bounds checking for random.logseries
  • #​22595: DEV: Update GH actions and Dockerfile for Gitpod
  • #​22596: CI: Only fetch in actions/checkout
  • #​22597: BUG: Decrement ref count in gentype_reduce if allocated memory...
  • #​22625: BUG: Histogramdd breaks on big arrays in Windows

Checksums

MD5
8a412b79d975199cefadb465279fd569  numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
1b56e8e6a0516c78473657abf0710538  numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
c787f4763c9a5876e86a17f1651ba458  numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
db07645022e56747ba3f00c2d742232e  numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c63a6fb7cc16a13aabc82ec57ac6bb4d  numpy-1.23.5-cp310-cp310-win32.whl
3fea9247e1d812600015641941fa273f  numpy-1.23.5-cp310-cp310-win_amd64.whl
4222cfb36e5ac9aec348c81b075e2c05  numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
6c7102f185b310ac70a62c13d46f04e6  numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
6b7319f66bf7ac01b49e2a32470baf28  numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3c60928ddb1f55163801f06ac2229eb0  numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6936b6bcfd6474acc7a8c162a9393b3c  numpy-1.23.5-cp311-cp311-win32.whl
6c9af68b7b56c12c913678cafbdc44d6  numpy-1.23.5-cp311-cp311-win_amd64.whl
699daeac883260d3f182ae4bbbd9bbd2  numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
6c233a36339de0652139e78ef91504d4  numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
57d5439556ab5078c91bdeffd9c0036e  numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8045b59187f2e0ccd4294851adbbb8a  numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7f38f7e560e4bf41490372ab84aa7a38  numpy-1.23.5-cp38-cp38-win32.whl
76095726ba459d7f761b44acf2e56bd1  numpy-1.23.5-cp38-cp38-win_amd64.whl
174befd584bc1b03ed87c8f0d149a58e  numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
9cbac793d77278f5d27a7979b64f6b5b  numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
6e417b087044e90562183b33f3049b09  numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54fa63341eaa6da346d824399e8237f6  numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc14d62a158e99c57f925c86551e45f0  numpy-1.23.5-cp39-cp39-win32.whl
bad36b81e7e84bd7a028affa0659d235  numpy-1.23.5-cp39-cp39-win_amd64.whl
b4d17d6b79a8354a2834047669651963  numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
89f6dc4a4ff63fca6af1223111cd888d  numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
633d574a35b8592bab502ef569b0731e  numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
8b2692a511a3795f3af8af2cd7566a15  numpy-1.23.5.tar.gz
SHA256
9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63  numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d  numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43  numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1  numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280  numpy-1.23.5-cp310-cp310-win32.whl
dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6  numpy-1.23.5-cp310-cp310-win_amd64.whl
ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96  numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa  numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2  numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387  numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0  numpy-1.23.5-cp311-cp311-win32.whl
0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d  numpy-1.23.5-cp311-cp311-win_amd64.whl
f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a  numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9  numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398  numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb  numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07  numpy-1.23.5-cp38-cp38-win32.whl
ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e  numpy-1.23.5-cp38-cp38-win_amd64.whl
8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f  numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de  numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d  numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719  numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481  numpy-1.23.5-cp39-cp39-win32.whl
09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df  numpy-1.23.5-cp39-cp39-win_amd64.whl
abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8  numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135  numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d  numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a  numpy-1.23.5.tar.gz

v1.23.4

Compare Source

NumPy 1.23.4 Release Notes

NumPy 1.23.4 is a maintenance release that fixes bugs discovered after
the 1.23.3 release and keeps the build infrastructure current. The main
improvements are fixes for some annotation corner cases, a fix for a
long time nested_iters memory leak, and a fix of complex vector dot
for very large arrays. The Python versions supported for this release
are 3.8-3.11.

Note that the mypy version needs to be 0.981+ if you test using Python
3.10.7, otherwise the typing tests will fail.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Matthew Barber
  • Matti Picus
  • Ralf Gommers
  • Ross Barnowski
  • Sebastian Berg
  • Sicheng Zeng +

Pull requests merged

A total of 13 pull requests were merged for this release.

  • #​22368: BUG: Add __array_api_version__ to numpy.array_api namespace
  • #​22370: MAINT: update sde toolkit to 9.0, fix download link
  • #​22382: BLD: use macos-11 image on azure, macos-1015 is deprecated
  • #​22383: MAINT: random: remove get_info from "extending with Cython"...
  • #​22384: BUG: Fix complex vector dot with more than NPY_CBLAS_CHUNK elements
  • #​22387: REV: Loosen lookfor's import try/except again
  • #​22388: TYP,ENH: Mark numpy.typing protocols as runtime checkable
  • #​22389: TYP,MAINT: Change more overloads to play nice with pyright
  • #​22390: TST,TYP: Bump mypy to 0.981
  • #​22391: DOC: Update delimiter param description.
  • #​22392: BUG: Memory leaks in numpy.nested_iters
  • #​22413: REL: Prepare for the NumPy 1.23.4 release.
  • #​22424: TST: Fix failing aarch64 wheel builds.

Checksums

MD5
90a3d95982490cfeeef22c0f7cbd874f  numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
c3cae63394db6c82fd2cb5700fc5917d  numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
b3ff0878de205f56c38fd7dcab80081f  numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2b086ca2229209f2f996c2f9a38bf9c  numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
44cc8bb112ca737520cf986fff92dfb0  numpy-1.23.4-cp310-cp310-win32.whl
21c8e5fdfba2ff953e446189379cf0c9  numpy-1.23.4-cp310-cp310-win_amd64.whl
27445a9c85977cb8efa682a4b993347f  numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
11ef4b7dfdaa37604cb881f3ca4459db  numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
b3c77344274f91514f728a454fd471fa  numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
43aef7f984cd63d95c11fb74dd59ef0b  numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
637fe21b585228c9670d6e002bf8047f  numpy-1.23.4-cp311-cp311-win32.whl
f529edf9b849d6e3b8cdb5120ae5b81a  numpy-1.23.4-cp311-cp311-win_amd64.whl
76c61ce36317a7e509663829c6844fd9  numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
2133f6893eef41cd9331c7d0271044c4  numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
5ccb3aa6fb8cb9e20ec336e315d01dec  numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
da71f34a4df0b98e4d9e17906dd57b07  numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a318978f51fb80a17c2381e39194e906  numpy-1.23.4-cp38-cp38-win32.whl
eac810d6bc43830bf151ea55cd0ded93  numpy-1.23.4-cp38-cp38-win_amd64.whl
4cf0a6007abe42564c7380dbf92a26ce  numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
2e005bedf129ce8bafa6f550537f3740  numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
10aa210311fcd19a03f6c5495824a306  numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6301298a67999657a0878b64eeed09f2  numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
76144e575a3c3863ea22e03cdf022d8a  numpy-1.23.4-cp39-cp39-win32.whl
8291dd66ef5451b4db2da55c21535757  numpy-1.23.4-cp39-cp39-win_amd64.whl
7cc095b18690071828b5b620d5ec40e7  numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
63742f15e8bfa215c893136bbfc6444f  numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4ed382e55abc09c89a34db047692f6a6  numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
d9ffd2c189633486ec246e61d4b947a0  numpy-1.23.4.tar.gz
SHA256
95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2  numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f  numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71  numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3  numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd  numpy-1.23.4-cp310-cp310-win32.whl
d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329  numpy-1.23.4-cp310-cp310-win_amd64.whl
488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db  numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f  numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0  numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488  numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79  numpy-1.23.4-cp311-cp311-win32.whl
7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d  numpy-1.23.4-cp311-cp311-win_amd64.whl
7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5  numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6  numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f  numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68  numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dada341ebb79619fe00a291185bba370c9803b1e1d7051610e01ed809ef3a4ba  numpy-1.23.4-cp38-cp38-win32.whl
0fe563fc8ed9dc4474cbf70742673fc4391d70f4363f917599a7fa99f042d5a8  numpy-1.23.4-cp38-cp38-win_amd64.whl
c67b833dbccefe97cdd3f52798d430b9d3430396af7cdb2a0c32954c3ef73894  numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7  numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
12ac457b63ec8ded85d85c1e17d85efd3c2b0967ca39560b307a35a6703a4735  numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
95de7dc7dc47a312f6feddd3da2500826defdccbc41608d0031276a24181a2c0  numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef  numpy-1.23.4-cp39-cp39-win32.whl
f260da502d7441a45695199b4e7fd8ca87db659ba1c78f2bbf31f934fe76ae0e  numpy-1.23.4-cp39-cp39-win_amd64.whl
61be02e3bf810b60ab74e81d6d0d36246dbfb644a462458bb53b595791251911  numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
296d17aed51161dbad3c67ed6d164e51fcd18dbcd5dd4f9d0a9c6055dce30810  numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4d52914c88b4930dafb6c48ba5115a96cbab40f45740239d9f4159c4ba779962  numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
ed2cc92af0efad20198638c69bb0fc2870a58dabfba6eb722c933b48556c686c  numpy-1.23.4.tar.gz

v1.23.3

Compare Source

NumPy 1.23.3 Release Notes

NumPy 1.23.3 is a maintenance release that fixes bugs discovered after
the 1.23.2 release. There is no major theme for this release, the main
improvements are for some downstream builds and some annotation corner
cases. The Python versions supported for this release are 3.8-3.11.

Note that we will move to MacOS 11 for the NumPy 1.23.4 release, the
10.15 version currently used will no longer be supported by our build
infrastructure at that point.

Contributors

A total of 16 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aaron Meurer
  • Bas van Beek
  • Charles Harris
  • Ganesh Kathiresan
  • Gavin Zhang +
  • Iantra Solari+
  • Jyn Spring 琴春 +
  • Matti Picus
  • Rafael Cardoso Fernandes Sousa
  • Rafael Sousa +
  • Ralf Gommers
  • Rin Cat (鈴猫) +
  • Saransh Chopra +
  • Sayed Adel
  • Sebastian Berg
  • Serge Guelton

Pull requests merged

A total of 14 pull requests were merged for this release.

  • #​22136: BLD: Add Python 3.11 wheels to aarch64 build
  • #​22148: MAINT: Update setup.py for Python 3.11.
  • #​22155: CI: Test NumPy build against old versions of GCC(6, 7, 8)
  • #​22156: MAINT: support IBM i system
  • #​22195: BUG: Fix circleci build
  • #​22214: BUG: Expose heapsort algorithms in a shared header
  • #​22215: BUG: Support using libunwind for backtrack
  • #​22216: MAINT: fix an incorrect pointer type usage in f2py
  • #​22220: BUG: change overloads to play nice with pyright.
  • #​22221: TST,BUG: Use fork context to fix MacOS savez test
  • #​22222: TYP,BUG: Reduce argument validation in C-based __class_getitem__
  • #​22223: TST: ensure np.equal.reduce raises a TypeError
  • #​22224: BUG: Fix the implementation of numpy.array_api.vecdot
  • #​22230: BUG: Better report integer division overflow (backport)

Checksums

MD5
a60bf0b1d440bf18d87c49409036d05a  numpy-1.23.3-cp310-cp310-macosx_10_9_x86_64.whl
59b43423a692f5351c6a43b852b210d7  numpy-1.23.3-cp310-cp310-macosx_11_0_arm64.whl
f482a4be6954b1b606320f0ffc1995dd  numpy-1.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a82e2ecc4060a37dae5424e624eabfe3  numpy-1.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
84916178e5f4d073d0008754cba7f300  numpy-1.23.3-cp310-cp310-win32.whl
605da65b9b66dfce8b62d847cb3841f7  numpy-1.23.3-cp310-cp310-win_amd64.whl
57cf29f781be955a9cd0de8d07fbce56  numpy-1.23.3-cp311-cp311-macosx_10_9_x86_64.whl
f395dcf622dff0ba44777cbae0442189  numpy-1.23.3-cp311-cp311-macosx_11_0_arm64.whl
55d6a6439913ba84ad89268e0ad59fa0  numpy-1.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
202bc3a8617f479ebe60ca0dec29964b  numpy-1.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a42c3d058bcef47b26841bf9472a89bf  numpy-1.23.3-cp311-cp311-win32.whl
237dbd94e5529065c0c5cc4e47ceeb7e  numpy-1.23.3-cp311-cp311-win_amd64.whl
d0587d5b28d3fa7e0ec8fd3df76e4bd4  numpy-1.23.3-cp38-cp38-macosx_10_9_x86_64.whl
054234695ed3d955fb01f661db2c14fc  numpy-1.23.3-cp38-cp38-macosx_11_0_arm64.whl
4e75ac61e34f1bf23e7cbd6e2bfc7a32  numpy-1.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
29ccb3a732027ee1abe23a9562c32d0c  numpy-1.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
12817838edc1e1bea27df79f3a83da5d  numpy-1.23.3-cp38-cp38-win32.whl
ef430e830a9fea7d8db0218b901671f6  numpy-1.23.3-cp38-cp38-win_amd64.whl
b001f7e17df798f9b949bbe259924c77  numpy-1.23.3-cp39-cp39-macosx_10_9_x86_64.whl
bc1782f5d79187d63d14ed69a6a411e9  numpy-1.23.3-cp39-cp39-macosx_11_0_arm64.whl
f8fb0178bc34a198d5ce4e166076e1fc  numpy-1.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fb80d38c37aae1e4d416cd4de068ff0a  numpy-1.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
318d0a2a27b7e361295c0382a0ff4a94  numpy-1.23.3-cp39-cp39-win32.whl
880dc73de09fccda0650e9404fa83608  numpy-1.23.3-cp39-cp39-win_amd64.whl
3b5a51f78718a1a82d2750ec159f9acf  numpy-1.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
56a0c90a303979d5bf8fc57e86e57ccb  numpy-1.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5338d997a3178750834e742a257dfa4a  numpy-1.23.3-pp38-pypy38_pp73-win_amd64.whl
6efc60a3f6c1b74c849d53fbcc07807b  numpy-1.23.3.tar.gz
SHA256
c9f707b5bb73bf277d812ded9896f9512a43edff72712f31667d0a8c2f8e71ee  numpy-1.23.3-cp310-cp310-macosx_10_9_x86_64.whl
ffcf105ecdd9396e05a8e58e81faaaf34d3f9875f137c7372450baa5d77c9a54  numpy-1.23.3-cp310-cp310-macosx_11_0_arm64.whl
0ea3f98a0ffce3f8f57675eb9119f3f4edb81888b6874bc1953f91e0b1d4f440  numpy-1.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
004f0efcb2fe1c0bd6ae1fcfc69cc8b6bf2407e0f18be308612007a0762b4089  numpy-1.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98dcbc02e39b1658dc4b4508442a560fe3ca5ca0d989f0df062534e5ca3a5c1a  numpy-1.23.3-cp310-cp310-win32.whl
39a664e3d26ea854211867d20ebcc8023257c1800ae89773cbba9f9e97bae036  numpy-1.23.3-cp310-cp310-win_amd64.whl
1f27b5322ac4067e67c8f9378b41c746d8feac8bdd0e0ffede5324667b8a075c  numpy-1.23.3-cp311-cp311-macosx_10_9_x86_64.whl
2ad3ec9a748a8943e6eb4358201f7e1c12ede35f510b1a2221b70af4bb64295c  numpy-1.23.3-cp311-cp311-macosx_11_0_arm64.whl
bdc9febce3e68b697d931941b263c59e0c74e8f18861f4064c1f712562903411  numpy-1.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
301c00cf5e60e08e04d842fc47df641d4a181e651c7135c50dc2762ffe293dbd  numpy-1.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7cd1328e5bdf0dee621912f5833648e2daca72e3839ec1d6695e91089625f0b4  numpy-1.23.3-cp311-cp311-win32.whl
8355fc10fd33a5a70981a5b8a0de51d10af3688d7a9e4a34fcc8fa0d7467bb7f  numpy-1.23.3-cp311-cp311-win_amd64.whl
bc6e8da415f359b578b00bcfb1d08411c96e9a97f9e6c7adada554a0812a6cc6  numpy-1.23.3-cp38-cp38-macosx_10_9_x86_64.whl
22d43376ee0acd547f3149b9ec12eec2f0ca4a6ab2f61753c5b29bb3e795ac4d  numpy-1.23.3-cp38-cp38-macosx_11_0_arm64.whl
a64403f634e5ffdcd85e0b12c08f04b3080d3e840aef118721021f9b48fc1460  numpy-1.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
efd9d3abe5774404becdb0748178b48a218f1d8c44e0375475732211ea47c67e  numpy-1.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8c02ec3c4c4fcb718fdf89a6c6f709b14949408e8cf2a2be5bfa9c49548fd85  numpy-1.23.3-cp38-cp38-win32.whl
e868b0389c5ccfc092031a861d4e158ea164d8b7fdbb10e3b5689b4fc6498df6  numpy-1.23.3-cp38-cp38-win_amd64.whl
09f6b7bdffe57fc61d869a22f506049825d707b288039d30f26a0d0d8ea05164  numpy-1.23.3-cp39-cp39-macosx_10_9_x86_64.whl
8c79d7cf86d049d0c5089231a5bcd31edb03555bd93d81a16870aa98c6cfb79d  numpy-1.23.3-cp39-cp39-macosx_11_0_arm64.whl
e5d5420053bbb3dd64c30e58f9363d7a9c27444c3648e61460c1237f9ec3fa14  numpy-1.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d5422d6a1ea9b15577a9432e26608c73a78faf0b9039437b075cf322c92e98e7  numpy-1.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c1ba66c48b19cc9c2975c0d354f24058888cdc674bebadceb3cdc9ec403fb5d1  numpy-1.23.3-cp39-cp39-win32.whl
78a63d2df1d947bd9d1b11d35564c2f9e4b57898aae4626638056ec1a231c40c  numpy-1.23.3-cp39-cp39-win_amd64.whl
17c0e467ade9bda685d5ac7f5fa729d8d3e76b23195471adae2d6a6941bd2c18  numpy-1.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
91b8d6768a75247026e951dce3b2aac79dc7e78622fc148329135ba189813584  numpy-1.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
94c15ca4e52671a59219146ff584488907b1f9b3fc232622b47e2cf832e94fb8  numpy-1.23.3-pp38-pypy38_pp73-win_amd64.whl
51bf49c0cd1d52be0a240aa66f3458afc4b95d8993d2d04f0d91fa60c10af6cd  numpy-1.23.3.tar.gz

v1.23.2

Compare Source

NumPy 1.23.2 Release Notes

NumPy 1.23.2 is a maintenance release that fixes bugs discovered after
the 1.23.1 release. Notable features are:

  • Typing changes needed for Python 3.11
  • Wheels for Python 3.11.0rc1

The Python versions supported for this release are 3.8-3.11.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Alexander Grund +
  • Bas van Beek
  • Charles Harris
  • Jon Cusick +
  • Matti Picus
  • Michael Osthege +
  • Pal Barta +
  • Ross Barnowski
  • Sebastian Berg

Pull requests merged

A total of 15 pull requests were merged for this release.

  • #​22030: ENH: Add __array_ufunc__ typing support to the nin=1 ufuncs
  • #​22031: MAINT, TYP: Fix np.angle dtype-overloads
  • #​22032: MAINT: Do not let _GenericAlias wrap the underlying classes'...
  • #​22033: TYP,MAINT: Allow einsum subscripts to be passed via integer...
  • #​22034: MAINT,TYP: Add object-overloads for the np.generic rich comparisons
  • #​22035: MAINT,TYP: Allow the squeeze and transpose method to...
  • #​22036: BUG: Fix subarray to object cast ownership details
  • #​22037: BUG: Use Popen to silently invoke f77 -v
  • #​22038: BUG: Avoid errors on NULL during deepcopy
  • #​22039: DOC: Add versionchanged for converter callable behavior.
  • #​22057: MAINT: Quiet the anaconda uploads.
  • #​22078: ENH: reorder includes for testing on top of system installations...
  • #​22106: TST: fix test_linear_interpolation_formula_symmetric
  • #​22107: BUG: Fix skip condition for test_loss_of_precision[complex256]
  • #​22115: BLD: Build python3.11.0rc1 wheels.

Checksums

MD5
fe1e3480ea8c417c8f7b05f543c1448d  numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl
0ab14b1afd0a55a374ca69b3b39cab3c  numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl
df059e5405bfe75c0ac77b01abbdb237  numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4ed412c4c078e96edf11ca3b11eef76b  numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0caad53d9a5e3c5e8cd29f19a9f0c014  numpy-1.23.2-cp310-cp310-win32.whl
01e508b8b4f591daff128da1cfde8e1f  numpy-1.23.2-cp310-cp310-win_amd64.whl
8ecdb7e2a87255878b748550d91cfbe0  numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl
e3004aae46cec9e234f78eaf473272e0  numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl
ec23c73caf581867d5ca9255b802f144  numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b8389f528fe113247954248f0b78ce1  numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a54b136daa2fbb483909f08eecbfa3c5  numpy-1.23.2-cp311-cp311-win32.whl
ead32e141857c5ef33b1a6cd88aefc0f  numpy-1.23.2-cp311-cp311-win_amd64.whl
df1f18e52d0a2840d101fdc9c2c6af84  numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl
04c986880bb24fac2f44face75eab914  numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl
edeba58edb214390112810f7ead903a8  numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c26ea699d94d7f1009c976c66cc4def3  numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c246a78b09f8893d998d449dcab0fac3  numpy-1.23.2-cp38-cp38-win32.whl
b5c5a2f961402259e301c49b8b05de55  numpy-1.23.2-cp38-cp38-win_amd64.whl
d156dfae94d33eeff7fb9c6e5187e049  numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl
7f2ad7867c577eab925a31de76486765  numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl
76262a8e5d7a4d945446467467300a10  numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8ee105f4574d61a2d494418b55f63fcb  numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2b7c79cae66023f8e716150223201981  numpy-1.23.2-cp39-cp39-win32.whl
d7af57dd070ccb165f3893412eb602e3  numpy-1.23.2-cp39-cp39-win_amd64.whl
355a231dbd87a0f2125cc23eb8f97075  numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4ab13c35056f67981d03f9ceec41db42  numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3a6f1e1256ee9be10d8cdf6be578fe52  numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl
9bf2a361509797de14ceee607387fe0f  numpy-1.23.2.tar.gz
SHA256
e603ca1fb47b913942f3e660a15e55a9ebca906857edfea476ae5f0fe9b457d5  numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl
633679a472934b1c20a12ed0c9a6c9eb167fbb4cb89031939bfd03dd9dbc62b8  numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl
17e5226674f6ea79e14e3b91bfbc153fdf3ac13f5cc54ee7bc8fdbe820a32da0  numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdc02c0235b261925102b1bd586579b7158e9d0d07ecb61148a1799214a4afd5  numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df28dda02c9328e122661f399f7655cdcbcf22ea42daa3650a26bce08a187450  numpy-1.23.2-cp310-cp310-win32.whl
8ebf7e194b89bc66b78475bd3624d92980fca4e5bb86dda08d677d786fefc414  numpy-1.23.2-cp310-cp310-win_amd64.whl
dc76bca1ca98f4b122114435f83f1fcf3c0fe48e4e6f660e07996abf2f53903c  numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl
ecfdd68d334a6b97472ed032b5b37a30d8217c097acfff15e8452c710e775524  numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl
5593f67e66dea4e237f5af998d31a43e447786b2154ba1ad833676c788f37cde  numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ac987b35df8c2a2eab495ee206658117e9ce867acf3ccb376a19e83070e69418  numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d98addfd3c8728ee8b2c49126f3c44c703e2b005d4a95998e2167af176a9e722  numpy-1.23.2-cp311-cp311-win32.whl
8ecb818231afe5f0f568c81f12ce50f2b828ff2b27487520d85eb44c71313b9e  numpy-1.23.2-cp311-cp311-win_amd64.whl
909c56c4d4341ec8315291a105169d8aae732cfb4c250fbc375a1efb7a844f8f  numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl
8247f01c4721479e482cc2f9f7d973f3f47810cbc8c65e38fd1bbd3141cc9842  numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl
b8b97a8a87cadcd3f94659b4ef6ec056261fa1e1c3317f4193ac231d4df70215  numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bd5b7ccae24e3d8501ee5563e82febc1771e73bd268eef82a1e8d2b4d556ae66  numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9b83d48e464f393d46e8dd8171687394d39bc5abfe2978896b77dc2604e8635d  numpy-1.23.2-cp38-cp38-win32.whl
dec198619b7dbd6db58603cd256e092bcadef22a796f778bf87f8592b468441d  numpy-1.23.2-cp38-cp38-win_amd64.whl
4f41f5bf20d9a521f8cab3a34557cd77b6f205ab2116651f12959714494268b0  numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl
806cc25d5c43e240db709875e947076b2826f47c2c340a5a2f36da5bb10c58d6  numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl
8f9d84a24889ebb4c641a9b99e54adb8cab50972f0166a3abc14c3b93163f074  numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c403c81bb8ffb1c993d0165a11493fd4bf1353d258f6997b3ee288b0a48fce77  numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cf8c6aed12a935abf2e290860af8e77b26a042eb7f2582ff83dc7ed5f963340c  numpy-1.23.2-cp39-cp39-win32.whl
5e28cd64624dc2354a349152599e55308eb6ca95a13ce6a7d5679ebff2962913  numpy-1.23.2-cp39-cp39-win_amd64.whl
806970e69106556d1dd200e26647e9bee5e2b3f1814f9da104a943e8d548ca38  numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
2bd879d3ca4b6f39b7770829f73278b7c5e248c91d538aab1e506c628353e47f  numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
be6b350dfbc7f708d9d853663772a9310783ea58f6035eec649fb9c4371b5389  numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl
b78d00e48261fbbd04aa0d7427cf78d18401ee0abd89c7559bbf422e5b1c7d01  numpy-1.23.2.tar.gz

v1.23.1

Compare Source

NumPy 1.23.1 Release Notes

The NumPy 1.23.1 is a maintenance release that fixes bugs discovered
after the 1.23.0 release. Notable fixes are:

  • Fix searchsorted for float16 NaNs
  • Fix compilation on Apple M1
  • Fix KeyError in crackfortran operator support (Slycot)

The Python version supported for this release are 3.8-3.10.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Matthias Koeppe +
  • Pranab Das +
  • Rohit Goswami
  • Sebastian Berg
  • Serge Guelton
  • Srimukh Sripada +

Pull requests merged

A total of 8 pull requests were merged for this release.

  • #​21866: BUG: Fix discovered MachAr (still used within valgrind)
  • #​21867: BUG: Handle NaNs correctly for float16 during sorting
  • #​21868: BUG: Use keepdims during normalization in np.average and...
  • #​21869: DOC: mention changes to max_rows behaviour in np.loadtxt
  • #​21870: BUG: Reject non integer array-likes with size 1 in delete
  • #​21949: BLD: Make can_link_svml return False for 32bit builds on x86_64
  • #​21951: BUG: Reorder extern "C" to only apply to function declarations...
  • #​21952: BUG: Fix KeyError in crackfortran operator support

Checksums

MD5
79f0d8c114f282b834b49209d6955f98  numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl
42a89a88ef26b768e8933ce46b1cc2bd  numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl
1c1d68b3483eaf99b9a3583c8ac8bf47  numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9d3e9f7f9b3dce6cf15209e4f25f346e  numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a9afb7c34b48d08fc50427ae6516b42d  numpy-1.23.1-cp310-cp310-win32.whl
a0e02823883bdfcec49309e108f65e13  numpy-1.23.1-cp310-cp310-win_amd64.whl
f40cdf4ec7bb0cf31a90a4fa294323c2  numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl
80115a959f0fe30d6c401b2650a61c70  numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl
1cf199b3a93960c4f269853a56a8d8eb  numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
aa6f0f192312c79cd770c2c395e9982a  numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d07bee0ea3142a96cb5e4e16aca273ca  numpy-1.23.1-cp38-cp38-win32.whl
02d0734ae8ad5e18a40c6c6de18486a0  numpy-1.23.1-cp38-cp38-win_amd64.whl
e1ca14acd7d83bc74bdf6ab0bb4bd195  numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl
c9152c62b2f31e742e24bfdc97b28666  numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl
05b0b37c92f7a7e7c01afac0a5322b40  numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d9810bb71a0ef9837e87ea5c44fcab5e  numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4255577f857e838f7a94e3a614ddc5eb  numpy-1.23.1-cp39-cp39-win32.whl
787486e3cd87b98024ffe1c969c4db7a  numpy-1.23.1-cp39-cp39-win_amd64.whl
5c7b2d1471b1b9ec6ff1cb3fe1f8ac14  numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
40d5b2ff869707b0d97325ce44631135  numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
44ce1e07927cc09415df9898857792da  numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl
4f8636a9c1a77ca0fb923ba55378891f  numpy-1.23.1.tar.gz
SHA256
b15c3f1ed08df4980e02cc79ee058b788a3d0bef2fb3c9ca90bb8cbd5b8a3a04  numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl
9ce242162015b7e88092dccd0e854548c0926b75c7924a3495e02c6067aba1f5  numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl
e0d7447679ae9a7124385ccf0ea990bb85bb869cef217e2ea6c844b6a6855073  numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3119daed207e9410eaf57dcf9591fdc68045f60483d94956bee0bfdcba790953  numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3ab67966c8d45d55a2bdf40701536af6443763907086c0a6d1232688e27e5447  numpy-1.23.1-cp310-cp310-win32.whl
1865fdf51446839ca3fffaab172461f2b781163f6f395f1aed256b1ddc253622  numpy-1.23.1-cp310-cp310-win_amd64.whl
aeba539285dcf0a1ba755945865ec61240ede5432df41d6e29fab305f4384db2  numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl
7e8229f3687cdadba2c4faef39204feb51ef7c1a9b669247d49a24f3e2e1617c  numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl
68b69f52e6545af010b76516f5daaef6173e73353e3295c5cb9f96c35d755641  numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1408c3527a74a0209c781ac82bde2182b0f0bf54dea6e6a363fe0cc4488a7ce7  numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
47f10ab202fe4d8495ff484b5561c65dd59177949ca07975663f4494f7269e3e  numpy-1.23.1-cp38-cp38-win32.whl
37e5ebebb0eb54c5b4a9b04e6f3018e16b8ef257d26c8945925ba8105008e645  numpy-1.23.1-cp38-cp38-win_amd64.whl
173f28921b15d341afadf6c3898a34f20a0569e4ad5435297ba262ee8941e77b  numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl
876f60de09734fbcb4e27a97c9a286b51284df1326b1ac5f1bf0ad3678236b22  numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl
35590b9c33c0f1c9732b3231bb6a72d1e4f77872390c47d50a615686ae7ed3fd  numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a35c4e64dfca659fe4d0f1421fc0f05b8ed1ca8c46fb73d9e5a7f175f85696bb  numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c2f91f88230042a130ceb1b496932aa717dcbd665350beb821534c5c7e15881c  numpy-1.23.1-cp39-cp39-win32.whl
37ece2bd095e9781a7156852e43d18044fd0d742934833335599c583618181b9  numpy-1.23.1-cp39-cp39-win_amd64.whl
8002574a6b46ac3b5739a003b5233376aeac5163e5dcd43dd7ad062f3e186129  numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
5d732d17b8a9061540a10fda5bfeabca5785700ab5469a5e9b93aca5e2d3a5fb  numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
55df0f7483b822855af67e38fb3a526e787adf189383b4934305565d71c4b148  numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl
d748ef349bfef2e1194b59da37ed5a29c19ea8d7e6342019921ba2ba4fd8b624  numpy-1.23.1.tar.gz

v1.23.0

Compare Source

NumPy 1.23.0 Release Notes

The NumPy 1.23.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, clarify
the documentation, and expire old deprecations. The highlights are:

  • Implementation of loadtxt in C, greatly improving its performance.
  • Exposing DLPack at the Python level for easy data exchange.
  • Changes to the promotion and comparisons of structured dtypes.
  • Improvements to f2py.

See below for the details,

New functions

  • A masked array specialization of ndenumerate is now available as
    numpy.ma.ndenumerate. It provides an alternative to
    numpy.ndenumerate and skips masked values by default.

    (gh-20020)

  • numpy.from_dlpack has been added to allow easy exchange of data
    using the DLPack protocol. It accepts Python objects that implement
    the __dlpack__ and __dlpack_device__ methods and returns a
    ndarray object which is generally the view of the data of the input
    object.

    (gh-21145)

Deprecations

  • Setting __array_finalize__ to None is deprecated. It must now be
    a method and may wish to call super().__array_finalize__(obj)
    after checking for None or if the NumPy version is sufficiently
    new.

    (gh-20766)

  • Using axis=32 (axis=np.MAXDIMS) in many cases had the same
    meaning as axis=None. This is deprecated and axis=None must be
    used instead.

    (gh-20920)

  • The hook function PyDataMem_SetEventHook has been deprecated and
    the demonstration of its use in tool/allocation_tracking has been
    removed. The ability to track allocations is now built-in to python
    via tracemalloc.

    (gh-20394)

  • numpy.distutils has been deprecated, as a result of distutils
    itself being deprecated. It will not be present in NumPy for
    Python >= 3.12, and will be removed completely 2 years after the
    release of Python 3.12 For more details, see
    distutils-status-migration{.interpreted-text role="ref"}.

    (gh-20875)

  • numpy.loadtxt will now give a DeprecationWarning when an integer
    dtype is requested but the value is formatted as a floating point number.

    (gh-21663)

Expired deprecations

  • The NpzFile.iteritems() and NpzFile.iterkeys() methods have been
    removed as part of the continued removal of Python 2 compatibility.
    This concludes the deprecation from 1.15.

    (gh-16830)

  • The alen and asscalar functions have been removed.

    (gh-20414)

  • The UPDATEIFCOPY array flag has been removed together with the
    enum NPY_ARRAY_UPDATEIFCOPY. The associated (and deprecated)
    PyArray_XDECREF_ERR was also removed. These were all deprecated in
    1.14. They are replaced by WRITEBACKIFCOPY, that requires calling
    PyArray_ResoveWritebackIfCopy before the array is deallocated.

    (gh-20589)

  • Exceptions will be raised during array-like creation. When an object
    raised an exception during access of the special attributes
    __array__ or __array_interface__, this exception was usually
    ignored. This behaviour was deprecated in 1.21, and the exception
    will now be raised.

    (gh-20835)

  • Multidimensional indexing with non-tuple values is not allowed.
    Previously, code such as arr[ind] where ind = [[0, 1], [0, 1]]
    produced a FutureWarning and was interpreted as a multidimensional
    index (i.e., arr[tuple(ind)]). Now this example is treated like an
    array index over a single dimension (arr[array(ind)]).
    Multidimensional indexing with anything but a tuple was deprecated
    in NumPy 1.15.

    (gh-21029)

  • Changing to a dtype of different size in F-contiguous arrays is no
    longer permitted. Deprecated since Numpy 1.11.0. See below for an
    extended explanation of the effects of this change.

    (gh-20722)

New Features

crackfortran has support for operator and assignment overloading

crackfortran parser now understands operator and assignment
definitions in a module. They are added in the body list of the module
which contains a new key implementedby listing the names of the
subroutines or functions implementing the operator or assignment.

(gh-15006)

f2py supports reading access type attributes from derived type statements

As a result, one does not need to use public or private statements
to specify derived type access properties.

(gh-15844)

New parameter ndmin added to genfromtxt

This parameter behaves the same as ndmin from numpy.loadtxt.

(gh-20500)

np.loadtxt now supports quote character and single converter function

numpy.loadtxt now supports an additional quotechar keyword argument
which is not set by default. Using quotechar='"' will read quoted
fields as used by the Excel CSV dialect.

Further, it is now possible to pass a single callable rather than a
dictionary for the converters argument.

(gh-20580)

Changing to dtype of a different size now requires contiguity of only the last axis

Previously, viewing an array with a dtype of a different item size
required that the entire array be C-contiguous. This limitation would
unnecessarily force the user to make contiguous copies of non-contiguous
arrays before being able to change the dtype.

This change affects not only ndarray.view, but other construction
mechanisms, including the discouraged direct assignment to
ndarray.dtype.

This change expires the deprecation regarding the viewing of
F-contiguous arrays, described elsewhere in the release notes.

(gh-20722)

Deterministic output files for F2PY

For F77 inputs, f2py will generate modname-f2pywrappers.f
unconditionally, though these may be empty. For free-form inputs,
modname-f2pywrappers.f, modname-f2pywrappers2.f90 will both be
generated unconditionally, and may be empty. This allows writing generic
output rules in cmake or meson and other build systems. Older
behavior can be restored by passing --skip-empty-wrappers to f2py.
f2py-meson{.interpreted-text role="ref"} details usage.

(gh-21187)

keepdims parameter for average

The parameter keepdims was added to the functions numpy.average and
numpy.ma.average. The parameter has the same meaning as it does in
reduction functions such as numpy.sum or numpy.mean.

(gh-21485)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and
return a single NaN. Setting equal_nan=False will restore pre-1.21
behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

Compatibility notes

1D np.linalg.norm preserves float input types, even for scalar results

Previously, this would promote to float64 when the ord argument was
not one of the explicitly listed values, e.g. ord=3:

>>> f32 = np.float32([1, 2])
>>> np.linalg.norm(f32, 2).dtype
dtype('float32')
>>> np.linalg.norm(f32, 3)
dtype('float64')  # numpy 1.22
dtype('float32')  # numpy 1.23

This change affects only float32 and float16 vectors with ord
other than -Inf, 0, 1, 2, and Inf.

(gh-17709)

Changes to structured (void) dtype promotion and comparisons

In general, NumPy now defines correct, but slightly limited, promotion
for structured dtypes by promoting the subtypes of each field instead of
raising an exception:

>>> np.result_type(np.dtype("i,i"), np.dtype("i,d"))
dtype([('f0', '<i4'), ('f1', '<f8')])

For promotion matching field names, order, and titles are enforced,
however padding is ignored. Promotion involving structured dtypes now
always ensures native byte-order for all fields (which may change the
result of np.concatenate) and ensures that the result will be
"packed", i.e. all fields are ordered contiguously and padding is
removed. See
structured_dtype_comparison_and_promotion{.interpreted-text
role="ref"} for further details.

The repr of aligned structures will now never print the long form
including offsets and itemsize unless the structure includes padding
not guaranteed by align=True.

In alignment with the above changes to the promotion logic, the casting
safety has been updated:

  • "equiv" enforces matching names and titles. The itemsize is
    allowed to differ due to padding.
  • "safe" allows mismatching field names and titles
  • The cast safety is limited by the cast safety of each included
    field.
  • The order of fields is used to decide cast safety of each individual
    field. Previously, the field names were used and only unsafe casts
    were possible when names mismatched.

The main important change here is that name mismatches are now
considered "safe" casts.

(gh-19226)

NPY_RELAXED_STRIDES_CHECKING has been removed

NumPy cannot be compiled with NPY_RELAXED_STRIDES_CHECKING=0 anymore.
Relaxed strides have been the default for many years and the option was
initially introduced to allow a smoother transition.

(gh-20220)

np.loadtxt has recieved several changes

The row counting of numpy.loadtxt was fixed. loadtxt ignores fully
empty lines in the file, but counted them towards max_rows. When
max_rows is used and the file contains empty lines, these will now not
be counted. Previously, it was possible that the result contained fewer
than max_rows rows even though more data was available to be read. If
the old behaviour is required, itertools.islice may be used:

import itertools
lines = itertools.islice(open("file"), 0, max_rows)
result = np.loadtxt(lines, ...)

While generally much faster and improved, numpy.loadtxt may now fail
to converter certain strings to numbers that were previously
successfully read. The most important cases for this are:

  • Parsing floating point values such as 1.0 into integers is now
    deprecated.
  • Parsing hexadecimal floats such as 0x3p3 will fail
  • An _ was previously accepted as a thousands delimiter 100_000.
    This will now result in an error.

If you experience these limitations, they can all be worked around by
passing appropriate converters=. NumPy now supports passing a single
converter to be used for all columns to make this more convenient. For
example, converters=float.fromhex can read hexadecimal float numbers
and converters=int will be able to read 100_000.

Further, the error messages have been generally improved. However, this
means that error types may differ. In particularly, a ValueError is
now always raised when parsing of a single entry fails.

(gh-20580)

Improvements

ndarray.__array_finalize__ is now callable

This means subclasses can now use super().__array_finalize__(obj)
without worrying whether ndarray is their superclass or not. The
actual call remains a no-op.

(gh-20766)

Add support for VSX4/Power10

With VSX4/Power10 enablement, the new instructions available in Power
ISA 3.1 can be used to accelerate some NumPy operations, e.g.,
floor_divide, modulo, etc.

(gh-20821)

np.fromiter now accepts objects and subarrays

The numpy.fromiter function now supports object and subarray dtypes.
Please see he function documentation for examples.

(gh-20993)

Math C library feature detection now uses correct signatures

Compiling is preceded by a detection phase to determine whether the
underlying libc supports certain math operations. Previously this code
did not respect the proper signatures. Fixing this enables compilation
for the wasm-ld backend (compilation for web assembly) and reduces the
number of warnings.

(gh-21154)

np.kron now maintains subclass information

np.kron maintains subclass information now such as masked arrays while
computing the Kronecker product of the inputs

>>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
>>> np.kron(x,x)
masked_array(
  data=[[1, --, --, --],
        [--, 4, --, --],
        [--, --, 4, --],
        [--, --, --, 16]],
  mask=[[False,  True,  True,  True],
        [ True, False,  True,  True],
        [ True,  True, False,  True],
        [ True,  True,  True, False]],
  fill_value=999999)

⚠️ Warning, np.kron output now follows ufunc ordering (multiply) to determine
the output class type

>>> class myarr(np.ndarray):
>>>    __array_priority__ = -1
>>> a = np.ones([2, 2])
>>> ma = myarray(a.shape, a.dtype, a.data)
>>> type(np.kron(a, ma)) == np.ndarray
False # Before it was True
>>> type(np.kron(a, ma)) == myarr
True

(gh-21262)

Performance improvements and changes

Faster np.loadtxt

numpy.loadtxt is now generally much faster than previously as most of
it is now implemented in C.

(gh-20580)

Faster reduction operators

Reduction operations like numpy.sum, numpy.prod, numpy.add.reduce,
numpy.logical_and.reduce on contiguous integer-based arrays are now
much faster.

(gh-21001)

Faster np.where

numpy.where is now much faster than previously on unpredictable/random
input data.

(gh-21130)

Faster operations on NumPy scalars

Many operations on NumPy scalars are now significantly faster, although
rare operations (e.g. with 0-D arrays rather than scalars) may be slower
in some cases. However, even with these improvements users who want the
best performance for their scalars, may want to convert a known NumPy
scalar into a Python one using scalar.item().

(gh-21188)

Faster np.kron

numpy.kron is about 80% faster as the product is now computed using
broadcasting.

(gh-21354)

Checksums

MD5
21839aaeab3088e685d7c8d0e1856a23  numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl
e657684ea521c50de0197aabfb44e78d  numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl
219017660861fdec59b852630e3fef2a  numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
03c3df83b8327910482a7d24ebe9213b  numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b8f06ce4054acc147845a9643bd36082  numpy-1.23.0-cp310-cp310-win32.whl
877322db5a62634eef4e351db99a070d  numpy-1.23.0-cp310-cp310-win_amd64.whl
7bb54f95e74306eff733466b6343695f  numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl
5514a0030e5cf065e916950737d6d129  numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl
22d43465791814fe50e03ded430bd80c  numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
771a1f7e488327645bac5b54dd2f6286  numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
449bfa2d55aff3e722d2fc85a7549620  numpy-1.23.0-cp38-cp38-win32.whl
60c7d27cf92dadb6d206df6e65b1032f  numpy-1.23.0-cp38-cp38-win_amd64.whl
dc2a5c5d2223f7b45a45f7f760d0f2db  numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl
ba5729353c3521ed7ee72c796e77a546  numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl
06d5cd49de096482944dead2eb92d783  numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6ff50a994f6006349b5f1415e4da6f45  numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
49185f219512403ef23d43d6f2adbefd  numpy-1.23.0-cp39-cp39-win32.whl
ff126a84dcf91700f9ca13ff606d109f  numpy-1.23.0-cp39-cp39-win_amd64.whl
e1462428487dc599cdffb723dec642c4  numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
fef1d20265135737fbc0f91ca4441990  numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4f8142288202a32c682d01921d6c2c78  numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl
513e4241d06b8fae5732cd049cdf3b57  numpy-1.23.0.tar.gz
SHA256
58bfd40eb478f54ff7a5710dd61c8097e169bc36cc68333d00a9bcd8def53b38  numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl
196cd074c3f97c4121601790955f915187736f9cf458d3ee1f1b46aff2b1ade0  numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl
f1d88ef79e0a7fa631bb2c3dda1ea46b32b1fe614e10fedd611d3d5398447f2f  numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d54b3b828d618a19779a84c3ad952e96e2c2311b16384e973e671aa5be1f6187  numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2b2da66582f3a69c8ce25ed7921dcd8010d05e59ac8d89d126a299be60421171  numpy-1.23.0-cp310-cp310-win32.whl
97a76604d9b0e79f59baeca16593c711fddb44936e40310f78bfef79ee9a835f  numpy-1.23.0-cp310-cp310-win_amd64.whl
d8cc87bed09de55477dba9da370c1679bd534df9baa171dd01accbb09687dac3  numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl
f0f18804df7370571fb65db9b98bf1378172bd4e962482b857e612d1fec0f53e  numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl
ac86f407873b952679f5f9e6c0612687e51547af0e14ddea1eedfcb22466babd  numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ae8adff4172692ce56233db04b7ce5792186f179c415c37d539c25de7298d25d  numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe8b9683eb26d2c4d5db32cd29b38fdcf8381324ab48313b5b69088e0e355379  numpy-1.23.0-cp38-cp38-win32.whl
5043bcd71fcc458dfb8a0fc5509bbc979da0131b9d08e3d5f50fb0bbb36f169a  numpy-1.23.0-cp38-cp38-win_amd64.whl
1c29b44905af288b3919803aceb6ec7fec77406d8b08aaa2e8b9e63d0fe2f160  numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl
98e8e0d8d69ff4d3fa63e6c61e8cfe2d03c29b16b58dbef1f9baa175bbed7860  numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl
79a506cacf2be3a74ead5467aee97b81fca00c9c4c8b3ba16dbab488cd99ba10  numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
092f5e6025813e64ad6d1b52b519165d08c730d099c114a9247c9bb635a2a450  numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d6ca8dabe696c2785d0c8c9b0d8a9b6e5fdbe4f922bde70d57fa1a2848134f95  numpy-1.23.0-cp39-cp39-win32.whl
fc431493df245f3c627c0c05c2bd134535e7929dbe2e602b80e42bf52ff760bc  numpy-1.23.0-cp39-cp39-win_amd64.whl
f9c3fc2adf67762c9fe1849c859942d23f8d3e0bee7b5ed3d4a9c3eeb50a2f07  numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
d0d2094e8f4d760500394d77b383a1b06d3663e8892cdf5df3c592f55f3bff66  numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
94b170b4fa0168cd6be4becf37cb5b127bd12a795123984385b8cd4aca9857e5  numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl
bd3fa4fe2e38533d5336e1272fc4e765cabbbde144309ccee8675509d5cd7b05  numpy-1.23.0.tar.gz

v1.22.4

Compare Source

NumPy 1.22.4 Release Notes

NumPy 1.22.4 is a maintenance release that fixes bugs discovered after
the 1.22.3 release. In addition, the wheels for this release are built
using the recently released Cython 0.29.30, which should fix the
reported problems with
debugging.

The Python versions supported for this release are 3.8-3.10. Note that
the Mac wheels are now based on OS X 10.15 rather than 10.6 that was
used in previous NumPy release cycles.

Contributors

A total of 12 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Alexander Shadchin
  • Bas van Beek
  • Charles Harris
  • Hood Chatham
  • Jarrod Millman
  • John-Mark Gurney +
  • Junyan Ou +
  • Mariusz Felisiak +
  • Ross Barnowski
  • Sebastian Berg
  • Serge Guelton
  • Stefan van der Walt

Pull requests merged

A total of 22 pull requests were merged for this release.

  • #​21191: TYP, BUG: Fix np.lib.stride_tricks re-exported under the...
  • #​21192: TST: Bump mypy from 0.931 to 0.940
  • #​21243: MAINT: Explicitly re-export the types in numpy._typing
  • #​21245: MAINT: Specify sphinx, numpydoc versions for CI doc builds
  • #​21275: BUG: Fix typos
  • #​21277: ENH, BLD: Fix math feature detection for wasm
  • #​21350: MAINT: Fix failing simd and cygwin tests.
  • #​21438: MAINT: Fix failing Python 3.8 32-bit Windows test.
  • #​21444: BUG: add linux guard per #​21386
  • #​21445: BUG: Allow legacy dtypes to cast to datetime again
  • #​21446: BUG: Make mmap handling safer in frombuffer
  • #​21447: BUG: Stop using PyBytesObject.ob_shash deprecated in Python 3.11.
  • #​21448: ENH: Introduce numpy.core.setup_common.NPY_CXX_FLAGS
  • #​21472: BUG: Ensure compile errors are raised correclty
  • #​21473: BUG: Fix segmentation fault
  • #​21474: MAINT: Update doc requirements
  • #​21475: MAINT: Mark npy_memchr with no_sanitize("alignment") on clang
  • #​21512: DOC: Proposal - make the doc landing page cards more similar...
  • #​21525: MAINT: Update Cython version to 0.29.30.
  • #​21536: BUG: Fix GCC error during build configuration
  • #​21541: REL: Prepare for the NumPy 1.22.4 release.
  • #​21547: MAINT: Skip tests that fail on PyPy.

Checksums

MD5
a19351fd3dc0b3bbc733495ed18b8f24  numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
0730f9e196f70ad89f246bf95ccf05d5  numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
63c74e5395a2b31d8adc5b1aa0c62471  numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
f99778023770c12f896768c90f7712e5  numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
757d68b0cdb4e28ffce8574b6a2f3c5e  numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
50becf2e048e54dc5227dfe8378aae1e  numpy-1.22.4-cp310-cp310-win32.whl
79dfdc29a4730e44d6df33dbea5b35b0  numpy-1.22.4-cp310-cp310-win_amd64.whl
8fd8f04d71ead55c2773d1b46668ca67  numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
41a7c6240081010824cc0d5c02900fe6  numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
6bc066d3f61da3304c82d92f3f900a4f  numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
86d959605c66ccba11c6504f25fff0d7  numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ae0405894c065349a511e4575b919e2a  numpy-1.22.4-cp38-cp38-win32.whl
c9a731d08081396b7a1b66977734d2ac  numpy-1.22.4-cp38-cp38-win_amd64.whl
4d9b97d74799e5fc48860f0b4a3b255a  numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
c99fa7e04cb7cc23f1713f2023b4e489  numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
dda3815df12b8a99c6c3069f69997521  numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
9b7c5b39d5611d92b66eb545d44b25db  numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
90fc45eaf8b8c4fac3f3ebd105a5a856  numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9562153d4a83d773c20eb626cbd65cde  numpy-1.22.4-cp39-cp39-win32.whl
711b23acce54a18ce74fc80f48f48062  numpy-1.22.4-cp39-cp39-win_amd64.whl
ab803b24ea557452e828adba1b986af3  numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b3a41ea0b9bc20bd1691cf88f0b0d3  numpy-1.22.4.tar.gz
b44849506fbb54cdef9dbb435b2b1987  numpy-1.22.4.zip
SHA256
ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3  numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887  numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0  numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74  numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c  numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e  numpy-1.22.4-cp310-cp310-win32.whl
3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077  numpy-1.22.4-cp310-cp310-win_amd64.whl
59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1  numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72  numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6  numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0  numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba  numpy-1.22.4-cp38-cp38-win32.whl
e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76  numpy-1.22.4-cp38-cp38-win_amd64.whl
4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5  numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c  numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e  numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa  numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802  numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd  numpy-1.22.4-cp39-cp39-win32.whl
f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32  numpy-1.22.4-cp39-cp39-win_amd64.whl
0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207  numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4308198d0e41efaa108e57d69973398439c7299a9d551680cdd603cf6d20709  numpy-1.22.4.tar.gz
425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af  numpy-1.22.4.zip

Configuration

📅 Schedule: At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, click this checkbox.

This PR has been generated by Renovate Bot.

This PR contains the following updates: | Package | Type | Update | Change | |---|---|---|---| | [numpy](https://github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | dependencies | minor | `1.22.3` -> `1.26.4` | --- ### Release Notes <details> <summary>numpy/numpy</summary> ### [`v1.26.4`](https://github.com/numpy/numpy/releases/v1.26.4) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.3...v1.26.4) ### NumPy 1.26.4 Release Notes NumPy 1.26.4 is a maintenance release that fixes bugs and regressions discovered after the 1.26.3 release. The Python versions supported by this release are 3.9-3.12. This is the last planned release in the 1.26.x series. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Elliott Sales de Andrade - Lucas Colley + - Mark Ryan + - Matti Picus - Nathan Goldbaum - Ola x Nilsson + - Pieter Eendebak - Ralf Gommers - Sayed Adel - Sebastian Berg - Stefan van der Walt - Stefano Rivera #### Pull requests merged A total of 19 pull requests were merged for this release. - [#&#8203;25323](https://github.com/numpy/numpy/pull/25323): BUG: Restore missing asstr import - [#&#8203;25523](https://github.com/numpy/numpy/pull/25523): MAINT: prepare 1.26.x for further development - [#&#8203;25539](https://github.com/numpy/numpy/pull/25539): BUG: `numpy.array_api`: fix `linalg.cholesky` upper decomp... - [#&#8203;25584](https://github.com/numpy/numpy/pull/25584): CI: Bump azure pipeline timeout to 120 minutes - [#&#8203;25585](https://github.com/numpy/numpy/pull/25585): MAINT, BLD: Fix unused inline functions warnings on clang - [#&#8203;25599](https://github.com/numpy/numpy/pull/25599): BLD: include fix for MinGW platform detection - [#&#8203;25618](https://github.com/numpy/numpy/pull/25618): TST: Fix test_numeric on riscv64 - [#&#8203;25619](https://github.com/numpy/numpy/pull/25619): BLD: fix building for windows ARM64 - [#&#8203;25620](https://github.com/numpy/numpy/pull/25620): MAINT: add `newaxis` to `__all__` in `numpy.array_api` - [#&#8203;25630](https://github.com/numpy/numpy/pull/25630): BUG: Use large file fallocate on 32 bit linux platforms - [#&#8203;25643](https://github.com/numpy/numpy/pull/25643): TST: Fix test_warning_calls on Python 3.12 - [#&#8203;25645](https://github.com/numpy/numpy/pull/25645): TST: Bump pytz to 2023.3.post1 - [#&#8203;25658](https://github.com/numpy/numpy/pull/25658): BUG: Fix AVX512 build flags on Intel Classic Compiler - [#&#8203;25670](https://github.com/numpy/numpy/pull/25670): BLD: fix potential issue with escape sequences in `__config__.py` - [#&#8203;25718](https://github.com/numpy/numpy/pull/25718): CI: pin cygwin python to 3.9.16-1 and fix typing tests \[skip... - [#&#8203;25720](https://github.com/numpy/numpy/pull/25720): MAINT: Bump cibuildwheel to v2.16.4 - [#&#8203;25748](https://github.com/numpy/numpy/pull/25748): BLD: unvendor meson-python on 1.26.x and upgrade to meson-python... - [#&#8203;25755](https://github.com/numpy/numpy/pull/25755): MAINT: Include header defining backtrace - [#&#8203;25756](https://github.com/numpy/numpy/pull/25756): BUG: Fix np.quantile(\[Fraction(2,1)], 0.5) ([#&#8203;24711](https://github.com/numpy/numpy/issues/24711)) #### Checksums ##### MD5 90f33cdd8934cd07192d6ede114d8d4d numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl 63ac60767f6724490e587f6010bd6839 numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl ad4e82b225aaaf5898ea9798b50978d8 numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d428e3da2df4fa359313348302cf003a numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 89937c3bb596193f8ca9eae2ff84181e numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl de4f9da0a4e6dfd4cec39c7ad5139803 numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl 2c1f73fd9b3acf4b9b0c23e985cdd38f numpy-1.26.4-cp310-cp310-win32.whl 920ad1f50e478b1a877fe7b7a46cc520 numpy-1.26.4-cp310-cp310-win_amd64.whl 719d1ff12db38903dcfd6749078fb11d numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl eb601e80194d2e1c00d8daedd8dc68c4 numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl 71a7ab11996fa370dc28e28731bd5c32 numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl eb0cdd03e1ee2eb45c57c7340c98cf48 numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9d4ae1b0b27a625400f81ed1846a5667 numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl 1b6771350d2f496157430437a895ba4b numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl 1e4a18612ee4d0e54e0833574ebc6d25 numpy-1.26.4-cp311-cp311-win32.whl 5fd325dd8704023c1110835d7a1b095a numpy-1.26.4-cp311-cp311-win_amd64.whl d95ce582923d24dbddbc108aa5fd2128 numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl 6f16f3d70e0d95ce2b032167c546cc95 numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl 5369536d4c45fbe384147ff23185b48a numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1ceb224096686831ad731e472b65e96a numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cd8d3c00bbc89f9bc07e2df762f9e2ae numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl 5bd81ce840bb2e42befe01efb0402b79 numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl 2cc3b0757228078395da3efa3dc99f23 numpy-1.26.4-cp312-cp312-win32.whl 305155bd5ae879344c58968879584ed1 numpy-1.26.4-cp312-cp312-win_amd64.whl ec2310f67215743e9c5d16b6c9fb87b6 numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl 406aea6081c1affbebdb6ad56b5deaf4 numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl fee12f0a3cbac7bbf1a1c2d82d3b02a9 numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl baf4b7143c7b9ce170e62b33380fb573 numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 376ff29f90b7840ae19ecd59ad1ddf53 numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl 86785b3a7cd156c08c2ebc26f7816fb3 numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl ab8a9ab69f16b7005f238cda76bc0bac numpy-1.26.4-cp39-cp39-win32.whl fafa4453e820c7ff40907e5dc79d8199 numpy-1.26.4-cp39-cp39-win_amd64.whl 7f13e2f07bd3e4a439ade0e4d27905c6 numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 928954b41c1cd0e856f1a31d41722661 numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 57bbd5c0b3848d804c416cbcab4a0ae8 numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl 19550cbe7bedd96a928da9d4ad69509d numpy-1.26.4.tar.gz ##### SHA256 9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0 numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl 2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4 numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2 numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07 numpy-1.26.4-cp310-cp310-win32.whl b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5 numpy-1.26.4-cp310-cp310-win_amd64.whl 4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71 numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl 7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5 numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl 60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl 1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20 numpy-1.26.4-cp311-cp311-win32.whl cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2 numpy-1.26.4-cp311-cp311-win_amd64.whl b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218 numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl 03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl 9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl 1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0 numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl 50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110 numpy-1.26.4-cp312-cp312-win32.whl 08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818 numpy-1.26.4-cp312-cp312-win_amd64.whl 7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl 52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764 numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3 numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl 47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6 numpy-1.26.4-cp39-cp39-win32.whl 3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea numpy-1.26.4-cp39-cp39-win_amd64.whl afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30 numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0 numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl 2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010 numpy-1.26.4.tar.gz ### [`v1.26.3`](https://github.com/numpy/numpy/releases/v1.26.3) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.2...v1.26.3) ### NumPy 1.26.3 Release Notes NumPy 1.26.3 is a maintenance release that fixes bugs and regressions discovered after the 1.26.2 release. The most notable changes are the f2py bug fixes. The Python versions supported by this release are 3.9-3.12. #### Compatibility `f2py` will no longer accept ambiguous `-m` and `.pyf` CLI combinations. When more than one `.pyf` file is passed, an error is raised. When both `-m` and a `.pyf` is passed, a warning is emitted and the `-m` provided name is ignored. #### Improvements `f2py` now handles `common` blocks which have `kind` specifications from modules. This further expands the usability of intrinsics like `iso_fortran_env` and `iso_c_binding`. #### Contributors A total of 18 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;DWesl](https://github.com/DWesl) - [@&#8203;Illviljan](https://github.com/Illviljan) - Alexander Grund - Andrea Bianchi + - Charles Harris - Daniel Vanzo - Johann Rohwer + - Matti Picus - Nathan Goldbaum - Peter Hawkins - Raghuveer Devulapalli - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg - Stefano Rivera + - Thomas A Caswell - matoro #### Pull requests merged A total of 42 pull requests were merged for this release. - [#&#8203;25130](https://github.com/numpy/numpy/pull/25130): MAINT: prepare 1.26.x for further development - [#&#8203;25188](https://github.com/numpy/numpy/pull/25188): TYP: add None to `__getitem__` in `numpy.array_api` - [#&#8203;25189](https://github.com/numpy/numpy/pull/25189): BLD,BUG: quadmath required where available \[f2py] - [#&#8203;25190](https://github.com/numpy/numpy/pull/25190): BUG: alpha doesn't use REAL(10) - [#&#8203;25191](https://github.com/numpy/numpy/pull/25191): BUG: Fix FP overflow error in division when the divisor is scalar - [#&#8203;25192](https://github.com/numpy/numpy/pull/25192): MAINT: Pin scipy-openblas version. - [#&#8203;25201](https://github.com/numpy/numpy/pull/25201): BUG: Fix f2py to enable use of string optional inout argument - [#&#8203;25202](https://github.com/numpy/numpy/pull/25202): BUG: Fix -fsanitize=alignment issue in numpy/\_core/src/multiarray/arraytypes.c.src - [#&#8203;25203](https://github.com/numpy/numpy/pull/25203): TST: Explicitly pass NumPy path to cython during tests (also... - [#&#8203;25204](https://github.com/numpy/numpy/pull/25204): BUG: fix issues with `newaxis` and `linalg.solve` in `numpy.array_api` - [#&#8203;25205](https://github.com/numpy/numpy/pull/25205): BUG: Disallow shadowed modulenames - [#&#8203;25217](https://github.com/numpy/numpy/pull/25217): BUG: Handle common blocks with kind specifications from modules - [#&#8203;25218](https://github.com/numpy/numpy/pull/25218): BUG: Fix moving compiled executable to root with f2py -c on Windows - [#&#8203;25219](https://github.com/numpy/numpy/pull/25219): BUG: Fix single to half-precision conversion on PPC64/VSX3 - [#&#8203;25227](https://github.com/numpy/numpy/pull/25227): TST: f2py: fix issue in test skip condition - [#&#8203;25240](https://github.com/numpy/numpy/pull/25240): Revert "MAINT: Pin scipy-openblas version." - [#&#8203;25249](https://github.com/numpy/numpy/pull/25249): MAINT: do not use `long` type - [#&#8203;25377](https://github.com/numpy/numpy/pull/25377): TST: PyPy needs another gc.collect on latest versions - [#&#8203;25378](https://github.com/numpy/numpy/pull/25378): CI: Install Lapack runtime on Cygwin. - [#&#8203;25379](https://github.com/numpy/numpy/pull/25379): MAINT: Bump conda-incubator/setup-miniconda from 2.2.0 to 3.0.1 - [#&#8203;25380](https://github.com/numpy/numpy/pull/25380): BLD: update vendored Meson for AIX shared library fix - [#&#8203;25419](https://github.com/numpy/numpy/pull/25419): MAINT: Init `base` in cpu_avx512\_kn - [#&#8203;25420](https://github.com/numpy/numpy/pull/25420): BUG: Fix failing test_features on SapphireRapids - [#&#8203;25422](https://github.com/numpy/numpy/pull/25422): BUG: Fix non-contiguous memory load when ARM/Neon is enabled - [#&#8203;25428](https://github.com/numpy/numpy/pull/25428): MAINT,BUG: Never import distutils above 3.12 \[f2py] - [#&#8203;25452](https://github.com/numpy/numpy/pull/25452): MAINT: make the import-time check for old Accelerate more specific - [#&#8203;25458](https://github.com/numpy/numpy/pull/25458): BUG: fix macOS version checks for Accelerate support - [#&#8203;25465](https://github.com/numpy/numpy/pull/25465): MAINT: Bump actions/setup-node and larsoner/circleci-artifacts-redirector-action - [#&#8203;25466](https://github.com/numpy/numpy/pull/25466): BUG: avoid seg fault from OOB access in RandomState.set_state() - [#&#8203;25467](https://github.com/numpy/numpy/pull/25467): BUG: Fix two errors related to not checking for failed allocations - [#&#8203;25468](https://github.com/numpy/numpy/pull/25468): BUG: Fix regression with `f2py` wrappers when modules and subroutines... - [#&#8203;25475](https://github.com/numpy/numpy/pull/25475): BUG: Fix build issues on SPR - [#&#8203;25478](https://github.com/numpy/numpy/pull/25478): BLD: fix uninitialized variable warnings from simd/neon/memory.h - [#&#8203;25480](https://github.com/numpy/numpy/pull/25480): BUG: Handle `iso_c_type` mappings more consistently - [#&#8203;25481](https://github.com/numpy/numpy/pull/25481): BUG: Fix module name bug in signature files \[urgent] \[f2py] - [#&#8203;25482](https://github.com/numpy/numpy/pull/25482): BUG: Handle .pyf.src and fix SciPy \[urgent] - [#&#8203;25483](https://github.com/numpy/numpy/pull/25483): DOC: `f2py` rewrite with `meson` details - [#&#8203;25485](https://github.com/numpy/numpy/pull/25485): BUG: Add external library handling for meson \[f2py] - [#&#8203;25486](https://github.com/numpy/numpy/pull/25486): MAINT: Run f2py's meson backend with the same python that ran... - [#&#8203;25489](https://github.com/numpy/numpy/pull/25489): MAINT: Update `numpy/f2py/_backends` from main. - [#&#8203;25490](https://github.com/numpy/numpy/pull/25490): MAINT: Easy updates of `f2py/*.py` from main. - [#&#8203;25491](https://github.com/numpy/numpy/pull/25491): MAINT: Update crackfortran.py and f2py2e.py from main #### Checksums ##### MD5 7660db27715df261948e7f0f13634f16 numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl 98d5b98c822de4bed0cf1b0b8f367192 numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl b71cd0710cec5460292a97a02fa349cd numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0f98a05c92598f849b1be2595f4a52a8 numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b866c6aea8070c0753b776d2b521e875 numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl cfdde5868e469fb27655ea73b0b9593b numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl 2655440d61671b5e32b049d30397c58f numpy-1.26.3-cp310-cp310-win32.whl 7718a5d33344784ca7821f3bdd467550 numpy-1.26.3-cp310-cp310-win_amd64.whl 28e4b2ed9192c392f792d88b3c246d1c numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl fb1ae72749463e2c82f0127699728364 numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl 304dec822b508a1d495917610e7562bf numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2cc0d8b073dfd55946a60ba8ed4369f6 numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c99962375c599501820899c8ccab6960 numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl 47ed42d067ce4863bbf1f40da61ba7d1 numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl 3ab3757255feb54ca3793fb9db226586 numpy-1.26.3-cp311-cp311-win32.whl c33f2a4518bae535645357a08a93be1a numpy-1.26.3-cp311-cp311-win_amd64.whl bea43600aaff3a4d9978611ccfa44198 numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl c678d909ebe737fdabf215d8622ce2a3 numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl 9f21f1875c92425cec1060564b3abb1c numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c44a1998965d45ec136078ee09d880f2 numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9274f5c51fa4f3c8fac5efa3d78acd63 numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl 07c9f8f86f45077febc46c87ebc0b644 numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl a4857b2f7b6a23bca41178bd344bb28a numpy-1.26.3-cp312-cp312-win32.whl 495d9534961d7b10f16fec4515a3d72b numpy-1.26.3-cp312-cp312-win_amd64.whl 6494f2d94fd1f184923a33e634692b5e numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl 515a7314a0ff6aaba8d53a7a1aaa73ab numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl c856adc6a6a78773c43e9c738d662ed5 numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 09848456158a01feff28f88c6106aef1 numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl adec00ea2bc98580a436f82e188c0e2f numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl 718bd35dd0431a6434bb30bf8d91d77d numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl e813aa59cb807efb4a8fee52a6dd41ba numpy-1.26.3-cp39-cp39-win32.whl 08e1b0973d0ae5976b38563eaec1253f numpy-1.26.3-cp39-cp39-win_amd64.whl e8887a14750161709636e9fb87df4f36 numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 0bdb19040525451553fb5758b65caf4c numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b931c14d06cc37d85d63ed1ddd88e875 numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl 1c915dc6c36dd4c674d9379e9470ff8b numpy-1.26.3.tar.gz ##### SHA256 806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl 02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl 6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6 numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178 numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485 numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl 21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3 numpy-1.26.3-cp310-cp310-win32.whl 9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce numpy-1.26.3-cp310-cp310-win_amd64.whl b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374 numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl 9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6 numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl 8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2 numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl 51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00 numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl 7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b numpy-1.26.3-cp311-cp311-win32.whl 39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4 numpy-1.26.3-cp311-cp311-win_amd64.whl a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13 numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl 12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl 7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3 numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419 numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166 numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl 8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36 numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511 numpy-1.26.3-cp312-cp312-win32.whl da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b numpy-1.26.3-cp312-cp312-win_amd64.whl 1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl 18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl 0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137 numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58 numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl 9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03 numpy-1.26.3-cp39-cp39-win32.whl 867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2 numpy-1.26.3-cp39-cp39-win_amd64.whl 3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0 numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5 numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl 697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4 numpy-1.26.3.tar.gz ### [`v1.26.2`](https://github.com/numpy/numpy/releases/v1.26.2) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.1...v1.26.2) ### NumPy 1.26.2 Release Notes NumPy 1.26.2 is a maintenance release that fixes bugs and regressions discovered after the 1.26.1 release. The 1.26.release series is the last planned minor release series before NumPy 2.0. The Python versions supported by this release are 3.9-3.12. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;stefan6419846](https://github.com/stefan6419846) - [@&#8203;thalassemia](https://github.com/thalassemia) + - Andrew Nelson - Charles Bousseau + - Charles Harris - Marcel Bargull + - Mark Mentovai + - Matti Picus - Nathan Goldbaum - Ralf Gommers - Sayed Adel - Sebastian Berg - William Ayd + #### Pull requests merged A total of 25 pull requests were merged for this release. - [#&#8203;24814](https://github.com/numpy/numpy/pull/24814): MAINT: align test_dispatcher s390x targets with \_umath_tests_mtargets - [#&#8203;24929](https://github.com/numpy/numpy/pull/24929): MAINT: prepare 1.26.x for further development - [#&#8203;24955](https://github.com/numpy/numpy/pull/24955): ENH: Add Cython enumeration for NPY_FR_GENERIC - [#&#8203;24962](https://github.com/numpy/numpy/pull/24962): REL: Remove Python upper version from the release branch - [#&#8203;24971](https://github.com/numpy/numpy/pull/24971): BLD: Use the correct Python interpreter when running tempita.py - [#&#8203;24972](https://github.com/numpy/numpy/pull/24972): MAINT: Remove unhelpful error replacements from `import_array()` - [#&#8203;24977](https://github.com/numpy/numpy/pull/24977): BLD: use classic linker on macOS, the new one in XCode 15 has... - [#&#8203;25003](https://github.com/numpy/numpy/pull/25003): BLD: musllinux_aarch64 \[wheel build] - [#&#8203;25043](https://github.com/numpy/numpy/pull/25043): MAINT: Update mailmap - [#&#8203;25049](https://github.com/numpy/numpy/pull/25049): MAINT: Update meson build infrastructure. - [#&#8203;25071](https://github.com/numpy/numpy/pull/25071): MAINT: Split up .github/workflows to match main - [#&#8203;25083](https://github.com/numpy/numpy/pull/25083): BUG: Backport fix build on ppc64 when the baseline set to Power9... - [#&#8203;25093](https://github.com/numpy/numpy/pull/25093): BLD: Fix features.h detection for Meson builds \[1.26.x Backport] - [#&#8203;25095](https://github.com/numpy/numpy/pull/25095): BUG: Avoid intp conversion regression in Cython 3 (backport) - [#&#8203;25107](https://github.com/numpy/numpy/pull/25107): CI: remove obsolete jobs, and move macOS and conda Azure jobs... - [#&#8203;25108](https://github.com/numpy/numpy/pull/25108): CI: Add linux_qemu action and remove travis testing. - [#&#8203;25112](https://github.com/numpy/numpy/pull/25112): MAINT: Update .spin/cmds.py from main. - [#&#8203;25113](https://github.com/numpy/numpy/pull/25113): DOC: Visually divide main license and bundled licenses in wheels - [#&#8203;25115](https://github.com/numpy/numpy/pull/25115): MAINT: Add missing `noexcept` to shuffle helpers - [#&#8203;25116](https://github.com/numpy/numpy/pull/25116): DOC: Fix license identifier for OpenBLAS - [#&#8203;25117](https://github.com/numpy/numpy/pull/25117): BLD: improve detection of Netlib libblas/libcblas/liblapack - [#&#8203;25118](https://github.com/numpy/numpy/pull/25118): MAINT: Make bitfield integers unsigned - [#&#8203;25119](https://github.com/numpy/numpy/pull/25119): BUG: Make n a long int for np.random.multinomial - [#&#8203;25120](https://github.com/numpy/numpy/pull/25120): BLD: change default of the `allow-noblas` option to true. - [#&#8203;25121](https://github.com/numpy/numpy/pull/25121): BUG: ensure passing `np.dtype` to itself doesn't crash #### Checksums ##### MD5 1a5dc6b5b3bf11ad40a59eedb3b69fa1 numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl 4b741c6dfe4e6e22e34e9c5c788d4f04 numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl 2953687fb26e1dd8a2d1bb7109551fcd numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ea9127a3a03f27fd101c62425c661d8d numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7a6be7c6c1cc3e1ff73f64052fe30677 numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl 4f45d3f69f54fd1638609fde34c33a5c numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl f22f5ea26c86eb126ff502fff75d6c21 numpy-1.26.2-cp310-cp310-win32.whl 49871452488e1a55d15ab54c6f3e546e numpy-1.26.2-cp310-cp310-win_amd64.whl 676740bf60fb1c8f5a6b31e00b9a4e9b numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl 7170545dcc2a38a1c2386a6081043b64 numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl feae1190c73d811e2e7ebcad4baf6edf numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 03131896abade61b77e0f6e53abb988a numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f160632f128a3fd46787aa02d8731fbb numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl 014250db593d589b5533ef7127839c46 numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl fb437346dac24d0cb23f5314db043c8b numpy-1.26.2-cp311-cp311-win32.whl 7359adc233874898ea768cd4aec28bb3 numpy-1.26.2-cp311-cp311-win_amd64.whl 207a678bea75227428e7fb84d4dc457a numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl 302ff6cc047a408cdf21981bd7b26056 numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl 7526faaea58c76aed395c7128dd6e14d numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 28d3b1943d3a8ad4bbb2ae9da0a77cb9 numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d91f5b2bb2c931e41ae7c80ec7509a31 numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl b2504d4239419f012c08fa1eab12f940 numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl 57944ba30adc07f33e83a9b45f5c625a numpy-1.26.2-cp312-cp312-win32.whl fe38cd95bbee405ce0cf51c8753a2676 numpy-1.26.2-cp312-cp312-win_amd64.whl 28e1bc3efaf89cf6f0a2b616c0e16401 numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl 9932ccff54855f12ee24f60528279bf1 numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl b52c1e987074dad100ad234122a397b9 numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1d1bd7e0d2a89ce795a9566a38ed9bb5 numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 01d2abfe8e9b35415efb791ac6c5865e numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl 5a6d6ac287ebd93a221e59590329e202 numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl 4e4e4d8cf661a8d2838ee700fabae87e numpy-1.26.2-cp39-cp39-win32.whl b8e52ecac110471502686abbdf774b78 numpy-1.26.2-cp39-cp39-win_amd64.whl aed2d2914be293f60fedda360b64abf8 numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 6bd88e0f33933445d0e18c1a850f60e0 numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 010aeb2a50af0af1f7ef56f76f8cf463 numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl 8f6446a32e47953a03f8fe8533e21e98 numpy-1.26.2.tar.gz ##### SHA256 3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440 numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl 36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75 numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00 numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523 numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl 22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9 numpy-1.26.2-cp310-cp310-win32.whl 26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919 numpy-1.26.2-cp310-cp310-win_amd64.whl b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841 numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1 numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl 06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7 numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8 numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186 numpy-1.26.2-cp311-cp311-win32.whl 2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d numpy-1.26.2-cp311-cp311-win_amd64.whl a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0 numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl 5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75 numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl 6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7 numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6 numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6 numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl 4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167 numpy-1.26.2-cp312-cp312-win32.whl b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e numpy-1.26.2-cp312-cp312-win_amd64.whl 4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl 1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2 numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl 64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3 numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818 numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210 numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36 numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80 numpy-1.26.2-cp39-cp39-win32.whl 2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060 numpy-1.26.2-cp39-cp39-win_amd64.whl 1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79 numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841 numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea numpy-1.26.2.tar.gz ### [`v1.26.1`](https://github.com/numpy/numpy/releases/v1.26.1) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.0...v1.26.1) ### NumPy 1.26.1 Release Notes NumPy 1.26.1 is a maintenance release that fixes bugs and regressions discovered after the 1.26.0 release. In addition, it adds new functionality for detecting BLAS and LAPACK when building from source. Highlights are: - Improved detection of BLAS and LAPACK libraries for meson builds - Pickle compatibility with the upcoming NumPy 2.0. The 1.26.release series is the last planned minor release series before NumPy 2.0. The Python versions supported by this release are 3.9-3.12. #### Build system changes ##### Improved BLAS/LAPACK detection and control Auto-detection for a number of BLAS and LAPACK is now implemented for Meson. By default, the build system will try to detect MKL, Accelerate (on macOS >=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK. Support for MKL was significantly improved, and support for FlexiBLAS was added. New command-line flags are available to further control the selection of the BLAS and LAPACK libraries to build against. To select a specific library, use the config-settings interface via `pip` or `pypa/build`. E.g., to select `libblas`/`liblapack`, use: $ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack $ # OR $ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack This works not only for the libraries named above, but for any library that Meson is able to detect with the given name through `pkg-config` or CMake. Besides `-Dblas` and `-Dlapack`, a number of other new flags are available to control BLAS/LAPACK selection and behavior: - `-Dblas-order` and `-Dlapack-order`: a list of library names to search for in order, overriding the default search order. - `-Duse-ilp64`: if set to `true`, use ILP64 (64-bit integer) BLAS and LAPACK. Note that with this release, ILP64 support has been extended to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported in previous releases. - `-Dallow-noblas`: if set to `true`, allow NumPy to build with its internal (very slow) fallback routines instead of linking against an external BLAS/LAPACK library. *The default for this flag may be changed to \`\`true\`\` in a future 1.26.x release, however for 1.26.1 we'd prefer to keep it as \`\`false\`\` because if failures to detect an installed library are happening, we'd like a bug report for that, so we can quickly assess whether the new auto-detection machinery needs further improvements.* - `-Dmkl-threading`: to select the threading layer for MKL. There are four options: `seq`, `iomp`, `gomp` and `tbb`. The default is `auto`, which selects from those four as appropriate given the version of MKL selected. - `-Dblas-symbol-suffix`: manually select the symbol suffix to use for the library - should only be needed for linking against libraries built in a non-standard way. #### New features ##### `numpy._core` submodule stubs `numpy._core` submodule stubs were added to provide compatibility with pickled arrays created using NumPy 2.0 when running Numpy 1.26. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Anton Prosekin + - Charles Harris - Chongyun Lee + - Ivan A. Melnikov + - Jake Lishman + - Mahder Gebremedhin + - Mateusz Sokół - Matti Picus - Munira Alduraibi + - Ralf Gommers - Rohit Goswami - Sayed Adel #### Pull requests merged A total of 20 pull requests were merged for this release. - [#&#8203;24742](https://github.com/numpy/numpy/pull/24742): MAINT: Update cibuildwheel version - [#&#8203;24748](https://github.com/numpy/numpy/pull/24748): MAINT: fix version string in wheels built with setup.py - [#&#8203;24771](https://github.com/numpy/numpy/pull/24771): BLD, BUG: Fix build failure for host flags e.g. `-march=native`... - [#&#8203;24773](https://github.com/numpy/numpy/pull/24773): DOC: Updated the f2py docs to remove a note on -fimplicit-none - [#&#8203;24776](https://github.com/numpy/numpy/pull/24776): BUG: Fix SIMD f32 trunc test on s390x when baseline is none - [#&#8203;24785](https://github.com/numpy/numpy/pull/24785): BLD: add libquadmath to licences and other tweaks ([#&#8203;24753](https://github.com/numpy/numpy/issues/24753)) - [#&#8203;24786](https://github.com/numpy/numpy/pull/24786): MAINT: Activate `use-compute-credits` for Cirrus. - [#&#8203;24803](https://github.com/numpy/numpy/pull/24803): BLD: updated vendored-meson/meson for mips64 fix - [#&#8203;24804](https://github.com/numpy/numpy/pull/24804): MAINT: fix licence path win - [#&#8203;24813](https://github.com/numpy/numpy/pull/24813): BUG: Fix order of Windows OS detection macros. - [#&#8203;24831](https://github.com/numpy/numpy/pull/24831): BUG, SIMD: use scalar cmul on bad Apple clang x86\_64 ([#&#8203;24828](https://github.com/numpy/numpy/issues/24828)) - [#&#8203;24840](https://github.com/numpy/numpy/pull/24840): BUG: Fix DATA statements for f2py - [#&#8203;24870](https://github.com/numpy/numpy/pull/24870): API: Add `NumpyUnpickler` for backporting - [#&#8203;24872](https://github.com/numpy/numpy/pull/24872): MAINT: Xfail test failing on PyPy. - [#&#8203;24879](https://github.com/numpy/numpy/pull/24879): BLD: fix math func feature checks, fix FreeBSD build, add CI... - [#&#8203;24899](https://github.com/numpy/numpy/pull/24899): ENH: meson: implement BLAS/LAPACK auto-detection and many CI... - [#&#8203;24902](https://github.com/numpy/numpy/pull/24902): DOC: add a 1.26.1 release notes section for BLAS/LAPACK build... - [#&#8203;24906](https://github.com/numpy/numpy/pull/24906): MAINT: Backport `numpy._core` stubs. Remove `NumpyUnpickler` - [#&#8203;24911](https://github.com/numpy/numpy/pull/24911): MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2 - [#&#8203;24912](https://github.com/numpy/numpy/pull/24912): BUG: loongarch doesn't use REAL(10) #### Checksums ##### MD5 bda38de1a047dd9fdddae16c0d9fb358 numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl 196d2e39047da64ab28e177760c95461 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl 9d25010a7bf50e624d2fed742790afbd numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9b22fa3d030807f0708007d9c0659f65 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl eea626b8b930acb4b32302a9e95714f5 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl 3c40ef068f50d2ac2913c5b9fa1233fa numpy-1.26.1-cp310-cp310-win32.whl 315c251d2f284af25761a37ce6dd4d10 numpy-1.26.1-cp310-cp310-win_amd64.whl ebdd5046937df50e9f54a6d38c5775dd numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl 682f9beebe8547f205d6cdc8ff96a984 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl e86da9b6040ea88b3835c4d8f8578658 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ebcb6cf7f64454215e29d8a89829c8e1 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a8c89e13dc9a63712104e2fb06fb63a6 numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl 339795930404988dbc664ff4cc72b399 numpy-1.26.1-cp311-cp311-win32.whl 4ef5e1bdd7726c19615843f5ac72e618 numpy-1.26.1-cp311-cp311-win_amd64.whl 3aad6bc72db50e9cc88aa5813e8f35bd numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl fd62f65ae7798dbda9a3f7af7aa5c8db numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl 104d939e080f1baf0a56aed1de0e79e3 numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c44b56c96097f910bbec1420abcf3db5 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1dce230368ae5fc47dd0fe8de8ff771d numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl d93338e7d60e1d294ca326450e99806b numpy-1.26.1-cp312-cp312-win32.whl a1832f46521335c1ee4c56dbf12e600b numpy-1.26.1-cp312-cp312-win_amd64.whl 946fbb0b6caca9258985495532d3f9ab numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl 78c2ab13d395d67d90bcd6583a6f61a8 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl 0a9d80d8b646abf4ffe51fff3e075d10 numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0229ba8145d4f58500873b540a55d60e numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9179fc57c03260374c86e18867c24463 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl 246a3103fdbe5d891d7a8aee28875a26 numpy-1.26.1-cp39-cp39-win32.whl 4589dcb7f754fade6ea3946416bee638 numpy-1.26.1-cp39-cp39-win_amd64.whl 3af340d5487a6c045f00fe5eb889957c numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 28aece4f1ceb92ec463aa353d4a91c8b numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bbd0461a1e31017b05509e9971b3478e numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl 2d770f4c281d405b690c4bcb3dbe99e2 numpy-1.26.1.tar.gz ##### SHA256 82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244 numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297 numpy-1.26.1-cp310-cp310-win32.whl d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab numpy-1.26.1-cp310-cp310-win_amd64.whl cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl 1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b numpy-1.26.1-cp311-cp311-win32.whl 3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53 numpy-1.26.1-cp311-cp311-win_amd64.whl 1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24 numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66 numpy-1.26.1-cp312-cp312-win32.whl 9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7 numpy-1.26.1-cp312-cp312-win_amd64.whl bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl 9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908 numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104 numpy-1.26.1-cp39-cp39-win32.whl 59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2 numpy-1.26.1-cp39-cp39-win_amd64.whl 06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668 numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42 numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe numpy-1.26.1.tar.gz ### [`v1.26.0`](https://github.com/numpy/numpy/releases/v1.26.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.25.2...v1.26.0) ### NumPy 1.26.0 Release Notes The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle with the addition of Python 3.12.0 support. Python 3.12 dropped distutils, consequently supporting it required finding a replacement for the setup.py/distutils based build system NumPy was using. We have chosen to use the Meson build system instead, and this is the first NumPy release supporting it. This is also the first release that supports Cython 3.0 in addition to retaining 0.29.X compatibility. Supporting those two upgrades was a large project, over 100 files have been touched in this release. The changelog doesn't capture the full extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan van der Walt, and Matti Picus who did much of the work in the main development branch. The highlights of this release are: - Python 3.12.0 support. - Cython 3.0.0 compatibility. - Use of the Meson build system - Updated SIMD support - f2py fixes, meson and bind(x) support - Support for the updated Accelerate BLAS/LAPACK library The Python versions supported in this release are 3.9-3.12. #### New Features ##### Array API v2022.12 support in `numpy.array_api` `numpy.array_api` now full supports the [v2022.12 version](https://data-apis.org/array-api/2022.12) of the array API standard. Note that this does not yet include the optional `fft` extension in the standard. ([gh-23789](https://github.com/numpy/numpy/pull/23789)) ##### Support for the updated Accelerate BLAS/LAPACK library Support for the updated Accelerate BLAS/LAPACK library, including ILP64 (64-bit integer) support, in macOS 13.3 has been added. This brings arm64 support, and significant performance improvements of up to 10x for commonly used linear algebra operations. When Accelerate is selected at build time, the 13.3+ version will automatically be used if available. ([gh-24053](https://github.com/numpy/numpy/pull/24053)) ##### `meson` backend for `f2py` `f2py` in compile mode (i.e. `f2py -c`) now accepts the `--backend meson` option. This is the default option for Python `3.12` on-wards. Older versions will still default to `--backend distutils`. To support this in realistic use-cases, in compile mode `f2py` takes a `--dep` flag one or many times which maps to `dependency()` calls in the `meson` backend, and does nothing in the `distutils` backend. There are no changes for users of `f2py` only as a code generator, i.e. without `-c`. ([gh-24532](https://github.com/numpy/numpy/pull/24532)) ##### `bind(c)` support for `f2py` Both functions and subroutines can be annotated with `bind(c)`. `f2py` will handle both the correct type mapping, and preserve the unique label for other `C` interfaces. **Note:** `bind(c, name = 'routine_name_other_than_fortran_routine')` is not honored by the `f2py` bindings by design, since `bind(c)` with the `name` is meant to guarantee only the same name in `C` and `Fortran`, not in `Python` and `Fortran`. ([gh-24555](https://github.com/numpy/numpy/pull/24555)) #### Improvements ##### `iso_c_binding` support for `f2py` Previously, users would have to define their own custom `f2cmap` file to use type mappings defined by the Fortran2003 `iso_c_binding` intrinsic module. These type maps are now natively supported by `f2py` ([gh-24555](https://github.com/numpy/numpy/pull/24555)) #### Build system changes In this release, NumPy has switched to Meson as the build system and meson-python as the build backend. Installing NumPy or building a wheel can be done with standard tools like `pip` and `pypa/build`. The following are supported: - Regular installs: `pip install numpy` or (in a cloned repo) `pip install .` - Building a wheel: `python -m build` (preferred), or `pip wheel .` - Editable installs: `pip install -e . --no-build-isolation` - Development builds through the custom CLI implemented with [spin](https://github.com/scientific-python/spin): `spin build`. All the regular `pip` and `pypa/build` flags (e.g., `--no-build-isolation`) should work as expected. ##### NumPy-specific build customization Many of the NumPy-specific ways of customizing builds have changed. The `NPY_*` environment variables which control BLAS/LAPACK, SIMD, threading, and other such options are no longer supported, nor is a `site.cfg` file to select BLAS and LAPACK. Instead, there are command-line flags that can be passed to the build via `pip`/`build`'s config-settings interface. These flags are all listed in the `meson_options.txt` file in the root of the repo. Detailed documented will be available before the final 1.26.0 release; for now please see [the SciPy "building from source" docs](http://scipy.github.io/devdocs/building/index.html) since most build customization works in an almost identical way in SciPy as it does in NumPy. ##### Build dependencies While the runtime dependencies of NumPy have not changed, the build dependencies have. Because we temporarily vendor Meson and meson-python, there are several new dependencies - please see the `[build-system]` section of `pyproject.toml` for details. ##### Troubleshooting This build system change is quite large. In case of unexpected issues, it is still possible to use a `setup.py`-based build as a temporary workaround (on Python 3.9-3.11, not 3.12), by copying `pyproject.toml.setuppy` to `pyproject.toml`. However, please open an issue with details on the NumPy issue tracker. We aim to phase out `setup.py` builds as soon as possible, and therefore would like to see all potential blockers surfaced early on in the 1.26.0 release cycle. #### Contributors A total of 20 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;DWesl](https://github.com/DWesl) - Albert Steppi + - Bas van Beek - Charles Harris - Developer-Ecosystem-Engineering - Filipe Laíns + - Jake Vanderplas - Liang Yan + - Marten van Kerkwijk - Matti Picus - Melissa Weber Mendonça - Namami Shanker - Nathan Goldbaum - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg - Stefan van der Walt - Tyler Reddy - Warren Weckesser #### Pull requests merged A total of 59 pull requests were merged for this release. - [#&#8203;24305](https://github.com/numpy/numpy/pull/24305): MAINT: Prepare 1.26.x branch for development - [#&#8203;24308](https://github.com/numpy/numpy/pull/24308): MAINT: Massive update of files from main for numpy 1.26 - [#&#8203;24322](https://github.com/numpy/numpy/pull/24322): CI: fix wheel builds on the 1.26.x branch - [#&#8203;24326](https://github.com/numpy/numpy/pull/24326): BLD: update openblas to newer version - [#&#8203;24327](https://github.com/numpy/numpy/pull/24327): TYP: Trim down the `_NestedSequence.__getitem__` signature - [#&#8203;24328](https://github.com/numpy/numpy/pull/24328): BUG: fix choose refcount leak - [#&#8203;24337](https://github.com/numpy/numpy/pull/24337): TST: fix running the test suite in builds without BLAS/LAPACK - [#&#8203;24338](https://github.com/numpy/numpy/pull/24338): BUG: random: Fix generation of nan by dirichlet. - [#&#8203;24340](https://github.com/numpy/numpy/pull/24340): MAINT: Dependabot updates from main - [#&#8203;24342](https://github.com/numpy/numpy/pull/24342): MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1 - [#&#8203;24353](https://github.com/numpy/numpy/pull/24353): MAINT: Update `extbuild.py` from main. - [#&#8203;24356](https://github.com/numpy/numpy/pull/24356): TST: fix distutils tests for deprecations in recent setuptools... - [#&#8203;24375](https://github.com/numpy/numpy/pull/24375): MAINT: Update cibuildwheel to version 2.15.0 - [#&#8203;24381](https://github.com/numpy/numpy/pull/24381): MAINT: Fix codespaces setup.sh script - [#&#8203;24403](https://github.com/numpy/numpy/pull/24403): ENH: Vendor meson for multi-target build support - [#&#8203;24404](https://github.com/numpy/numpy/pull/24404): BLD: vendor meson-python to make the Windows builds with SIMD... - [#&#8203;24405](https://github.com/numpy/numpy/pull/24405): BLD, SIMD: The meson CPU dispatcher implementation - [#&#8203;24406](https://github.com/numpy/numpy/pull/24406): MAINT: Remove versioneer - [#&#8203;24409](https://github.com/numpy/numpy/pull/24409): REL: Prepare for the NumPy 1.26.0b1 release. - [#&#8203;24453](https://github.com/numpy/numpy/pull/24453): MAINT: Pin upper version of sphinx. - [#&#8203;24455](https://github.com/numpy/numpy/pull/24455): ENH: Add prefix to \_ALIGN Macro - [#&#8203;24456](https://github.com/numpy/numpy/pull/24456): BUG: cleanup warnings - [#&#8203;24460](https://github.com/numpy/numpy/pull/24460): MAINT: Upgrade to spin 0.5 - [#&#8203;24495](https://github.com/numpy/numpy/pull/24495): BUG: `asv dev` has been removed, use `asv run`. - [#&#8203;24496](https://github.com/numpy/numpy/pull/24496): BUG: Fix meson build failure due to unchanged inplace auto-generated... - [#&#8203;24521](https://github.com/numpy/numpy/pull/24521): BUG: fix issue with git-version script, needs a shebang to run - [#&#8203;24522](https://github.com/numpy/numpy/pull/24522): BUG: Use a default assignment for git_hash - [#&#8203;24524](https://github.com/numpy/numpy/pull/24524): BUG: fix NPY_cast_info error handling in choose - [#&#8203;24526](https://github.com/numpy/numpy/pull/24526): BUG: Fix common block handling in f2py - [#&#8203;24541](https://github.com/numpy/numpy/pull/24541): CI,TYP: Bump mypy to 1.4.1 - [#&#8203;24542](https://github.com/numpy/numpy/pull/24542): BUG: Fix assumed length f2py regression - [#&#8203;24544](https://github.com/numpy/numpy/pull/24544): MAINT: Harmonize fortranobject - [#&#8203;24545](https://github.com/numpy/numpy/pull/24545): TYP: add kind argument to numpy.isin type specification - [#&#8203;24561](https://github.com/numpy/numpy/pull/24561): BUG: fix comparisons between masked and unmasked structured arrays - [#&#8203;24590](https://github.com/numpy/numpy/pull/24590): CI: Exclude import libraries from list of DLLs on Cygwin. - [#&#8203;24591](https://github.com/numpy/numpy/pull/24591): BLD: fix `_umath_linalg` dependencies - [#&#8203;24594](https://github.com/numpy/numpy/pull/24594): MAINT: Stop testing on ppc64le. - [#&#8203;24602](https://github.com/numpy/numpy/pull/24602): BLD: meson-cpu: fix SIMD support on platforms with no features - [#&#8203;24606](https://github.com/numpy/numpy/pull/24606): BUG: Change Cython `binding` directive to "False". - [#&#8203;24613](https://github.com/numpy/numpy/pull/24613): ENH: Adopt new macOS Accelerate BLAS/LAPACK Interfaces, including... - [#&#8203;24614](https://github.com/numpy/numpy/pull/24614): DOC: Update building docs to use Meson - [#&#8203;24615](https://github.com/numpy/numpy/pull/24615): TYP: Add the missing `casting` keyword to `np.clip` - [#&#8203;24616](https://github.com/numpy/numpy/pull/24616): TST: convert cython test from setup.py to meson - [#&#8203;24617](https://github.com/numpy/numpy/pull/24617): MAINT: Fixup `fromnumeric.pyi` - [#&#8203;24622](https://github.com/numpy/numpy/pull/24622): BUG, ENH: Fix `iso_c_binding` type maps and fix `bind(c)`... - [#&#8203;24629](https://github.com/numpy/numpy/pull/24629): TYP: Allow `binary_repr` to accept any object implementing... - [#&#8203;24630](https://github.com/numpy/numpy/pull/24630): TYP: Explicitly declare `dtype` and `generic` hashable - [#&#8203;24637](https://github.com/numpy/numpy/pull/24637): ENH: Refactor the typing "reveal" tests using `typing.assert_type` - [#&#8203;24638](https://github.com/numpy/numpy/pull/24638): MAINT: Bump actions/checkout from 3.6.0 to 4.0.0 - [#&#8203;24647](https://github.com/numpy/numpy/pull/24647): ENH: `meson` backend for `f2py` - [#&#8203;24648](https://github.com/numpy/numpy/pull/24648): MAINT: Refactor partial load Workaround for Clang - [#&#8203;24653](https://github.com/numpy/numpy/pull/24653): REL: Prepare for the NumPy 1.26.0rc1 release. - [#&#8203;24659](https://github.com/numpy/numpy/pull/24659): BLD: allow specifying the long double format to avoid the runtime... - [#&#8203;24665](https://github.com/numpy/numpy/pull/24665): BLD: fix bug in random.mtrand extension, don't link libnpyrandom - [#&#8203;24675](https://github.com/numpy/numpy/pull/24675): BLD: build wheels for 32-bit Python on Windows, using MSVC - [#&#8203;24700](https://github.com/numpy/numpy/pull/24700): BLD: fix issue with compiler selection during cross compilation - [#&#8203;24701](https://github.com/numpy/numpy/pull/24701): BUG: Fix data stmt handling for complex values in f2py - [#&#8203;24707](https://github.com/numpy/numpy/pull/24707): TYP: Add annotations for the py3.12 buffer protocol - [#&#8203;24718](https://github.com/numpy/numpy/pull/24718): DOC: fix a few doc build issues on 1.26.x and update `spin docs`... #### Checksums ##### MD5 052d84a2aaad4d5a455b64f5ff3f160b numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl 874567083be194080e97bea39ea7befd numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl 1a5fa023e05e050b95549d355890fbb6 numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2af03fbadd96360b26b993975709d072 numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 32717dd51a915e9aee4dcca72acb00d0 numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl 3f101e51b3b5f8c3f01256da645a1962 numpy-1.26.0-cp310-cp310-win32.whl d523a40f0a5f5ba94f09679adbabf825 numpy-1.26.0-cp310-cp310-win_amd64.whl 6115698fdf5fb8cf895540a57d12bfb9 numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl 207603ee822d8af4542f239b8c0a7a67 numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl 0cc5f95c4aebab0ca4f9f66463981016 numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a4654b46bc10738825f37a1797e1eba5 numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3b037dc746499f2a19bb58b55fdd0bfb numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl 7bfb0c44e95f765e7fc5a7a86968a56c numpy-1.26.0-cp311-cp311-win32.whl 3355b510410cb20bacfb3c87632a731a numpy-1.26.0-cp311-cp311-win_amd64.whl 9624a97f1df9f64054409d274c1502f3 numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl 53429b1349542c38b2f3822c7f2904d5 numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl 66a21bf4d8a6372cc3c4c89a67b96279 numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cb9abc312090046563eae619c0b68210 numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 49e3498e0e0ec5c1f6314fb86d7f006e numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl f4a31765889478341597a7140044db85 numpy-1.26.0-cp312-cp312-win32.whl e7d7ded11f89baf760e5ba69249606e4 numpy-1.26.0-cp312-cp312-win_amd64.whl 19698f330ae322c4813eed6e790a04d5 numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl a3628f551d851fbcde6551adb8fcfe2b numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl b34af2ddf43b28207ec7e2c837cbe35f numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3d888129c86357ccfb779d9f0c1256f5 numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e49d00c779df59a786d9f41e0d73c520 numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl 69f6aa8a0f3919797cb28fab7069a578 numpy-1.26.0-cp39-cp39-win32.whl 8233224840dcdda49b08da1d5e91a730 numpy-1.26.0-cp39-cp39-win_amd64.whl c11b4d1181b825407b71a1ac8ec04a10 numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 1515773d4f569d44c6a757cb5a636cb2 numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 60dc766d863d8ab561b494a7a759d562 numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl 69bd28f07afbeed2bb6ecd467afcd469 numpy-1.26.0.tar.gz ##### SHA256 f8db2f125746e44dce707dd44d4f4efeea8d7e2b43aace3f8d1f235cfa2733dd numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl 0621f7daf973d34d18b4e4bafb210bbaf1ef5e0100b5fa750bd9cde84c7ac292 numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl 51be5f8c349fdd1a5568e72713a21f518e7d6707bcf8503b528b88d33b57dc68 numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 767254ad364991ccfc4d81b8152912e53e103ec192d1bb4ea6b1f5a7117040be numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 436c8e9a4bdeeee84e3e59614d38c3dbd3235838a877af8c211cfcac8a80b8d3 numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl c2e698cb0c6dda9372ea98a0344245ee65bdc1c9dd939cceed6bb91256837896 numpy-1.26.0-cp310-cp310-win32.whl 09aaee96c2cbdea95de76ecb8a586cb687d281c881f5f17bfc0fb7f5890f6b91 numpy-1.26.0-cp310-cp310-win_amd64.whl 637c58b468a69869258b8ae26f4a4c6ff8abffd4a8334c830ffb63e0feefe99a numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl 306545e234503a24fe9ae95ebf84d25cba1fdc27db971aa2d9f1ab6bba19a9dd numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl 8c6adc33561bd1d46f81131d5352348350fc23df4d742bb246cdfca606ea1208 numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e062aa24638bb5018b7841977c360d2f5917268d125c833a686b7cbabbec496c numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 546b7dd7e22f3c6861463bebb000646fa730e55df5ee4a0224408b5694cc6148 numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl c0b45c8b65b79337dee5134d038346d30e109e9e2e9d43464a2970e5c0e93229 numpy-1.26.0-cp311-cp311-win32.whl eae430ecf5794cb7ae7fa3808740b015aa80747e5266153128ef055975a72b99 numpy-1.26.0-cp311-cp311-win_amd64.whl 166b36197e9debc4e384e9c652ba60c0bacc216d0fc89e78f973a9760b503388 numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl f042f66d0b4ae6d48e70e28d487376204d3cbf43b84c03bac57e28dac6151581 numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl e5e18e5b14a7560d8acf1c596688f4dfd19b4f2945b245a71e5af4ddb7422feb numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7f6bad22a791226d0a5c7c27a80a20e11cfe09ad5ef9084d4d3fc4a299cca505 numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4acc65dd65da28060e206c8f27a573455ed724e6179941edb19f97e58161bb69 numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl bb0d9a1aaf5f1cb7967320e80690a1d7ff69f1d47ebc5a9bea013e3a21faec95 numpy-1.26.0-cp312-cp312-win32.whl ee84ca3c58fe48b8ddafdeb1db87388dce2c3c3f701bf447b05e4cfcc3679112 numpy-1.26.0-cp312-cp312-win_amd64.whl 4a873a8180479bc829313e8d9798d5234dfacfc2e8a7ac188418189bb8eafbd2 numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl 914b28d3215e0c721dc75db3ad6d62f51f630cb0c277e6b3bcb39519bed10bd8 numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl c78a22e95182fb2e7874712433eaa610478a3caf86f28c621708d35fa4fd6e7f numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 86f737708b366c36b76e953c46ba5827d8c27b7a8c9d0f471810728e5a2fe57c numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b44e6a09afc12952a7d2a58ca0a2429ee0d49a4f89d83a0a11052da696440e49 numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl 5671338034b820c8d58c81ad1dafc0ed5a00771a82fccc71d6438df00302094b numpy-1.26.0-cp39-cp39-win32.whl 020cdbee66ed46b671429c7265cf00d8ac91c046901c55684954c3958525dab2 numpy-1.26.0-cp39-cp39-win_amd64.whl 0792824ce2f7ea0c82ed2e4fecc29bb86bee0567a080dacaf2e0a01fe7654369 numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 7d484292eaeb3e84a51432a94f53578689ffdea3f90e10c8b203a99be5af57d8 numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 186ba67fad3c60dbe8a3abff3b67a91351100f2661c8e2a80364ae6279720299 numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf numpy-1.26.0.tar.gz ### [`v1.25.2`](https://github.com/numpy/numpy/releases/v1.25.2) [Compare Source](https://github.com/numpy/numpy/compare/v1.25.1...v1.25.2) ### NumPy 1.25.2 Release Notes NumPy 1.25.2 is a maintenance release that fixes bugs and regressions discovered after the 1.25.1 release. This is the last planned release in the 1.25.x series, the next release will be 1.26.0, which will use the meson build system and support Python 3.12. The Python versions supported by this release are 3.9-3.11. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Aaron Meurer - Andrew Nelson - Charles Harris - Kevin Sheppard - Matti Picus - Nathan Goldbaum - Peter Hawkins - Ralf Gommers - Randy Eckenrode + - Sam James + - Sebastian Berg - Tyler Reddy - dependabot\[bot] #### Pull requests merged A total of 19 pull requests were merged for this release. - [#&#8203;24148](https://github.com/numpy/numpy/pull/24148): MAINT: prepare 1.25.x for further development - [#&#8203;24174](https://github.com/numpy/numpy/pull/24174): ENH: Improve clang-cl compliance - [#&#8203;24179](https://github.com/numpy/numpy/pull/24179): MAINT: Upgrade various build dependencies. - [#&#8203;24182](https://github.com/numpy/numpy/pull/24182): BLD: use `-ftrapping-math` with Clang on macOS - [#&#8203;24183](https://github.com/numpy/numpy/pull/24183): BUG: properly handle negative indexes in ufunc_at fast path - [#&#8203;24184](https://github.com/numpy/numpy/pull/24184): BUG: PyObject_IsTrue and PyObject_Not error handling in setflags - [#&#8203;24185](https://github.com/numpy/numpy/pull/24185): BUG: histogram small range robust - [#&#8203;24186](https://github.com/numpy/numpy/pull/24186): MAINT: Update meson.build files from main branch - [#&#8203;24234](https://github.com/numpy/numpy/pull/24234): MAINT: exclude min, max and round from `np.__all__` - [#&#8203;24241](https://github.com/numpy/numpy/pull/24241): MAINT: Dependabot updates - [#&#8203;24242](https://github.com/numpy/numpy/pull/24242): BUG: Fix the signature for np.array_api.take - [#&#8203;24243](https://github.com/numpy/numpy/pull/24243): BLD: update OpenBLAS to an intermeidate commit - [#&#8203;24244](https://github.com/numpy/numpy/pull/24244): BUG: Fix reference count leak in str(scalar). - [#&#8203;24245](https://github.com/numpy/numpy/pull/24245): BUG: fix invalid function pointer conversion error - [#&#8203;24255](https://github.com/numpy/numpy/pull/24255): BUG: Factor out slow `getenv` call used for memory policy warning - [#&#8203;24292](https://github.com/numpy/numpy/pull/24292): CI: correct URL in cirrus.star - [#&#8203;24293](https://github.com/numpy/numpy/pull/24293): BUG: Fix C types in scalartypes - [#&#8203;24294](https://github.com/numpy/numpy/pull/24294): BUG: do not modify the input to ufunc_at - [#&#8203;24295](https://github.com/numpy/numpy/pull/24295): BUG: Further fixes to indexing loop and added tests #### Checksums ##### MD5 33518ccb4da8ee11f1dee4b9fef1e468 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl b5cb0c3b33ef6d93ec2888f25b065636 numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl ae027dd38bd73f09c07220b2f516f148 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 88cf69dc3c0d293492c4c7e75dccf3d8 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3e4e3ad02375ba71ae2cd05ccd97aba4 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl f52bb644682deb26c35ddec77198b65c numpy-1.25.2-cp310-cp310-win32.whl 4944cf36652be7560a6bcd0d5d56e8ea numpy-1.25.2-cp310-cp310-win_amd64.whl 5a56e639defebb7b871c8c5613960ca3 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl 3988b96944e7218e629255214f2598bd numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl 302d65015ddd908a862fb3761a2a0363 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e54a2e23272d1c5e5b278bd7e304c948 numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 961d390e8ccaf11b1b0d6200d2c8b1c0 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl e113865b90f97079d344100c41226fbe numpy-1.25.2-cp311-cp311-win32.whl 834a147aa1adaec97655018b882232bd numpy-1.25.2-cp311-cp311-win_amd64.whl fb55f93a8033bde854c8a2b994045686 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl d96e754217d29bf045e082b695667e62 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl beab540edebecbb257e482dd9e498b44 numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e0d608c9e09cd8feba48567586cfefc0 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe1fc32c8bb005ca04b8f10ebdcff6dd numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl 41df58a9935c8ed869c92307c95f02eb numpy-1.25.2-cp39-cp39-win32.whl a4371272c64493beb8b04ac46c4c1521 numpy-1.25.2-cp39-cp39-win_amd64.whl bbe051cbd5f8661dd054277f0b0f0c3d numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 3f68e6b4af6922989dc0133e37db34ee numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fc89421b79e8800240999d3a1d06a4d2 numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl cee1996a80032d47bdf1d9d17249c34e numpy-1.25.2.tar.gz ##### SHA256 db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl 90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl 7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044 numpy-1.25.2-cp310-cp310-win32.whl 834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545 numpy-1.25.2-cp310-cp310-win_amd64.whl c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl 0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl 5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d numpy-1.25.2-cp311-cp311-win32.whl 5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4 numpy-1.25.2-cp311-cp311-win_amd64.whl b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl 3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl 2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01 numpy-1.25.2-cp39-cp39-win32.whl 76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380 numpy-1.25.2-cp39-cp39-win_amd64.whl 1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55 numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901 numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760 numpy-1.25.2.tar.gz ### [`v1.25.1`](https://github.com/numpy/numpy/releases/v1.25.1) [Compare Source](https://github.com/numpy/numpy/compare/v1.25.0...v1.25.1) ### NumPy 1.25.1 Release Notes NumPy 1.25.1 is a maintenance release that fixes bugs and regressions discovered after the 1.25.0 release. The Python versions supported by this release are 3.9-3.11. #### Contributors A total of 10 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Charles Harris - Developer-Ecosystem-Engineering - Hood Chatham - Nathan Goldbaum - Rohit Goswami - Sebastian Berg - Tim Paine + - dependabot\[bot] - matoro + #### Pull requests merged A total of 14 pull requests were merged for this release. - [#&#8203;23968](https://github.com/numpy/numpy/pull/23968): MAINT: prepare 1.25.x for further development - [#&#8203;24036](https://github.com/numpy/numpy/pull/24036): BLD: Port long double identification to C for meson - [#&#8203;24037](https://github.com/numpy/numpy/pull/24037): BUG: Fix reduction `return NULL` to be `goto fail` - [#&#8203;24038](https://github.com/numpy/numpy/pull/24038): BUG: Avoid undefined behavior in array.astype() - [#&#8203;24039](https://github.com/numpy/numpy/pull/24039): BUG: Ensure `__array_ufunc__` works without any kwargs passed - [#&#8203;24117](https://github.com/numpy/numpy/pull/24117): MAINT: Pin urllib3 to avoid anaconda-client bug. - [#&#8203;24118](https://github.com/numpy/numpy/pull/24118): TST: Pin pydantic<2 in Pyodide workflow - [#&#8203;24119](https://github.com/numpy/numpy/pull/24119): MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1 - [#&#8203;24120](https://github.com/numpy/numpy/pull/24120): MAINT: Bump actions/checkout from 3.5.2 to 3.5.3 - [#&#8203;24122](https://github.com/numpy/numpy/pull/24122): BUG: Multiply or Divides using SIMD without a full vector can... - [#&#8203;24127](https://github.com/numpy/numpy/pull/24127): MAINT: testing for IS_MUSL closes [#&#8203;24074](https://github.com/numpy/numpy/issues/24074) - [#&#8203;24128](https://github.com/numpy/numpy/pull/24128): BUG: Only replace dtype temporarily if dimensions changed - [#&#8203;24129](https://github.com/numpy/numpy/pull/24129): MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0 - [#&#8203;24134](https://github.com/numpy/numpy/pull/24134): BUG: Fix private procedures in f2py modules #### Checksums ##### MD5 d09d98643db31e892fad11b8c2b7af22 numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl d5b8d3b0424e2af41018f35a087c4500 numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl 1007893b1a8bfd97d445a63d29d33642 numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6a62d7a6cee310b41dc872aa7f3d7e8b numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e81f6264aecfa2269c5d29d10c362cbc numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl ab8ecd125ca86eac0b3ada67ab66dad6 numpy-1.25.1-cp310-cp310-win32.whl 5466bebeaafcc3d6e1b98858d77ff945 numpy-1.25.1-cp310-cp310-win_amd64.whl f31b059256ae09b7b83df63f52d8371e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl 099f74d654888869704469c321af845d numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl 20d04dccd2bfca5cfd88780d1dc9a3f8 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 61dfd7c00638e83a7af59b86615ee9d2 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4eb459c3d9479c4da2fdf20e4c4085d0 numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl 5e84e797866c68ba65fa89a4bf4ba8ce numpy-1.25.1-cp311-cp311-win32.whl 87bb1633b2e8029dbfa1e59f7ab22625 numpy-1.25.1-cp311-cp311-win_amd64.whl 3fcf2eb5970d848a26abdff1b10228e7 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl d71e1cbe18fe05944219e5a5be1796bf numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl 5b457e10834c991bca84aae7eaa49f34 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5cbb4c2f2892fafdf6f34fcb37c9e743 numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7d9d1ae23cf5420652088bfe8e048d89 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl 7e5bed491b85f0d7c718d6809f9b3ed2 numpy-1.25.1-cp39-cp39-win32.whl 838e97b751bebadf47e2196b2c88ffa2 numpy-1.25.1-cp39-cp39-win_amd64.whl 9ba95d8d6004d9659d7728fe93f67be9 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl fbccb20254a2dc85bdec549a03b8eb56 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 95e36689e6dd078caf11e7e2a2d5f5f1 numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl 768d0ebf15e2242f4c7ca7565bb5dd3e numpy-1.25.1.tar.gz ##### SHA256 77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl 4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588 numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19 numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503 numpy-1.25.1-cp310-cp310-win32.whl c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57 numpy-1.25.1-cp310-cp310-win_amd64.whl 6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800 numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl 41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl 791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb numpy-1.25.1-cp311-cp311-win32.whl c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171 numpy-1.25.1-cp311-cp311-win_amd64.whl 3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl 1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl 247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c numpy-1.25.1-cp39-cp39-win32.whl 1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631 numpy-1.25.1-cp39-cp39-win_amd64.whl 35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl 9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf numpy-1.25.1.tar.gz ### [`v1.25.0`](https://github.com/numpy/numpy/releases/v1.25.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.4...v1.25.0) ### NumPy 1.25.0 Release Notes The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been work to prepare for the future NumPy 2.0.0 release, resulting in a large number of new and expired deprecation. Highlights are: - Support for MUSL, there are now MUSL wheels. - Support the Fujitsu C/C++ compiler. - Object arrays are now supported in einsum - Support for inplace matrix multiplication (`@=`). We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is needed because distutils has been dropped by Python 3.12 and we will be switching to using meson for future builds. The next mainline release will be NumPy 2.0.0. We plan that the 2.0 series will still support downstream projects built against earlier versions of NumPy. The Python versions supported in this release are 3.9-3.11. #### Deprecations - `np.core.MachAr` is deprecated. It is private API. In names defined in `np.core` should generally be considered private. ([gh-22638](https://github.com/numpy/numpy/pull/22638)) - `np.finfo(None)` is deprecated. ([gh-23011](https://github.com/numpy/numpy/pull/23011)) - `np.round_` is deprecated. Use `np.round` instead. ([gh-23302](https://github.com/numpy/numpy/pull/23302)) - `np.product` is deprecated. Use `np.prod` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.cumproduct` is deprecated. Use `np.cumprod` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.sometrue` is deprecated. Use `np.any` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.alltrue` is deprecated. Use `np.all` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - Only ndim-0 arrays are treated as scalars. NumPy used to treat all arrays of size 1 (e.g., `np.array([3.14])`) as scalars. In the future, this will be limited to arrays of ndim 0 (e.g., `np.array(3.14)`). The following expressions will report a deprecation warning: ```python a = np.array([3.14]) float(a) # better: a[0] to get the numpy.float or a.item() b = np.array([[3.14]]) c = numpy.random.rand(10) c[0] = b # better: c[0] = b[0, 0] ``` ([gh-10615](https://github.com/numpy/numpy/pull/10615)) - `numpy.find_common_type` is now deprecated and its use should be replaced with either `numpy.result_type` or `numpy.promote_types`. Most users leave the second `scalar_types` argument to `find_common_type` as `[]` in which case `np.result_type` and `np.promote_types` are both faster and more robust. When not using `scalar_types` the main difference is that the replacement intentionally converts non-native byte-order to native byte order. Further, `find_common_type` returns `object` dtype rather than failing promotion. This leads to differences when the inputs are not all numeric. Importantly, this also happens for e.g. timedelta/datetime for which NumPy promotion rules are currently sometimes surprising. When the `scalar_types` argument is not `[]` things are more complicated. In most cases, using `np.result_type` and passing the Python values `0`, `0.0`, or `0j` has the same result as using `int`, `float`, or `complex` in `scalar_types`. When `scalar_types` is constructed, `np.result_type` is the correct replacement and it may be passed scalar values like `np.float32(0.0)`. Passing values other than 0, may lead to value-inspecting behavior (which `np.find_common_type` never used and NEP 50 may change in the future). The main possible change in behavior in this case, is when the array types are signed integers and scalar types are unsigned. If you are unsure about how to replace a use of `scalar_types` or when non-numeric dtypes are likely, please do not hesitate to open a NumPy issue to ask for help. ([gh-22539](https://github.com/numpy/numpy/pull/22539)) #### Expired deprecations - `np.core.machar` and `np.finfo.machar` have been removed. ([gh-22638](https://github.com/numpy/numpy/pull/22638)) - `+arr` will now raise an error when the dtype is not numeric (and positive is undefined). ([gh-22998](https://github.com/numpy/numpy/pull/22998)) - A sequence must now be passed into the stacking family of functions (`stack`, `vstack`, `hstack`, `dstack` and `column_stack`). ([gh-23019](https://github.com/numpy/numpy/pull/23019)) - `np.clip` now defaults to same-kind casting. Falling back to unsafe casting was deprecated in NumPy 1.17. ([gh-23403](https://github.com/numpy/numpy/pull/23403)) - `np.clip` will now propagate `np.nan` values passed as `min` or `max`. Previously, a scalar NaN was usually ignored. This was deprecated in NumPy 1.17. ([gh-23403](https://github.com/numpy/numpy/pull/23403)) - The `np.dual` submodule has been removed. ([gh-23480](https://github.com/numpy/numpy/pull/23480)) - NumPy now always ignores sequence behavior for an array-like (defining one of the array protocols). (Deprecation started NumPy 1.20) ([gh-23660](https://github.com/numpy/numpy/pull/23660)) - The niche `FutureWarning` when casting to a subarray dtype in `astype` or the array creation functions such as `asarray` is now finalized. The behavior is now always the same as if the subarray dtype was wrapped into a single field (which was the workaround, previously). (FutureWarning since NumPy 1.20) ([gh-23666](https://github.com/numpy/numpy/pull/23666)) - `==` and `!=` warnings have been finalized. The `==` and `!=` operators on arrays now always: - raise errors that occur during comparisons such as when the arrays have incompatible shapes (`np.array([1, 2]) == np.array([1, 2, 3])`). - return an array of all `True` or all `False` when values are fundamentally not comparable (e.g. have different dtypes). An example is `np.array(["a"]) == np.array([1])`. This mimics the Python behavior of returning `False` and `True` when comparing incompatible types like `"a" == 1` and `"a" != 1`. For a long time these gave `DeprecationWarning` or `FutureWarning`. ([gh-22707](https://github.com/numpy/numpy/pull/22707)) - Nose support has been removed. NumPy switched to using pytest in 2018 and nose has been unmaintained for many years. We have kept NumPy's nose support to avoid breaking downstream projects who might have been using it and not yet switched to pytest or some other testing framework. With the arrival of Python 3.12, unpatched nose will raise an error. It is time to move on. *Decorators removed*: - raises - slow - setastest - skipif - knownfailif - deprecated - parametrize - \_needs_refcount These are not to be confused with pytest versions with similar names, e.g., pytest.mark.slow, pytest.mark.skipif, pytest.mark.parametrize. *Functions removed*: - Tester - import_nose - run_module_suite ([gh-23041](https://github.com/numpy/numpy/pull/23041)) - The `numpy.testing.utils` shim has been removed. Importing from the `numpy.testing.utils` shim has been deprecated since 2019, the shim has now been removed. All imports should be made directly from `numpy.testing`. ([gh-23060](https://github.com/numpy/numpy/pull/23060)) - The environment variable to disable dispatching has been removed. Support for the `NUMPY_EXPERIMENTAL_ARRAY_FUNCTION` environment variable has been removed. This variable disabled dispatching with `__array_function__`. ([gh-23376](https://github.com/numpy/numpy/pull/23376)) - Support for `y=` as an alias of `out=` has been removed. The `fix`, `isposinf` and `isneginf` functions allowed using `y=` as a (deprecated) alias for `out=`. This is no longer supported. ([gh-23376](https://github.com/numpy/numpy/pull/23376)) #### Compatibility notes - The `busday_count` method now correctly handles cases where the `begindates` is later in time than the `enddates`. Previously, the `enddates` was included, even though the documentation states it is always excluded. ([gh-23229](https://github.com/numpy/numpy/pull/23229)) - When comparing datetimes and timedelta using `np.equal` or `np.not_equal` numpy previously allowed the comparison with `casting="unsafe"`. This operation now fails. Forcing the output dtype using the `dtype` kwarg can make the operation succeed, but we do not recommend it. ([gh-22707](https://github.com/numpy/numpy/pull/22707)) - When loading data from a file handle using `np.load`, if the handle is at the end of file, as can happen when reading multiple arrays by calling `np.load` repeatedly, numpy previously raised `ValueError` if `allow_pickle=False`, and `OSError` if `allow_pickle=True`. Now it raises `EOFError` instead, in both cases. ([gh-23105](https://github.com/numpy/numpy/pull/23105)) ##### `np.pad` with `mode=wrap` pads with strict multiples of original data Code based on earlier version of `pad` that uses `mode="wrap"` will return different results when the padding size is larger than initial array. `np.pad` with `mode=wrap` now always fills the space with strict multiples of original data even if the padding size is larger than the initial array. ([gh-22575](https://github.com/numpy/numpy/pull/22575)) ##### Cython `long_t` and `ulong_t` removed `long_t` and `ulong_t` were aliases for `longlong_t` and `ulonglong_t` and confusing (a remainder from of Python 2). This change may lead to the errors: 'long_t' is not a type identifier 'ulong_t' is not a type identifier We recommend use of bit-sized types such as `cnp.int64_t` or the use of `cnp.intp_t` which is 32 bits on 32 bit systems and 64 bits on 64 bit systems (this is most compatible with indexing). If C `long` is desired, use plain `long` or `npy_long`. `cnp.int_t` is also `long` (NumPy's default integer). However, `long` is 32 bit on 64 bit windows and we may wish to adjust this even in NumPy. (Please do not hesitate to contact NumPy developers if you are curious about this.) ([gh-22637](https://github.com/numpy/numpy/pull/22637)) ##### Changed error message and type for bad `axes` argument to `ufunc` The error message and type when a wrong `axes` value is passed to `ufunc(..., axes=[...])` has changed. The message is now more indicative of the problem, and if the value is mismatched an `AxisError` will be raised. A `TypeError` will still be raised for invalidinput types. ([gh-22675](https://github.com/numpy/numpy/pull/22675)) ##### Array-likes that define `__array_ufunc__` can now override ufuncs if used as `where` If the `where` keyword argument of a `numpy.ufunc`{.interpreted-text role="class"} is a subclass of `numpy.ndarray`{.interpreted-text role="class"} or is a duck type that defines `numpy.class.__array_ufunc__`{.interpreted-text role="func"} it can override the behavior of the ufunc using the same mechanism as the input and output arguments. Note that for this to work properly, the `where.__array_ufunc__` implementation will have to unwrap the `where` argument to pass it into the default implementation of the `ufunc` or, for `numpy.ndarray`{.interpreted-text role="class"} subclasses before using `super().__array_ufunc__`. ([gh-23240](https://github.com/numpy/numpy/pull/23240)) ##### Compiling against the NumPy C API is now backwards compatible by default NumPy now defaults to exposing a backwards compatible subset of the C-API. This makes the use of `oldest-supported-numpy` unnecessary. Libraries can override the default minimal version to be compatible with using: #define NPY_TARGET_VERSION NPY_1_22_API_VERSION before including NumPy or by passing the equivalent `-D` option to the compiler. The NumPy 1.25 default is `NPY_1_19_API_VERSION`. Because the NumPy 1.19 C API was identical to the NumPy 1.16 one resulting programs will be compatible with NumPy 1.16 (from a C-API perspective). This default will be increased in future non-bugfix releases. You can still compile against an older NumPy version and run on a newer one. For more details please see `for-downstream-package-authors`{.interpreted-text role="ref"}. ([gh-23528](https://github.com/numpy/numpy/pull/23528)) #### New Features ##### `np.einsum` now accepts arrays with `object` dtype The code path will call python operators on object dtype arrays, much like `np.dot` and `np.matmul`. ([gh-18053](https://github.com/numpy/numpy/pull/18053)) ##### Add support for inplace matrix multiplication It is now possible to perform inplace matrix multiplication via the `@=` operator. ```python >>> import numpy as np >>> a = np.arange(6).reshape(3, 2) >>> print(a) [[0 1] [2 3] [4 5]] >>> b = np.ones((2, 2), dtype=int) >>> a @&#8203;= b >>> print(a) [[1 1] [5 5] [9 9]] ``` ([gh-21120](https://github.com/numpy/numpy/pull/21120)) ##### Added `NPY_ENABLE_CPU_FEATURES` environment variable Users may now choose to enable only a subset of the built CPU features at runtime by specifying the `NPY_ENABLE_CPU_FEATURES` environment variable. Note that these specified features must be outside the baseline, since those are always assumed. Errors will be raised if attempting to enable a feature that is either not supported by your CPU, or that NumPy was not built with. ([gh-22137](https://github.com/numpy/numpy/pull/22137)) ##### NumPy now has an `np.exceptions` namespace NumPy now has a dedicated namespace making most exceptions and warnings available. All of these remain available in the main namespace, although some may be moved slowly in the future. The main reason for this is to increase discoverability and add future exceptions. ([gh-22644](https://github.com/numpy/numpy/pull/22644)) ##### `np.linalg` functions return NamedTuples `np.linalg` functions that return tuples now return namedtuples. These functions are `eig()`, `eigh()`, `qr()`, `slogdet()`, and `svd()`. The return type is unchanged in instances where these functions return non-tuples with certain keyword arguments (like `svd(compute_uv=False)`). ([gh-22786](https://github.com/numpy/numpy/pull/22786)) ##### String functions in `np.char` are compatible with NEP 42 custom dtypes Custom dtypes that represent unicode strings or byte strings can now be passed to the string functions in `np.char`. ([gh-22863](https://github.com/numpy/numpy/pull/22863)) ##### String dtype instances can be created from the string abstract dtype classes It is now possible to create a string dtype instance with a size without using the string name of the dtype. For example, `type(np.dtype('U'))(8)` will create a dtype that is equivalent to `np.dtype('U8')`. This feature is most useful when writing generic code dealing with string dtype classes. ([gh-22963](https://github.com/numpy/numpy/pull/22963)) ##### Fujitsu C/C++ compiler is now supported Support for Fujitsu compiler has been added. To build with Fujitsu compiler, run: > python setup.py build -c fujitsu ##### SSL2 is now supported Support for SSL2 has been added. SSL2 is a library that provides OpenBLAS compatible GEMM functions. To enable SSL2, it need to edit site.cfg and build with Fujitsu compiler. See site.cfg.example. ([gh-22982](https://github.com/numpy/numpy/pull/22982)) #### Improvements ##### `NDArrayOperatorsMixin` specifies that it has no `__slots__` The `NDArrayOperatorsMixin` class now specifies that it contains no `__slots__`, ensuring that subclasses can now make use of this feature in Python. ([gh-23113](https://github.com/numpy/numpy/pull/23113)) ##### Fix power of complex zero `np.power` now returns a different result for `0^{non-zero}` for complex numbers. Note that the value is only defined when the real part of the exponent is larger than zero. Previously, NaN was returned unless the imaginary part was strictly zero. The return value is either `0+0j` or `0-0j`. ([gh-18535](https://github.com/numpy/numpy/pull/18535)) ##### New `DTypePromotionError` NumPy now has a new `DTypePromotionError` which is used when two dtypes cannot be promoted to a common one, for example: np.result_type("M8[s]", np.complex128) raises this new exception. ([gh-22707](https://github.com/numpy/numpy/pull/22707)) ##### `np.show_config` uses information from Meson Build and system information now contains information from Meson. `np.show_config` now has a new optional parameter `mode` to help customize the output. ([gh-22769](https://github.com/numpy/numpy/pull/22769)) ##### Fix `np.ma.diff` not preserving the mask when called with arguments prepend/append. Calling `np.ma.diff` with arguments prepend and/or append now returns a `MaskedArray` with the input mask preserved. Previously, a `MaskedArray` without the mask was returned. ([gh-22776](https://github.com/numpy/numpy/pull/22776)) ##### Corrected error handling for NumPy C-API in Cython Many NumPy C functions defined for use in Cython were lacking the correct error indicator like `except -1` or `except *`. These have now been added. ([gh-22997](https://github.com/numpy/numpy/pull/22997)) ##### Ability to directly spawn random number generators `numpy.random.Generator.spawn` now allows to directly spawn new independent child generators via the `numpy.random.SeedSequence.spawn` mechanism. `numpy.random.BitGenerator.spawn` does the same for the underlying bit generator. Additionally, `numpy.random.BitGenerator.seed_seq` now gives direct access to the seed sequence used for initializing the bit generator. This allows for example: seed = 0x2e09b90939db40c400f8f22dae617151 rng = np.random.default_rng(seed) child_rng1, child_rng2 = rng.spawn(2) ### safely use rng, child_rng1, and child_rng2 Previously, this was hard to do without passing the `SeedSequence` explicitly. Please see `numpy.random.SeedSequence` for more information. ([gh-23195](https://github.com/numpy/numpy/pull/23195)) ##### `numpy.logspace` now supports a non-scalar `base` argument The `base` argument of `numpy.logspace` can now be array-like if it is broadcastable against the `start` and `stop` arguments. ([gh-23275](https://github.com/numpy/numpy/pull/23275)) ##### `np.ma.dot()` now supports for non-2d arrays Previously `np.ma.dot()` only worked if `a` and `b` were both 2d. Now it works for non-2d arrays as well as `np.dot()`. ([gh-23322](https://github.com/numpy/numpy/pull/23322)) ##### Explicitly show keys of .npz file in repr `NpzFile` shows keys of loaded .npz file when printed. ```python >>> npzfile = np.load('arr.npz') >>> npzfile NpzFile 'arr.npz' with keys arr_0, arr_1, arr_2, arr_3, arr_4... ``` ([gh-23357](https://github.com/numpy/numpy/pull/23357)) ##### NumPy now exposes DType classes in `np.dtypes` The new `numpy.dtypes` module now exposes DType classes and will contain future dtype related functionality. Most users should have no need to use these classes directly. ([gh-23358](https://github.com/numpy/numpy/pull/23358)) ##### Drop dtype metadata before saving in .npy or .npz files Currently, a `*.npy` file containing a table with a dtype with metadata cannot be read back. Now, `np.save` and `np.savez` drop metadata before saving. ([gh-23371](https://github.com/numpy/numpy/pull/23371)) ##### `numpy.lib.recfunctions.structured_to_unstructured` returns views in more cases `structured_to_unstructured` now returns a view, if the stride between the fields is constant. Prior, padding between the fields or a reversed field would lead to a copy. This change only applies to `ndarray`, `memmap` and `recarray`. For all other array subclasses, the behavior remains unchanged. ([gh-23652](https://github.com/numpy/numpy/pull/23652)) ##### Signed and unsigned integers always compare correctly When `uint64` and `int64` are mixed in NumPy, NumPy typically promotes both to `float64`. This behavior may be argued about but is confusing for comparisons `==`, `<=`, since the results returned can be incorrect but the conversion is hidden since the result is a boolean. NumPy will now return the correct results for these by avoiding the cast to float. ([gh-23713](https://github.com/numpy/numpy/pull/23713)) #### Performance improvements and changes ##### Faster `np.argsort` on AVX-512 enabled processors 32-bit and 64-bit quicksort algorithm for np.argsort gain up to 6x speed up on processors that support AVX-512 instruction set. Thanks to [Intel corporation](https://open.intel.com/) for sponsoring this work. ([gh-23707](https://github.com/numpy/numpy/pull/23707)) ##### Faster `np.sort` on AVX-512 enabled processors Quicksort for 16-bit and 64-bit dtypes gain up to 15x and 9x speed up on processors that support AVX-512 instruction set. Thanks to [Intel corporation](https://open.intel.com/) for sponsoring this work. ([gh-22315](https://github.com/numpy/numpy/pull/22315)) ##### `__array_function__` machinery is now much faster The overhead of the majority of functions in NumPy is now smaller especially when keyword arguments are used. This change significantly speeds up many simple function calls. ([gh-23020](https://github.com/numpy/numpy/pull/23020)) ##### `ufunc.at` can be much faster Generic `ufunc.at` can be up to 9x faster. The conditions for this speedup: - operands are aligned - no casting If ufuncs with appropriate indexed loops on 1d arguments with the above conditions, `ufunc.at` can be up to 60x faster (an additional 7x speedup). Appropriate indexed loops have been added to `add`, `subtract`, `multiply`, `floor_divide`, `maximum`, `minimum`, `fmax`, and `fmin`. The internal logic is similar to the logic used for regular ufuncs, which also have fast paths. Thanks to the [D. E. Shaw group](https://deshaw.com/) for sponsoring this work. ([gh-23136](https://github.com/numpy/numpy/pull/23136)) ##### Faster membership test on `NpzFile` Membership test on `NpzFile` will no longer decompress the archive if it is successful. ([gh-23661](https://github.com/numpy/numpy/pull/23661)) #### Changes ##### `np.r_[]` and `np.c_[]` with certain scalar values In rare cases, using mainly `np.r_` with scalars can lead to different results. The main potential changes are highlighted by the following: >>> np.r_[np.arange(5, dtype=np.uint8), -1].dtype int16 # rather than the default integer (int64 or int32) >>> np.r_[np.arange(5, dtype=np.int8), 255] array([ 0, 1, 2, 3, 4, 255], dtype=int16) Where the second example returned: array([ 0, 1, 2, 3, 4, -1], dtype=int8) The first one is due to a signed integer scalar with an unsigned integer array, while the second is due to `255` not fitting into `int8` and NumPy currently inspecting values to make this work. (Note that the second example is expected to change in the future due to `NEP 50 <NEP50>`{.interpreted-text role="ref"}; it will then raise an error.) ([gh-22539](https://github.com/numpy/numpy/pull/22539)) ##### Most NumPy functions are wrapped into a C-callable To speed up the `__array_function__` dispatching, most NumPy functions are now wrapped into C-callables and are not proper Python functions or C methods. They still look and feel the same as before (like a Python function), and this should only improve performance and user experience (cleaner tracebacks). However, please inform the NumPy developers if this change confuses your program for some reason. ([gh-23020](https://github.com/numpy/numpy/pull/23020)) ##### C++ standard library usage NumPy builds now depend on the C++ standard library, because the `numpy.core._multiarray_umath` extension is linked with the C++ linker. ([gh-23601](https://github.com/numpy/numpy/pull/23601)) #### Checksums ##### MD5 4657f046d9d9d62e4baeae9b2cc1b4ea numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl f57f98fee3da2d98f752f755a880a508 numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl 72b0ad52f96a41a7a82f511cb35c7ef1 numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a61227341b8903fa66ab0e0fdaa15430 numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bfccabfbd866c59545ce11ecdac60701 numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl 22402904f194376b8d2de01481f04b03 numpy-1.25.0-cp310-cp310-win32.whl e983b193f7d63568eac85d8bda8be62e numpy-1.25.0-cp310-cp310-win_amd64.whl 5f6477db172f59a4fd7f591e1007e632 numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl 6a85cca47af69e3d45b4efab9490af4d numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl ad1c0b4b406c9a2f1b42792502bc456b numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 39e241f265611a9c1e89499054ead1c9 numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e36b37acf1acfbc185face67c67bfe09 numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl 67862d7849b4f0f943760142f1628aed numpy-1.25.0-cp311-cp311-win32.whl 6e8ed7865792246cac2213bad404f4da numpy-1.25.0-cp311-cp311-win_amd64.whl 25e843425697364f50dd7288ff9d2ce1 numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl 58641e53bcb1e13dfed1f5af1aff94bc numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl ce15327793c39beecee8401356bc6c9b numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 34b734a2c7698d59954c29fe7c0536f3 numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6652d9df23c84e54466b10f4a2a290be numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl c228105e3c4c8887823d99e35eea9d2b numpy-1.25.0-cp39-cp39-win32.whl 1322210ae6a874293d13c4bb3abf24ee numpy-1.25.0-cp39-cp39-win_amd64.whl dc36096628e65077c2a44c493606c668 numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 942b4276f8d563efb111921d5995834c numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0fa0734a8ff952dd643e7b9826168099 numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl b236497153bc19b4a560ac485e4c2754 numpy-1.25.0.tar.gz ##### SHA256 8aa130c3042052d656751df5e81f6d61edff3e289b5994edcf77f54118a8d9f4 numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl 9e3f2b96e3b63c978bc29daaa3700c028fe3f049ea3031b58aa33fe2a5809d24 numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl d6b267f349a99d3908b56645eebf340cb58f01bd1e773b4eea1a905b3f0e4208 numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4aedd08f15d3045a4e9c648f1e04daca2ab1044256959f1f95aafeeb3d794c16 numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6d183b5c58513f74225c376643234c369468e02947b47942eacbb23c1671f25d numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl d76a84998c51b8b68b40448ddd02bd1081bb33abcdc28beee6cd284fe11036c6 numpy-1.25.0-cp310-cp310-win32.whl c0dc071017bc00abb7d7201bac06fa80333c6314477b3d10b52b58fa6a6e38f6 numpy-1.25.0-cp310-cp310-win_amd64.whl 4c69fe5f05eea336b7a740e114dec995e2f927003c30702d896892403df6dbf0 numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl 9c7211d7920b97aeca7b3773a6783492b5b93baba39e7c36054f6e749fc7490c numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl ecc68f11404930e9c7ecfc937aa423e1e50158317bf67ca91736a9864eae0232 numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e559c6afbca484072a98a51b6fa466aae785cfe89b69e8b856c3191bc8872a82 numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6c284907e37f5e04d2412950960894b143a648dea3f79290757eb878b91acbd1 numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl 95367ccd88c07af21b379be1725b5322362bb83679d36691f124a16357390153 numpy-1.25.0-cp311-cp311-win32.whl b76aa836a952059d70a2788a2d98cb2a533ccd46222558b6970348939e55fc24 numpy-1.25.0-cp311-cp311-win_amd64.whl b792164e539d99d93e4e5e09ae10f8cbe5466de7d759fc155e075237e0c274e4 numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl 7cd981ccc0afe49b9883f14761bb57c964df71124dcd155b0cba2b591f0d64b9 numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl 5aa48bebfb41f93043a796128854b84407d4df730d3fb6e5dc36402f5cd594c0 numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5177310ac2e63d6603f659fadc1e7bab33dd5a8db4e0596df34214eeab0fee3b numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0ac6edfb35d2a99aaf102b509c8e9319c499ebd4978df4971b94419a116d0790 numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl 7412125b4f18aeddca2ecd7219ea2d2708f697943e6f624be41aa5f8a9852cc4 numpy-1.25.0-cp39-cp39-win32.whl 26815c6c8498dc49d81faa76d61078c4f9f0859ce7817919021b9eba72b425e3 numpy-1.25.0-cp39-cp39-win_amd64.whl 5b1b90860bf7d8a8c313b372d4f27343a54f415b20fb69dd601b7efe1029c91e numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 85cdae87d8c136fd4da4dad1e48064d700f63e923d5af6c8c782ac0df8044542 numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cc3fda2b36482891db1060f00f881c77f9423eead4c3579629940a3e12095fe8 numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl f1accae9a28dc3cda46a91de86acf69de0d1b5f4edd44a9b0c3ceb8036dfff19 numpy-1.25.0.tar.gz ### [`v1.24.4`](https://github.com/numpy/numpy/releases/v1.24.4) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.3...v1.24.4) ### NumPy 1.24.4 Release Notes NumPy 1.24.4 is a maintenance release that fixes a few bugs discovered after the 1.24.3 release. It is the last planned release in the 1.24.x cycle. The Python versions supported by this release are 3.8-3.11. #### Contributors A total of 4 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Sebastian Berg - Hongyang Peng + #### Pull requests merged A total of 6 pull requests were merged for this release. - [#&#8203;23720](https://github.com/numpy/numpy/pull/23720): MAINT, BLD: Pin rtools to version 4.0 for Windows builds. - [#&#8203;23739](https://github.com/numpy/numpy/pull/23739): BUG: fix the method for checking local files for 1.24.x - [#&#8203;23760](https://github.com/numpy/numpy/pull/23760): MAINT: Copy rtools installation from install-rtools. - [#&#8203;23761](https://github.com/numpy/numpy/pull/23761): BUG: Fix masked array ravel order for A (and somewhat K) - [#&#8203;23890](https://github.com/numpy/numpy/pull/23890): TYP,DOC: Annotate and document the `metadata` parameter of... - [#&#8203;23994](https://github.com/numpy/numpy/pull/23994): MAINT: Update rtools installation #### Checksums ##### MD5 25049e3aee79dde29e7a498d3ad13379 numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl 579b5c357c918feaef4af03af8afb721 numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl c873a14fa4f0210884db9c05e2904286 numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 110a13ac016286059f0658b52b3646c0 numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fa67218966c0aef4094867cad7703648 numpy-1.24.4-cp310-cp310-win32.whl 6ee768803d8ebac43ee0a04e628a69f9 numpy-1.24.4-cp310-cp310-win_amd64.whl 0c918c16b58cb7f6773ea7d76e0bdaff numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl 20506ae8003faf097c6b3a8915b4140e numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl 902df9d5963e89d88a1939d94207857f numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2543611d802c141c8276e4868b4d9619 numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 37b23a4e4e148d61dd3a515ac5dbf7ec numpy-1.24.4-cp311-cp311-win32.whl 25e9f6bee2b65ff2a87588e717f15165 numpy-1.24.4-cp311-cp311-win_amd64.whl f39a0cc3655a482af7d300bcaff5978e numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl 9ed27941388fdb392e8969169f3fc600 numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl dee3f0c7482f1dc8bd1cd27b9b028a2c numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2cc0967af29df3caef9fb3520f14e071 numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8572a3a0973fa78355bcb5f737745b47 numpy-1.24.4-cp38-cp38-win32.whl 771c63f2ef0d31466bbb12362a532265 numpy-1.24.4-cp38-cp38-win_amd64.whl 5713d9dc3dff287fb72121fe1960c48d numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl 4e6718e3b655219a2a733b4fa242ca32 numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl 31487f9a52ef81f8f88ec7fce8738dad numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ea597b30187e55eb16ee31631e66f60d numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 98adbf30c67154056474001c125f6188 numpy-1.24.4-cp39-cp39-win32.whl 49c444b0e572ef45f1d92c106a36004e numpy-1.24.4-cp39-cp39-win_amd64.whl cdddfdeac437b0f20b4e366f00b5c42e numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 3778338c15628caa3abd61e6f7bd46ec numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e16bd49d5295dc1b01ed50d76229fb54 numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl 3f3995540a17854a29dc79f8eeecd832 numpy-1.24.4.tar.gz ##### SHA256 c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64 numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1 numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl 79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4 numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6 numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc numpy-1.24.4-cp310-cp310-win32.whl b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e numpy-1.24.4-cp310-cp310-win_amd64.whl f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810 numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254 numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl 222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7 numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5 numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d numpy-1.24.4-cp311-cp311-win32.whl b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694 numpy-1.24.4-cp311-cp311-win_amd64.whl 1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61 numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl 04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2 numpy-1.24.4-cp38-cp38-win32.whl 692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706 numpy-1.24.4-cp38-cp38-win_amd64.whl 2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400 numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl 9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9 numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835 numpy-1.24.4-cp39-cp39-win32.whl befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8 numpy-1.24.4-cp39-cp39-win_amd64.whl 31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2 numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl 80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463 numpy-1.24.4.tar.gz ### [`v1.24.3`](https://github.com/numpy/numpy/releases/v1.24.3) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.2...v1.24.3) ##### NumPy 1.24.3 Release Notes NumPy 1.24.3 is a maintenance release that fixes bugs and regressions discovered after the 1.24.2 release. The Python versions supported by this release are 3.8-3.11. ##### Contributors A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Aleksei Nikiforov + - Alexander Heger - Bas van Beek - Bob Eldering - Brock Mendel - Charles Harris - Kyle Sunden - Peter Hawkins - Rohit Goswami - Sebastian Berg - Warren Weckesser - dependabot\[bot] ##### Pull requests merged A total of 17 pull requests were merged for this release. - [#&#8203;23206](https://github.com/numpy/numpy/pull/23206): BUG: fix for f2py string scalars ([#&#8203;23194](https://github.com/numpy/numpy/issues/23194)) - [#&#8203;23207](https://github.com/numpy/numpy/pull/23207): BUG: datetime64/timedelta64 comparisons return NotImplemented - [#&#8203;23208](https://github.com/numpy/numpy/pull/23208): MAINT: Pin matplotlib to version 3.6.3 for refguide checks - [#&#8203;23221](https://github.com/numpy/numpy/pull/23221): DOC: Fix matplotlib error in documentation - [#&#8203;23226](https://github.com/numpy/numpy/pull/23226): CI: Ensure submodules are initialized in gitpod. - [#&#8203;23341](https://github.com/numpy/numpy/pull/23341): TYP: Replace duplicate reduce in ufunc type signature with reduceat. - [#&#8203;23342](https://github.com/numpy/numpy/pull/23342): TYP: Remove duplicate CLIP/WRAP/RAISE in `__init__.pyi`. - [#&#8203;23343](https://github.com/numpy/numpy/pull/23343): TYP: Mark `d` argument to fftfreq and rfftfreq as optional... - [#&#8203;23344](https://github.com/numpy/numpy/pull/23344): TYP: Add type annotations for comparison operators to MaskedArray. - [#&#8203;23345](https://github.com/numpy/numpy/pull/23345): TYP: Remove some stray type-check-only imports of `msort` - [#&#8203;23370](https://github.com/numpy/numpy/pull/23370): BUG: Ensure like is only stripped for `like=` dispatched functions - [#&#8203;23543](https://github.com/numpy/numpy/pull/23543): BUG: fix loading and storing big arrays on s390x - [#&#8203;23544](https://github.com/numpy/numpy/pull/23544): MAINT: Bump larsoner/circleci-artifacts-redirector-action - [#&#8203;23634](https://github.com/numpy/numpy/pull/23634): BUG: Ignore invalid and overflow warnings in masked setitem - [#&#8203;23635](https://github.com/numpy/numpy/pull/23635): BUG: Fix masked array raveling when `order="A"` or `order="K"` - [#&#8203;23636](https://github.com/numpy/numpy/pull/23636): MAINT: Update conftest for newer hypothesis versions - [#&#8203;23637](https://github.com/numpy/numpy/pull/23637): BUG: Fix bug in parsing F77 style string arrays. ##### Checksums ##### MD5 93a3ce07e3773842c54d831f18e3eb8d numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl 39691ff3d1612438dfcd3266c9765aab numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl a99234799a239e7e9c6fa15c212996df numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3673aa638746851dd19d5199e1eb3a91 numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3c72962360bcd0938a6bddee6cdca766 numpy-1.24.3-cp310-cp310-win32.whl a3329efa646012fa4ee06ce5e08eadaf numpy-1.24.3-cp310-cp310-win_amd64.whl 5323fb0323d1ec10ee3c35a2fa79cbcd numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl cfa001dcd07cdf6414ced433e88959d4 numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl d75bbfb06ed00d04232dce0e865eb42c numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fe18b810bcf284572467ce585dbc533b numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e97699a4ef96a81e0916bdf15440abe0 numpy-1.24.3-cp311-cp311-win32.whl e6de5b7d77dc43ed47f516eb10bbe8b6 numpy-1.24.3-cp311-cp311-win_amd64.whl dd04ebf441a8913f4900b56e7a33a75e numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl e47ac5521b0bfc3effb040072d8a7902 numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl 7b7dae3309e7ca8a8859633a5d337431 numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8cc87b88163ed84e70c48fd0f5f8f20e numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 350934bae971d0ebe231a59b640069db numpy-1.24.3-cp38-cp38-win32.whl c4708ef009bb5d427ea94a4fc4a10e12 numpy-1.24.3-cp38-cp38-win_amd64.whl 44b08a293a4e12d62c27b8f15ba5664e numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl 3ae7ac30f86c720e42b2324a0ae1adf5 numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl 065464a8d918c670c7863d1e72e3e6dd numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1f163b9ea417c253e84480aa8d99dee6 numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c86e648389e333e062bea11c749b9a32 numpy-1.24.3-cp39-cp39-win32.whl bfe332e577c604d6d62a57381e6aa0a6 numpy-1.24.3-cp39-cp39-win_amd64.whl 374695eeef5aca32a5b7f2f518dd3ba1 numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 6abd9dba54405182e6e7bb32dbe377bb numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0848bd41c08dd5ebbc5a7f0788678e0e numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl 89e5e2e78407032290ae6acf6dcaea46 numpy-1.24.3.tar.gz ##### SHA256 3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570 numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl 202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7 numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl 8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463 numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6 numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b numpy-1.24.3-cp310-cp310-win32.whl ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7 numpy-1.24.3-cp310-cp310-win_amd64.whl 9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3 numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl 76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385 numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950 numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096 numpy-1.24.3-cp311-cp311-win32.whl 5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80 numpy-1.24.3-cp311-cp311-win_amd64.whl 7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078 numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4 numpy-1.24.3-cp38-cp38-win32.whl 56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289 numpy-1.24.3-cp38-cp38-win_amd64.whl 4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4 numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl 0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187 numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02 numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4 numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c numpy-1.24.3-cp39-cp39-win32.whl d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17 numpy-1.24.3-cp39-cp39-win_amd64.whl 352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0 numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812 numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4 numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155 numpy-1.24.3.tar.gz ### [`v1.24.2`](https://github.com/numpy/numpy/releases/v1.24.2) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.1...v1.24.2) ### NumPy 1.24.2 Release Notes NumPy 1.24.2 is a maintenance release that fixes bugs and regressions discovered after the 1.24.1 release. The Python versions supported by this release are 3.8-3.11. #### Contributors A total of 14 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Khem Raj + - Mark Harfouche - Matti Picus - Panagiotis Zestanakis + - Peter Hawkins - Pradipta Ghosh - Ross Barnowski - Sayed Adel - Sebastian Berg - Syam Gadde + - dmbelov + - pkubaj + #### Pull requests merged A total of 17 pull requests were merged for this release. - [#&#8203;22965](https://github.com/numpy/numpy/pull/22965): MAINT: Update python 3.11-dev to 3.11. - [#&#8203;22966](https://github.com/numpy/numpy/pull/22966): DOC: Remove dangling deprecation warning - [#&#8203;22967](https://github.com/numpy/numpy/pull/22967): ENH: Detect CPU features on FreeBSD/powerpc64\* - [#&#8203;22968](https://github.com/numpy/numpy/pull/22968): BUG: np.loadtxt cannot load text file with quoted fields separated... - [#&#8203;22969](https://github.com/numpy/numpy/pull/22969): TST: Add fixture to avoid issue with randomizing test order. - [#&#8203;22970](https://github.com/numpy/numpy/pull/22970): BUG: Fix fill violating read-only flag. ([#&#8203;22959](https://github.com/numpy/numpy/issues/22959)) - [#&#8203;22971](https://github.com/numpy/numpy/pull/22971): MAINT: Add additional information to missing scalar AttributeError - [#&#8203;22972](https://github.com/numpy/numpy/pull/22972): MAINT: Move export for scipy arm64 helper into main module - [#&#8203;22976](https://github.com/numpy/numpy/pull/22976): BUG, SIMD: Fix spurious invalid exception for sin/cos on arm64/clang - [#&#8203;22989](https://github.com/numpy/numpy/pull/22989): BUG: Ensure correct loop order in sin, cos, and arctan2 - [#&#8203;23030](https://github.com/numpy/numpy/pull/23030): DOC: Add version added information for the strict parameter in... - [#&#8203;23031](https://github.com/numpy/numpy/pull/23031): BUG: use `_Alignof` rather than `offsetof()` on most compilers - [#&#8203;23147](https://github.com/numpy/numpy/pull/23147): BUG: Fix for npyv\_\_trunc_s32\_f32 (VXE) - [#&#8203;23148](https://github.com/numpy/numpy/pull/23148): BUG: Fix integer / float scalar promotion - [#&#8203;23149](https://github.com/numpy/numpy/pull/23149): BUG: Add missing \<type_traits> header. - [#&#8203;23150](https://github.com/numpy/numpy/pull/23150): TYP, MAINT: Add a missing explicit `Any` parameter to the `npt.ArrayLike`... - [#&#8203;23161](https://github.com/numpy/numpy/pull/23161): BLD: remove redundant definition of npy_nextafter \[wheel build] #### Checksums ##### MD5 73fe0b507f56c0baf43171a76ad2003f numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl 2dbbe6f8a14e14978d24de9fcc8b49fe numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl 9ddadbf9cac2742318d8b292cb9ca579 numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 969f4f33baaff53dbbbaf1a146c43534 numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6df575dff02feac835d22debb15d190e numpy-1.24.2-cp310-cp310-win32.whl 2f939228a8c33265f2a8a1fce349d6f1 numpy-1.24.2-cp310-cp310-win_amd64.whl c093e61421be01ffff435387839949f1 numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl 03d71e3d9a086b56837c461fd7c9188b numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl c0dc33697d156e2b9a029095efeb1b10 numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 13b57957a1f40e13f8826d14b031a6fe numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5afd966db0b59655618c1859d98d87f6 numpy-1.24.2-cp311-cp311-win32.whl e0b850f9c20871cd65ecb35235688f4d numpy-1.24.2-cp311-cp311-win_amd64.whl 9a30452135ab0387b8ea9007e94e9f81 numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl bdd6eede4524a230574b37e1f631f2c0 numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl 4f930a9030d77d45a1cb6f374c91fb53 numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e77155c010f9dd63ea2815579a28c503 numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1a45f4373945eaeabeaa4020ce04e8fd numpy-1.24.2-cp38-cp38-win32.whl 66e93d70fad16b4ccb4531e31aad36e3 numpy-1.24.2-cp38-cp38-win_amd64.whl 93a4984da83c6811367d3daf709ed25c numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl e0281b96c490ba00f1382eb3984b4e51 numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl ce97d81e4ae6e10241d471492391b1be numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0c0ea440190705f98abeaa856e7da690 numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c25f7fbb185f1b8f7761bc22082d9939 numpy-1.24.2-cp39-cp39-win32.whl 7705c6b0bcf22b5e64cf248144b2f554 numpy-1.24.2-cp39-cp39-win_amd64.whl 07b6361e36e0093b580dc05799b1f03d numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 4c1466ae486b39d1a35aacb46256ec1e numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4fea9d95e0489d06c3a24a87697d2fc0 numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl c4212a8da1ecf17ece37e2afd0319806 numpy-1.24.2.tar.gz ##### SHA256 eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5 numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl 6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253 numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978 numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9 numpy-1.24.2-cp310-cp310-win32.whl 97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0 numpy-1.24.2-cp310-cp310-win_amd64.whl 7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl 4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0 numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl 4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281 numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910 numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95 numpy-1.24.2-cp311-cp311-win32.whl 557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04 numpy-1.24.2-cp311-cp311-win_amd64.whl d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2 numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5 numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96 numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d numpy-1.24.2-cp38-cp38-win32.whl 76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756 numpy-1.24.2-cp38-cp38-win_amd64.whl 4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl 889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780 numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468 numpy-1.24.2-cp39-cp39-win32.whl a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5 numpy-1.24.2-cp39-cp39-win_amd64.whl 92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl 003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22 numpy-1.24.2.tar.gz ### [`v1.24.1`](https://github.com/numpy/numpy/releases/v1.24.1) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.0...v1.24.1) ### NumPy 1.24.1 Release Notes NumPy 1.24.1 is a maintenance release that fixes bugs and regressions discovered after the 1.24.0 release. The Python versions supported by this release are 3.8-3.11. #### Contributors A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Ben Greiner + - Charles Harris - Clément Robert - Matteo Raso - Matti Picus - Melissa Weber Mendonça - Miles Cranmer - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg #### Pull requests merged A total of 18 pull requests were merged for this release. - [#&#8203;22820](https://github.com/numpy/numpy/pull/22820): BLD: add workaround in setup.py for newer setuptools - [#&#8203;22830](https://github.com/numpy/numpy/pull/22830): BLD: CIRRUS_TAG redux - [#&#8203;22831](https://github.com/numpy/numpy/pull/22831): DOC: fix a couple typos in 1.23 notes - [#&#8203;22832](https://github.com/numpy/numpy/pull/22832): BUG: Fix refcounting errors found using pytest-leaks - [#&#8203;22834](https://github.com/numpy/numpy/pull/22834): BUG, SIMD: Fix invalid value encountered in several ufuncs - [#&#8203;22837](https://github.com/numpy/numpy/pull/22837): TST: ignore more np.distutils.log imports - [#&#8203;22839](https://github.com/numpy/numpy/pull/22839): BUG: Do not use getdata() in np.ma.masked_invalid - [#&#8203;22847](https://github.com/numpy/numpy/pull/22847): BUG: Ensure correct behavior for rows ending in delimiter in... - [#&#8203;22848](https://github.com/numpy/numpy/pull/22848): BUG, SIMD: Fix the bitmask of the boolean comparison - [#&#8203;22857](https://github.com/numpy/numpy/pull/22857): BLD: Help raspian arm + clang 13 about \__builtin_mul_overflow - [#&#8203;22858](https://github.com/numpy/numpy/pull/22858): API: Ensure a full mask is returned for masked_invalid - [#&#8203;22866](https://github.com/numpy/numpy/pull/22866): BUG: Polynomials now copy properly ([#&#8203;22669](https://github.com/numpy/numpy/issues/22669)) - [#&#8203;22867](https://github.com/numpy/numpy/pull/22867): BUG, SIMD: Fix memory overlap in ufunc comparison loops - [#&#8203;22868](https://github.com/numpy/numpy/pull/22868): BUG: Fortify string casts against floating point warnings - [#&#8203;22875](https://github.com/numpy/numpy/pull/22875): TST: Ignore nan-warnings in randomized out tests - [#&#8203;22883](https://github.com/numpy/numpy/pull/22883): MAINT: restore npymath implementations needed for freebsd - [#&#8203;22884](https://github.com/numpy/numpy/pull/22884): BUG: Fix integer overflow in in1d for mixed integer dtypes [#&#8203;22877](https://github.com/numpy/numpy/issues/22877) - [#&#8203;22887](https://github.com/numpy/numpy/pull/22887): BUG: Use whole file for encoding checks with `charset_normalizer`. #### Checksums ##### MD5 9e543db90493d6a00939bd54c2012085 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl 4ebd7af622bf617b4876087e500d7586 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl 0c0a3012b438bb455a6c2fadfb1be76a numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0bddb527345449df624d3cb9aa0e1b75 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b246beb773689d97307f7b4c2970f061 numpy-1.24.1-cp310-cp310-win32.whl 1f3823999fce821a28dee10ac6fdd721 numpy-1.24.1-cp310-cp310-win_amd64.whl 8eedcacd6b096a568e4cb393d43b3ae5 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl 50bddb05acd54b4396100a70522496dd numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl 2a76bd9da8a78b44eb816bd70fa3aee3 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9e86658a414272f9749bde39344f9b76 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 915dfb89054e1631574a22a9b53a2b25 numpy-1.24.1-cp311-cp311-win32.whl ab7caa2c6c20e1fab977e1a94dede976 numpy-1.24.1-cp311-cp311-win_amd64.whl 8246de961f813f5aad89bca3d12f81e7 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl 58366b1a559baa0547ce976e416ed76d numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl a96f29bf106a64f82b9ba412635727d1 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4c32a43bdb85121614ab3e99929e33c7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 09b20949ed21683ad7c9cbdf9ebb2439 numpy-1.24.1-cp38-cp38-win32.whl 9e9f1577f874286a8bdff8dc5551eb9f numpy-1.24.1-cp38-cp38-win_amd64.whl 4383c1137f0287df67c364fbdba2bc72 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl 987f22c49b2be084b5d72f88f347d31e numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl 848ad020bba075ed8f19072c64dcd153 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 864b159e644848bc25f881907dbcf062 numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl db339ec0b2693cac2d7cf9ca75c334b1 numpy-1.24.1-cp39-cp39-win32.whl fec91d4c85066ad8a93816d71b627701 numpy-1.24.1-cp39-cp39-win_amd64.whl 619af9cd4f33b668822ae2350f446a15 numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 46f19b4b147f8836c2bd34262fabfffa numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e85b245c57a10891b3025579bf0cf298 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl dd3aaeeada8e95cc2edf9a3a4aa8b5af numpy-1.24.1.tar.gz ##### SHA256 179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7 numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2 numpy-1.24.1-cp310-cp310-win32.whl b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2 numpy-1.24.1-cp310-cp310-win_amd64.whl 7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl 28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032 numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36 numpy-1.24.1-cp311-cp311-win32.whl de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51 numpy-1.24.1-cp311-cp311-win_amd64.whl b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl 26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954 numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1 numpy-1.24.1-cp38-cp38-win32.whl 6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c numpy-1.24.1-cp38-cp38-win_amd64.whl 28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl 84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7 numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl 8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f numpy-1.24.1-cp39-cp39-win32.whl ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e numpy-1.24.1-cp39-cp39-win_amd64.whl ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086 numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl 2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2 numpy-1.24.1.tar.gz ### [`v1.24.0`](https://github.com/numpy/numpy/releases/v1.24.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.5...v1.24.0) ### NumPy 1.24 Release Notes The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There are also a large number of new and expired deprecations due to changes in promotion and cleanups. This might be called a deprecation release. Highlights are - Many new deprecations, check them out. - Many expired deprecations, - New F2PY features and fixes. - New "dtype" and "casting" keywords for stacking functions. See below for the details, This release supports Python versions 3.8-3.11. #### Deprecations ##### Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose The `numpy.fastCopyAndTranspose` function has been deprecated. Use the corresponding copy and transpose methods directly: arr.T.copy() The underlying C function `PyArray_CopyAndTranspose` has also been deprecated from the NumPy C-API. ([gh-22313](https://github.com/numpy/numpy/pull/22313)) ##### Conversion of out-of-bound Python integers Attempting a conversion from a Python integer to a NumPy value will now always check whether the result can be represented by NumPy. This means the following examples will fail in the future and give a `DeprecationWarning` now: np.uint8(-1) np.array([3000], dtype=np.int8) Many of these did succeed before. Such code was mainly useful for unsigned integers with negative values such as `np.uint8(-1)` giving `np.iinfo(np.uint8).max`. Note that conversion between NumPy integers is unaffected, so that `np.array(-1).astype(np.uint8)` continues to work and use C integer overflow logic. For negative values, it will also work to view the array: `np.array(-1, dtype=np.int8).view(np.uint8)`. In some cases, using `np.iinfo(np.uint8).max` or `val % 2**8` may also work well. In rare cases input data may mix both negative values and very large unsigned values (i.e. `-1` and `2**63`). There it is unfortunately necessary to use `%` on the Python value or use signed or unsigned conversion depending on whether negative values are expected. ([gh-22385](https://github.com/numpy/numpy/pull/22385)) ##### Deprecate `msort` The `numpy.msort` function is deprecated. Use `np.sort(a, axis=0)` instead. ([gh-22456](https://github.com/numpy/numpy/pull/22456)) ##### `np.str0` and similar are now deprecated The scalar type aliases ending in a 0 bit size: `np.object0`, `np.str0`, `np.bytes0`, `np.void0`, `np.int0`, `np.uint0` as well as `np.bool8` are now deprecated and will eventually be removed. ([gh-22607](https://github.com/numpy/numpy/pull/22607)) #### Expired deprecations - The `normed` keyword argument has been removed from \[np.histogram]{.title-ref}, \[np.histogram2d]{.title-ref}, and \[np.histogramdd]{.title-ref}. Use `density` instead. If `normed` was passed by position, `density` is now used. ([gh-21645](https://github.com/numpy/numpy/pull/21645)) - Ragged array creation will now always raise a `ValueError` unless `dtype=object` is passed. This includes very deeply nested sequences. ([gh-22004](https://github.com/numpy/numpy/pull/22004)) - Support for Visual Studio 2015 and earlier has been removed. - Support for the Windows Interix POSIX interop layer has been removed. ([gh-22139](https://github.com/numpy/numpy/pull/22139)) - Support for Cygwin < 3.3 has been removed. ([gh-22159](https://github.com/numpy/numpy/pull/22159)) - The mini() method of `np.ma.MaskedArray` has been removed. Use either `np.ma.MaskedArray.min()` or `np.ma.minimum.reduce()`. - The single-argument form of `np.ma.minimum` and `np.ma.maximum` has been removed. Use `np.ma.minimum.reduce()` or `np.ma.maximum.reduce()` instead. ([gh-22228](https://github.com/numpy/numpy/pull/22228)) - Passing dtype instances other than the canonical (mainly native byte-order) ones to `dtype=` or `signature=` in ufuncs will now raise a `TypeError`. We recommend passing the strings `"int8"` or scalar types `np.int8` since the byte-order, datetime/timedelta unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.) ([gh-22540](https://github.com/numpy/numpy/pull/22540)) - The `dtype=` argument to comparison ufuncs is now applied correctly. That means that only `bool` and `object` are valid values and `dtype=object` is enforced. ([gh-22541](https://github.com/numpy/numpy/pull/22541)) - The deprecation for the aliases `np.object`, `np.bool`, `np.float`, `np.complex`, `np.str`, and `np.int` is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future. ([gh-22607](https://github.com/numpy/numpy/pull/22607)) #### Compatibility notes ##### `array.fill(scalar)` may behave slightly different `numpy.ndarray.fill` may in some cases behave slightly different now due to the fact that the logic is aligned with item assignment: arr = np.array([1]) # with any dtype/value arr.fill(scalar) ### is now identical to: arr[0] = scalar Previously casting may have produced slightly different answers when using values that could not be represented in the target `dtype` or when the target had `object` dtype. ([gh-20924](https://github.com/numpy/numpy/pull/20924)) ##### Subarray to object cast now copies Casting a dtype that includes a subarray to an object will now ensure a copy of the subarray. Previously an unsafe view was returned: arr = np.ones(3, dtype=[("f", "i", 3)]) subarray_fields = arr.astype(object)[0] subarray = subarray_fields[0] # "f" field np.may_share_memory(subarray, arr) Is now always false. While previously it was true for the specific cast. ([gh-21925](https://github.com/numpy/numpy/pull/21925)) ##### Returned arrays respect uniqueness of dtype kwarg objects When the `dtype` keyword argument is used with :py`np.array()`{.interpreted-text role="func"} or :py`asarray()`{.interpreted-text role="func"}, the dtype of the returned array now always exactly matches the dtype provided by the caller. In some cases this change means that a *view* rather than the input array is returned. The following is an example for this on 64bit Linux where `long` and `longlong` are the same precision but different `dtypes`: >>> arr = np.array([1, 2, 3], dtype="long") >>> new_dtype = np.dtype("longlong") >>> new = np.asarray(arr, dtype=new_dtype) >>> new.dtype is new_dtype True >>> new is arr False Before the change, the `dtype` did not match because `new is arr` was `True`. ([gh-21995](https://github.com/numpy/numpy/pull/21995)) ##### DLPack export raises `BufferError` When an array buffer cannot be exported via DLPack a `BufferError` is now always raised where previously `TypeError` or `RuntimeError` was raised. This allows falling back to the buffer protocol or `__array_interface__` when DLPack was tried first. ([gh-22542](https://github.com/numpy/numpy/pull/22542)) ##### NumPy builds are no longer tested on GCC-6 Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available on Ubuntu 20.04, so builds using that compiler are no longer tested. We still test builds using GCC-7 and GCC-8. ([gh-22598](https://github.com/numpy/numpy/pull/22598)) #### New Features ##### New attribute `symbol` added to polynomial classes The polynomial classes in the `numpy.polynomial` package have a new `symbol` attribute which is used to represent the indeterminate of the polynomial. This can be used to change the value of the variable when printing: >>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y") >>> print(P_y) 1.0 + 0.0·y¹ - 1.0·y² Note that the polynomial classes only support 1D polynomials, so operations that involve polynomials with different symbols are disallowed when the result would be multivariate: >>> P = np.polynomial.Polynomial([1, -1]) # default symbol is "x" >>> P_z = np.polynomial.Polynomial([1, 1], symbol="z") >>> P * P_z Traceback (most recent call last) ... ValueError: Polynomial symbols differ The symbol can be any valid Python identifier. The default is `symbol=x`, consistent with existing behavior. ([gh-16154](https://github.com/numpy/numpy/pull/16154)) ##### F2PY support for Fortran `character` strings F2PY now supports wrapping Fortran functions with: - character (e.g. `character x`) - character array (e.g. `character, dimension(n) :: x`) - character string (e.g. `character(len=10) x`) - and character string array (e.g. `character(len=10), dimension(n, m) :: x`) arguments, including passing Python unicode strings as Fortran character string arguments. ([gh-19388](https://github.com/numpy/numpy/pull/19388)) ##### New function `np.show_runtime` A new function `numpy.show_runtime` has been added to display the runtime information of the machine in addition to `numpy.show_config` which displays the build-related information. ([gh-21468](https://github.com/numpy/numpy/pull/21468)) ##### `strict` option for `testing.assert_array_equal` The `strict` option is now available for `testing.assert_array_equal`. Setting `strict=True` will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type. ([gh-21595](https://github.com/numpy/numpy/pull/21595)) ##### New parameter `equal_nan` added to `np.unique` `np.unique` was changed in 1.21 to treat all `NaN` values as equal and return a single `NaN`. Setting `equal_nan=False` will restore pre-1.21 behavior to treat `NaNs` as unique. Defaults to `True`. ([gh-21623](https://github.com/numpy/numpy/pull/21623)) ##### `casting` and `dtype` keyword arguments for `numpy.stack` The `casting` and `dtype` keyword arguments are now available for `numpy.stack`. To use them, write `np.stack(..., dtype=None, casting='same_kind')`. ##### `casting` and `dtype` keyword arguments for `numpy.vstack` The `casting` and `dtype` keyword arguments are now available for `numpy.vstack`. To use them, write `np.vstack(..., dtype=None, casting='same_kind')`. ##### `casting` and `dtype` keyword arguments for `numpy.hstack` The `casting` and `dtype` keyword arguments are now available for `numpy.hstack`. To use them, write `np.hstack(..., dtype=None, casting='same_kind')`. ([gh-21627](https://github.com/numpy/numpy/pull/21627)) ##### The bit generator underlying the singleton RandomState can be changed The singleton `RandomState` instance exposed in the `numpy.random` module is initialized at startup with the `MT19937` bit generator. The new function `set_bit_generator` allows the default bit generator to be replaced with a user-provided bit generator. This function has been introduced to provide a method allowing seamless integration of a high-quality, modern bit generator in new code with existing code that makes use of the singleton-provided random variate generating functions. The companion function `get_bit_generator` returns the current bit generator being used by the singleton `RandomState`. This is provided to simplify restoring the original source of randomness if required. The preferred method to generate reproducible random numbers is to use a modern bit generator in an instance of `Generator`. The function `default_rng` simplifies instantiation: >>> rg = np.random.default_rng(3728973198) >>> rg.random() The same bit generator can then be shared with the singleton instance so that calling functions in the `random` module will use the same bit generator: >>> orig_bit_gen = np.random.get_bit_generator() >>> np.random.set_bit_generator(rg.bit_generator) >>> np.random.normal() The swap is permanent (until reversed) and so any call to functions in the `random` module will use the new bit generator. The original can be restored if required for code to run correctly: >>> np.random.set_bit_generator(orig_bit_gen) ([gh-21976](https://github.com/numpy/numpy/pull/21976)) ##### `np.void` now has a `dtype` argument NumPy now allows constructing structured void scalars directly by passing the `dtype` argument to `np.void`. ([gh-22316](https://github.com/numpy/numpy/pull/22316)) #### Improvements ##### F2PY Improvements - The generated extension modules don't use the deprecated NumPy-C API anymore - Improved `f2py` generated exception messages - Numerous bug and `flake8` warning fixes - various CPP macros that one can use within C-expressions of signature files are prefixed with `f2py_`. For example, one should use `f2py_len(x)` instead of `len(x)` - A new construct `character(f2py_len=...)` is introduced to support returning assumed length character strings (e.g. `character(len=*)`) from wrapper functions A hook to support rewriting `f2py` internal data structures after reading all its input files is introduced. This is required, for instance, for BC of SciPy support where character arguments are treated as character strings arguments in `C` expressions. ([gh-19388](https://github.com/numpy/numpy/pull/19388)) ##### IBM zSystems Vector Extension Facility (SIMD) Added support for SIMD extensions of zSystem (z13, z14, z15), through the universal intrinsics interface. This support leads to performance improvements for all SIMD kernels implemented using the universal intrinsics, including the following operations: rint, floor, trunc, ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal, not_equal, greater, greater_equal, less, less_equal, maximum, minimum, fmax, fmin, argmax, argmin, add, subtract, multiply, divide. ([gh-20913](https://github.com/numpy/numpy/pull/20913)) ##### NumPy now gives floating point errors in casts In most cases, NumPy previously did not give floating point warnings or errors when these happened during casts. For examples, casts like: np.array([2e300]).astype(np.float32) # overflow for float32 np.array([np.inf]).astype(np.int64) Should now generally give floating point warnings. These warnings should warn that floating point overflow occurred. For errors when converting floating point values to integers users should expect invalid value warnings. Users can modify the behavior of these warnings using `np.errstate`. Note that for float to int casts, the exact warnings that are given may be platform dependent. For example: arr = np.full(100, value=1000, dtype=np.float64) arr.astype(np.int8) May give a result equivalent to (the intermediate cast means no warning is given): arr.astype(np.int64).astype(np.int8) May return an undefined result, with a warning set: RuntimeWarning: invalid value encountered in cast The precise behavior is subject to the C99 standard and its implementation in both software and hardware. ([gh-21437](https://github.com/numpy/numpy/pull/21437)) ##### F2PY supports the value attribute The Fortran standard requires that variables declared with the `value` attribute must be passed by value instead of reference. F2PY now supports this use pattern correctly. So `integer, intent(in), value :: x` in Fortran codes will have correct wrappers generated. ([gh-21807](https://github.com/numpy/numpy/pull/21807)) ##### Added pickle support for third-party BitGenerators The pickle format for bit generators was extended to allow each bit generator to supply its own constructor when during pickling. Previous versions of NumPy only supported unpickling `Generator` instances created with one of the core set of bit generators supplied with NumPy. Attempting to unpickle a `Generator` that used a third-party bit generators would fail since the constructor used during the unpickling was only aware of the bit generators included in NumPy. ([gh-22014](https://github.com/numpy/numpy/pull/22014)) ##### arange() now explicitly fails with dtype=str Previously, the `np.arange(n, dtype=str)` function worked for `n=1` and `n=2`, but would raise a non-specific exception message for other values of `n`. Now, it raises a \[TypeError]{.title-ref} informing that `arange` does not support string dtypes: >>> np.arange(2, dtype=str) Traceback (most recent call last) ... TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>. ([gh-22055](https://github.com/numpy/numpy/pull/22055)) ##### `numpy.typing` protocols are now runtime checkable The protocols used in `numpy.typing.ArrayLike` and `numpy.typing.DTypeLike` are now properly marked as runtime checkable, making them easier to use for runtime type checkers. ([gh-22357](https://github.com/numpy/numpy/pull/22357)) #### Performance improvements and changes ##### Faster version of `np.isin` and `np.in1d` for integer arrays `np.in1d` (used by `np.isin`) can now switch to a faster algorithm (up to >10x faster) when it is passed two integer arrays. This is often automatically used, but you can use `kind="sort"` or `kind="table"` to force the old or new method, respectively. ([gh-12065](https://github.com/numpy/numpy/pull/12065)) ##### Faster comparison operators The comparison functions (`numpy.equal`, `numpy.not_equal`, `numpy.less`, `numpy.less_equal`, `numpy.greater` and `numpy.greater_equal`) are now much faster as they are now vectorized with universal intrinsics. For a CPU with SIMD extension AVX512BW, the performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and boolean data types, respectively (with N=50000). ([gh-21483](https://github.com/numpy/numpy/pull/21483)) #### Changes ##### Better reporting of integer division overflow Integer division overflow of scalars and arrays used to provide a `RuntimeWarning` and the return value was undefined leading to crashes at rare occasions: >>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1) <stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32) Integer division overflow now returns the input dtype's minimum value and raise the following `RuntimeWarning`: >>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1) <stdin>:1: RuntimeWarning: overflow encountered in floor_divide array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648], dtype=int32) ([gh-21506](https://github.com/numpy/numpy/pull/21506)) ##### `masked_invalid` now modifies the mask in-place When used with `copy=False`, `numpy.ma.masked_invalid` now modifies the input masked array in-place. This makes it behave identically to `masked_where` and better matches the documentation. ([gh-22046](https://github.com/numpy/numpy/pull/22046)) ##### `nditer`/`NpyIter` allows all allocating all operands The NumPy iterator available through `np.nditer` in Python and as `NpyIter` in C now supports allocating all arrays. The iterator shape defaults to `()` in this case. The operands dtype must be provided, since a "common dtype" cannot be inferred from the other inputs. ([gh-22457](https://github.com/numpy/numpy/pull/22457)) #### Checksums ##### MD5 d60311246bd71b177258ce06e2a4ec57 numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl 02022b335938af55cb83bbaebdbff8e1 numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl 02b35d6612369fcc614c6223aaec0119 numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7b8ad389a9619db3e1f8243fc0cfe63d numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6ff4acbb7b1258ccbd528c151eb0fe84 numpy-1.24.0-cp310-cp310-win32.whl d194c96601222db97b0af54fce1cfb1d numpy-1.24.0-cp310-cp310-win_amd64.whl 5fe4eb551a9312e37492da9f5bfb8545 numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl a8e836a768f73e9f509b11c3873c7e09 numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl 10404d6d1a5a9624f85018f61110b2be numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cfdb0cb844f1db9be2cde998be54d65f numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 73bc66ad3ae8656ba18d64db98feb5e1 numpy-1.24.0-cp311-cp311-win32.whl 4bbc30a53009c48d364d4dc2c612af95 numpy-1.24.0-cp311-cp311-win_amd64.whl 94ce5f6a09605a9675a0d464b1ec6597 numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl e5e42b69a209eda7e6895dda39ea8610 numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl 36eb6143d1e2aac3c618275edf636983 numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 712c3718e8b53ff04c626cc4c78492aa numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0a1a48a8e458bd4ce581169484c17e4f numpy-1.24.0-cp38-cp38-win32.whl c8ab7e4b919548663568a5b5a8b5eab4 numpy-1.24.0-cp38-cp38-win_amd64.whl 1783a5d769566111d93c474c79892c01 numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl c9e77130674372c73f8209d58396624d numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl 14c0f2f52f20f13a81bba7df27f30145 numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c106393b46fa0302dbac49b14a4dfed4 numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c83e6d6946f32820f166c3f1ff010ab6 numpy-1.24.0-cp39-cp39-win32.whl acd5a4737d1094d5f40afa584dbd6d79 numpy-1.24.0-cp39-cp39-win_amd64.whl 26e32f942c9fd62f64fd9bf6df95b5b1 numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 4f027df0cc313ca626b106849999de13 numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ac58db9a90d0bec95bc7850b9e462f34 numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl 1ca41c84ad9a116402a025d21e35bc64 numpy-1.24.0.tar.gz ##### SHA256 6e73a1f4f5b74a42abb55bc2b3d869f1b38cbc8776da5f8b66bf110284f7a437 numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl 9387c7d6d50e8f8c31e7bfc034241e9c6f4b3eb5db8d118d6487047b922f82af numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl 7ad6a024a32ee61d18f5b402cd02e9c0e22c0fb9dc23751991b3a16d209d972e numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 73cf2c5b5a07450f20a0c8e04d9955491970177dce8df8d6903bf253e53268e0 numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cec79ff3984b2d1d103183fc4a3361f5b55bbb66cb395cbf5a920a4bb1fd588d numpy-1.24.0-cp310-cp310-win32.whl 4f5e78b8b710cd7cd1a8145994cfffc6ddd5911669a437777d8cedfce6c83a98 numpy-1.24.0-cp310-cp310-win_amd64.whl 4445f472b246cad6514cc09fbb5ecb7aab09ca2acc3c16f29f8dca6c468af501 numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl ec3e5e8172a0a6a4f3c2e7423d4a8434c41349141b04744b11a90e017a95bad5 numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl f9168790149f917ad8e3cf5047b353fefef753bd50b07c547da0bdf30bc15d91 numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ada6c1e9608ceadaf7020e1deea508b73ace85560a16f51bef26aecb93626a72 numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f3c4a9a9f92734a4728ddbd331e0124eabbc968a0359a506e8e74a9b0d2d419b numpy-1.24.0-cp311-cp311-win32.whl 90075ef2c6ac6397d0035bcd8b298b26e481a7035f7a3f382c047eb9c3414db0 numpy-1.24.0-cp311-cp311-win_amd64.whl 0885d9a7666cafe5f9876c57bfee34226e2b2847bfb94c9505e18d81011e5401 numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl e63d2157f9fc98cc178870db83b0e0c85acdadd598b134b00ebec9e0db57a01f numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl cf8960f72997e56781eb1c2ea256a70124f92a543b384f89e5fb3503a308b1d3 numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2f8e0df2ecc1928ef7256f18e309c9d6229b08b5be859163f5caa59c93d53646 numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe44e925c68fb5e8db1334bf30ac1a1b6b963b932a19cf41d2e899cf02f36aab numpy-1.24.0-cp38-cp38-win32.whl d7f223554aba7280e6057727333ed357b71b7da7422d02ff5e91b857888c25d1 numpy-1.24.0-cp38-cp38-win_amd64.whl ab11f6a7602cf8ea4c093e091938207de3068c5693a0520168ecf4395750f7ea numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl 12bba5561d8118981f2f1ff069ecae200c05d7b6c78a5cdac0911f74bc71cbd1 numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl 9af91f794d2d3007d91d749ebc955302889261db514eb24caef30e03e8ec1e41 numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8b1ddfac6a82d4f3c8e99436c90b9c2c68c0bb14658d1684cdd00f05fab241f5 numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ac4fe68f1a5a18136acebd4eff91aab8bed00d1ef2fdb34b5d9192297ffbbdfc numpy-1.24.0-cp39-cp39-win32.whl 667b5b1f6a352419e340f6475ef9930348ae5cb7fca15f2cc3afcb530823715e numpy-1.24.0-cp39-cp39-win_amd64.whl 4d01f7832fa319a36fd75ba10ea4027c9338ede875792f7bf617f4b45056fc3a numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl dbb0490f0a880700a6cc4d000384baf19c1f4df59fff158d9482d4dbbca2b239 numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0104d8adaa3a4cc60c2777cab5196593bf8a7f416eda133be1f3803dd0838886 numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl c4ab7c9711fe6b235e86487ca74c1b092a6dd59a3cb45b63241ea0a148501853 numpy-1.24.0.tar.gz ### [`v1.23.5`](https://github.com/numpy/numpy/releases/v1.23.5) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.4...v1.23.5) ### NumPy 1.23.5 Release Notes NumPy 1.23.5 is a maintenance release that fixes bugs discovered after the 1.23.4 release and keeps the build infrastructure current. The Python versions supported for this release are 3.8-3.11. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;DWesl](https://github.com/DWesl) - Aayush Agrawal + - Adam Knapp + - Charles Harris - Navpreet Singh + - Sebastian Berg - Tania Allard #### Pull requests merged A total of 10 pull requests were merged for this release. - [#&#8203;22489](https://github.com/numpy/numpy/pull/22489): TST, MAINT: Replace most setup with setup_method (also teardown) - [#&#8203;22490](https://github.com/numpy/numpy/pull/22490): MAINT, CI: Switch to cygwin/cygwin-install-action@v2 - [#&#8203;22494](https://github.com/numpy/numpy/pull/22494): TST: Make test_partial_iteration_cleanup robust but require leak... - [#&#8203;22592](https://github.com/numpy/numpy/pull/22592): MAINT: Ensure graceful handling of large header sizes - [#&#8203;22593](https://github.com/numpy/numpy/pull/22593): TYP: Spelling alignment for array flag literal - [#&#8203;22594](https://github.com/numpy/numpy/pull/22594): BUG: Fix bounds checking for `random.logseries` - [#&#8203;22595](https://github.com/numpy/numpy/pull/22595): DEV: Update GH actions and Dockerfile for Gitpod - [#&#8203;22596](https://github.com/numpy/numpy/pull/22596): CI: Only fetch in actions/checkout - [#&#8203;22597](https://github.com/numpy/numpy/pull/22597): BUG: Decrement ref count in gentype_reduce if allocated memory... - [#&#8203;22625](https://github.com/numpy/numpy/pull/22625): BUG: Histogramdd breaks on big arrays in Windows #### Checksums ##### MD5 8a412b79d975199cefadb465279fd569 numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl 1b56e8e6a0516c78473657abf0710538 numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl c787f4763c9a5876e86a17f1651ba458 numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl db07645022e56747ba3f00c2d742232e numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c63a6fb7cc16a13aabc82ec57ac6bb4d numpy-1.23.5-cp310-cp310-win32.whl 3fea9247e1d812600015641941fa273f numpy-1.23.5-cp310-cp310-win_amd64.whl 4222cfb36e5ac9aec348c81b075e2c05 numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl 6c7102f185b310ac70a62c13d46f04e6 numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl 6b7319f66bf7ac01b49e2a32470baf28 numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3c60928ddb1f55163801f06ac2229eb0 numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6936b6bcfd6474acc7a8c162a9393b3c numpy-1.23.5-cp311-cp311-win32.whl 6c9af68b7b56c12c913678cafbdc44d6 numpy-1.23.5-cp311-cp311-win_amd64.whl 699daeac883260d3f182ae4bbbd9bbd2 numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl 6c233a36339de0652139e78ef91504d4 numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl 57d5439556ab5078c91bdeffd9c0036e numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a8045b59187f2e0ccd4294851adbbb8a numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7f38f7e560e4bf41490372ab84aa7a38 numpy-1.23.5-cp38-cp38-win32.whl 76095726ba459d7f761b44acf2e56bd1 numpy-1.23.5-cp38-cp38-win_amd64.whl 174befd584bc1b03ed87c8f0d149a58e numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl 9cbac793d77278f5d27a7979b64f6b5b numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl 6e417b087044e90562183b33f3049b09 numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 54fa63341eaa6da346d824399e8237f6 numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cc14d62a158e99c57f925c86551e45f0 numpy-1.23.5-cp39-cp39-win32.whl bad36b81e7e84bd7a028affa0659d235 numpy-1.23.5-cp39-cp39-win_amd64.whl b4d17d6b79a8354a2834047669651963 numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 89f6dc4a4ff63fca6af1223111cd888d numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 633d574a35b8592bab502ef569b0731e numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl 8b2692a511a3795f3af8af2cd7566a15 numpy-1.23.5.tar.gz ##### SHA256 9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63 numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl 7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43 numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1 numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280 numpy-1.23.5-cp310-cp310-win32.whl dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6 numpy-1.23.5-cp310-cp310-win_amd64.whl ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96 numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl 56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl 5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2 numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387 numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0 numpy-1.23.5-cp311-cp311-win32.whl 0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d numpy-1.23.5-cp311-cp311-win_amd64.whl f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl 0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9 numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl 92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398 numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07 numpy-1.23.5-cp38-cp38-win32.whl ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e numpy-1.23.5-cp38-cp38-win_amd64.whl 8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719 numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481 numpy-1.23.5-cp39-cp39-win32.whl 09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df numpy-1.23.5-cp39-cp39-win_amd64.whl abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8 numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135 numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl 1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a numpy-1.23.5.tar.gz ### [`v1.23.4`](https://github.com/numpy/numpy/releases/v1.23.4) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.3...v1.23.4) ### NumPy 1.23.4 Release Notes NumPy 1.23.4 is a maintenance release that fixes bugs discovered after the 1.23.3 release and keeps the build infrastructure current. The main improvements are fixes for some annotation corner cases, a fix for a long time `nested_iters` memory leak, and a fix of complex vector dot for very large arrays. The Python versions supported for this release are 3.8-3.11. Note that the mypy version needs to be 0.981+ if you test using Python 3.10.7, otherwise the typing tests will fail. #### Contributors A total of 8 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Matthew Barber - Matti Picus - Ralf Gommers - Ross Barnowski - Sebastian Berg - Sicheng Zeng + #### Pull requests merged A total of 13 pull requests were merged for this release. - [#&#8203;22368](https://github.com/numpy/numpy/pull/22368): BUG: Add `__array_api_version__` to `numpy.array_api` namespace - [#&#8203;22370](https://github.com/numpy/numpy/pull/22370): MAINT: update sde toolkit to 9.0, fix download link - [#&#8203;22382](https://github.com/numpy/numpy/pull/22382): BLD: use macos-11 image on azure, macos-1015 is deprecated - [#&#8203;22383](https://github.com/numpy/numpy/pull/22383): MAINT: random: remove `get_info` from "extending with Cython"... - [#&#8203;22384](https://github.com/numpy/numpy/pull/22384): BUG: Fix complex vector dot with more than NPY_CBLAS_CHUNK elements - [#&#8203;22387](https://github.com/numpy/numpy/pull/22387): REV: Loosen `lookfor`'s import try/except again - [#&#8203;22388](https://github.com/numpy/numpy/pull/22388): TYP,ENH: Mark `numpy.typing` protocols as runtime checkable - [#&#8203;22389](https://github.com/numpy/numpy/pull/22389): TYP,MAINT: Change more overloads to play nice with pyright - [#&#8203;22390](https://github.com/numpy/numpy/pull/22390): TST,TYP: Bump mypy to 0.981 - [#&#8203;22391](https://github.com/numpy/numpy/pull/22391): DOC: Update delimiter param description. - [#&#8203;22392](https://github.com/numpy/numpy/pull/22392): BUG: Memory leaks in numpy.nested_iters - [#&#8203;22413](https://github.com/numpy/numpy/pull/22413): REL: Prepare for the NumPy 1.23.4 release. - [#&#8203;22424](https://github.com/numpy/numpy/pull/22424): TST: Fix failing aarch64 wheel builds. #### Checksums ##### MD5 90a3d95982490cfeeef22c0f7cbd874f numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl c3cae63394db6c82fd2cb5700fc5917d numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl b3ff0878de205f56c38fd7dcab80081f numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e2b086ca2229209f2f996c2f9a38bf9c numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 44cc8bb112ca737520cf986fff92dfb0 numpy-1.23.4-cp310-cp310-win32.whl 21c8e5fdfba2ff953e446189379cf0c9 numpy-1.23.4-cp310-cp310-win_amd64.whl 27445a9c85977cb8efa682a4b993347f numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl 11ef4b7dfdaa37604cb881f3ca4459db numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl b3c77344274f91514f728a454fd471fa numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 43aef7f984cd63d95c11fb74dd59ef0b numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 637fe21b585228c9670d6e002bf8047f numpy-1.23.4-cp311-cp311-win32.whl f529edf9b849d6e3b8cdb5120ae5b81a numpy-1.23.4-cp311-cp311-win_amd64.whl 76c61ce36317a7e509663829c6844fd9 numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl 2133f6893eef41cd9331c7d0271044c4 numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl 5ccb3aa6fb8cb9e20ec336e315d01dec numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl da71f34a4df0b98e4d9e17906dd57b07 numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a318978f51fb80a17c2381e39194e906 numpy-1.23.4-cp38-cp38-win32.whl eac810d6bc43830bf151ea55cd0ded93 numpy-1.23.4-cp38-cp38-win_amd64.whl 4cf0a6007abe42564c7380dbf92a26ce numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl 2e005bedf129ce8bafa6f550537f3740 numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl 10aa210311fcd19a03f6c5495824a306 numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6301298a67999657a0878b64eeed09f2 numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 76144e575a3c3863ea22e03cdf022d8a numpy-1.23.4-cp39-cp39-win32.whl 8291dd66ef5451b4db2da55c21535757 numpy-1.23.4-cp39-cp39-win_amd64.whl 7cc095b18690071828b5b620d5ec40e7 numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 63742f15e8bfa215c893136bbfc6444f numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4ed382e55abc09c89a34db047692f6a6 numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl d9ffd2c189633486ec246e61d4b947a0 numpy-1.23.4.tar.gz ##### SHA256 95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2 numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl 926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71 numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3 numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd numpy-1.23.4-cp310-cp310-win32.whl d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329 numpy-1.23.4-cp310-cp310-win_amd64.whl 488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl 8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0 numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488 numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79 numpy-1.23.4-cp311-cp311-win32.whl 7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d numpy-1.23.4-cp311-cp311-win_amd64.whl 7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5 numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6 numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl 8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68 numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl dada341ebb79619fe00a291185bba370c9803b1e1d7051610e01ed809ef3a4ba numpy-1.23.4-cp38-cp38-win32.whl 0fe563fc8ed9dc4474cbf70742673fc4391d70f4363f917599a7fa99f042d5a8 numpy-1.23.4-cp38-cp38-win_amd64.whl c67b833dbccefe97cdd3f52798d430b9d3430396af7cdb2a0c32954c3ef73894 numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7 numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl 12ac457b63ec8ded85d85c1e17d85efd3c2b0967ca39560b307a35a6703a4735 numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 95de7dc7dc47a312f6feddd3da2500826defdccbc41608d0031276a24181a2c0 numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef numpy-1.23.4-cp39-cp39-win32.whl f260da502d7441a45695199b4e7fd8ca87db659ba1c78f2bbf31f934fe76ae0e numpy-1.23.4-cp39-cp39-win_amd64.whl 61be02e3bf810b60ab74e81d6d0d36246dbfb644a462458bb53b595791251911 numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 296d17aed51161dbad3c67ed6d164e51fcd18dbcd5dd4f9d0a9c6055dce30810 numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4d52914c88b4930dafb6c48ba5115a96cbab40f45740239d9f4159c4ba779962 numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl ed2cc92af0efad20198638c69bb0fc2870a58dabfba6eb722c933b48556c686c numpy-1.23.4.tar.gz ### [`v1.23.3`](https://github.com/numpy/numpy/releases/v1.23.3) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.2...v1.23.3) ### NumPy 1.23.3 Release Notes NumPy 1.23.3 is a maintenance release that fixes bugs discovered after the 1.23.2 release. There is no major theme for this release, the main improvements are for some downstream builds and some annotation corner cases. The Python versions supported for this release are 3.8-3.11. Note that we will move to MacOS 11 for the NumPy 1.23.4 release, the 10.15 version currently used will no longer be supported by our build infrastructure at that point. #### Contributors A total of 16 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Aaron Meurer - Bas van Beek - Charles Harris - Ganesh Kathiresan - Gavin Zhang + - Iantra Solari+ - Jyn Spring 琴春 + - Matti Picus - Rafael Cardoso Fernandes Sousa - Rafael Sousa + - Ralf Gommers - Rin Cat (鈴猫) + - Saransh Chopra + - Sayed Adel - Sebastian Berg - Serge Guelton #### Pull requests merged A total of 14 pull requests were merged for this release. - [#&#8203;22136](https://github.com/numpy/numpy/pull/22136): BLD: Add Python 3.11 wheels to aarch64 build - [#&#8203;22148](https://github.com/numpy/numpy/pull/22148): MAINT: Update setup.py for Python 3.11. - [#&#8203;22155](https://github.com/numpy/numpy/pull/22155): CI: Test NumPy build against old versions of GCC(6, 7, 8) - [#&#8203;22156](https://github.com/numpy/numpy/pull/22156): MAINT: support IBM i system - [#&#8203;22195](https://github.com/numpy/numpy/pull/22195): BUG: Fix circleci build - [#&#8203;22214](https://github.com/numpy/numpy/pull/22214): BUG: Expose heapsort algorithms in a shared header - [#&#8203;22215](https://github.com/numpy/numpy/pull/22215): BUG: Support using libunwind for backtrack - [#&#8203;22216](https://github.com/numpy/numpy/pull/22216): MAINT: fix an incorrect pointer type usage in f2py - [#&#8203;22220](https://github.com/numpy/numpy/pull/22220): BUG: change overloads to play nice with pyright. - [#&#8203;22221](https://github.com/numpy/numpy/pull/22221): TST,BUG: Use fork context to fix MacOS savez test - [#&#8203;22222](https://github.com/numpy/numpy/pull/22222): TYP,BUG: Reduce argument validation in C-based `__class_getitem__` - [#&#8203;22223](https://github.com/numpy/numpy/pull/22223): TST: ensure `np.equal.reduce` raises a `TypeError` - [#&#8203;22224](https://github.com/numpy/numpy/pull/22224): BUG: Fix the implementation of numpy.array_api.vecdot - [#&#8203;22230](https://github.com/numpy/numpy/pull/22230): BUG: Better report integer division overflow (backport) #### Checksums ##### MD5 a60bf0b1d440bf18d87c49409036d05a numpy-1.23.3-cp310-cp310-macosx_10_9_x86_64.whl 59b43423a692f5351c6a43b852b210d7 numpy-1.23.3-cp310-cp310-macosx_11_0_arm64.whl f482a4be6954b1b606320f0ffc1995dd numpy-1.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a82e2ecc4060a37dae5424e624eabfe3 numpy-1.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 84916178e5f4d073d0008754cba7f300 numpy-1.23.3-cp310-cp310-win32.whl 605da65b9b66dfce8b62d847cb3841f7 numpy-1.23.3-cp310-cp310-win_amd64.whl 57cf29f781be955a9cd0de8d07fbce56 numpy-1.23.3-cp311-cp311-macosx_10_9_x86_64.whl f395dcf622dff0ba44777cbae0442189 numpy-1.23.3-cp311-cp311-macosx_11_0_arm64.whl 55d6a6439913ba84ad89268e0ad59fa0 numpy-1.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 202bc3a8617f479ebe60ca0dec29964b numpy-1.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a42c3d058bcef47b26841bf9472a89bf numpy-1.23.3-cp311-cp311-win32.whl 237dbd94e5529065c0c5cc4e47ceeb7e numpy-1.23.3-cp311-cp311-win_amd64.whl d0587d5b28d3fa7e0ec8fd3df76e4bd4 numpy-1.23.3-cp38-cp38-macosx_10_9_x86_64.whl 054234695ed3d955fb01f661db2c14fc numpy-1.23.3-cp38-cp38-macosx_11_0_arm64.whl 4e75ac61e34f1bf23e7cbd6e2bfc7a32 numpy-1.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 29ccb3a732027ee1abe23a9562c32d0c numpy-1.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 12817838edc1e1bea27df79f3a83da5d numpy-1.23.3-cp38-cp38-win32.whl ef430e830a9fea7d8db0218b901671f6 numpy-1.23.3-cp38-cp38-win_amd64.whl b001f7e17df798f9b949bbe259924c77 numpy-1.23.3-cp39-cp39-macosx_10_9_x86_64.whl bc1782f5d79187d63d14ed69a6a411e9 numpy-1.23.3-cp39-cp39-macosx_11_0_arm64.whl f8fb0178bc34a198d5ce4e166076e1fc numpy-1.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fb80d38c37aae1e4d416cd4de068ff0a numpy-1.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 318d0a2a27b7e361295c0382a0ff4a94 numpy-1.23.3-cp39-cp39-win32.whl 880dc73de09fccda0650e9404fa83608 numpy-1.23.3-cp39-cp39-win_amd64.whl 3b5a51f78718a1a82d2750ec159f9acf numpy-1.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 56a0c90a303979d5bf8fc57e86e57ccb numpy-1.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5338d997a3178750834e742a257dfa4a numpy-1.23.3-pp38-pypy38_pp73-win_amd64.whl 6efc60a3f6c1b74c849d53fbcc07807b numpy-1.23.3.tar.gz ##### SHA256 c9f707b5bb73bf277d812ded9896f9512a43edff72712f31667d0a8c2f8e71ee numpy-1.23.3-cp310-cp310-macosx_10_9_x86_64.whl ffcf105ecdd9396e05a8e58e81faaaf34d3f9875f137c7372450baa5d77c9a54 numpy-1.23.3-cp310-cp310-macosx_11_0_arm64.whl 0ea3f98a0ffce3f8f57675eb9119f3f4edb81888b6874bc1953f91e0b1d4f440 numpy-1.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 004f0efcb2fe1c0bd6ae1fcfc69cc8b6bf2407e0f18be308612007a0762b4089 numpy-1.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 98dcbc02e39b1658dc4b4508442a560fe3ca5ca0d989f0df062534e5ca3a5c1a numpy-1.23.3-cp310-cp310-win32.whl 39a664e3d26ea854211867d20ebcc8023257c1800ae89773cbba9f9e97bae036 numpy-1.23.3-cp310-cp310-win_amd64.whl 1f27b5322ac4067e67c8f9378b41c746d8feac8bdd0e0ffede5324667b8a075c numpy-1.23.3-cp311-cp311-macosx_10_9_x86_64.whl 2ad3ec9a748a8943e6eb4358201f7e1c12ede35f510b1a2221b70af4bb64295c numpy-1.23.3-cp311-cp311-macosx_11_0_arm64.whl bdc9febce3e68b697d931941b263c59e0c74e8f18861f4064c1f712562903411 numpy-1.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 301c00cf5e60e08e04d842fc47df641d4a181e651c7135c50dc2762ffe293dbd numpy-1.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7cd1328e5bdf0dee621912f5833648e2daca72e3839ec1d6695e91089625f0b4 numpy-1.23.3-cp311-cp311-win32.whl 8355fc10fd33a5a70981a5b8a0de51d10af3688d7a9e4a34fcc8fa0d7467bb7f numpy-1.23.3-cp311-cp311-win_amd64.whl bc6e8da415f359b578b00bcfb1d08411c96e9a97f9e6c7adada554a0812a6cc6 numpy-1.23.3-cp38-cp38-macosx_10_9_x86_64.whl 22d43376ee0acd547f3149b9ec12eec2f0ca4a6ab2f61753c5b29bb3e795ac4d numpy-1.23.3-cp38-cp38-macosx_11_0_arm64.whl a64403f634e5ffdcd85e0b12c08f04b3080d3e840aef118721021f9b48fc1460 numpy-1.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl efd9d3abe5774404becdb0748178b48a218f1d8c44e0375475732211ea47c67e numpy-1.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f8c02ec3c4c4fcb718fdf89a6c6f709b14949408e8cf2a2be5bfa9c49548fd85 numpy-1.23.3-cp38-cp38-win32.whl e868b0389c5ccfc092031a861d4e158ea164d8b7fdbb10e3b5689b4fc6498df6 numpy-1.23.3-cp38-cp38-win_amd64.whl 09f6b7bdffe57fc61d869a22f506049825d707b288039d30f26a0d0d8ea05164 numpy-1.23.3-cp39-cp39-macosx_10_9_x86_64.whl 8c79d7cf86d049d0c5089231a5bcd31edb03555bd93d81a16870aa98c6cfb79d numpy-1.23.3-cp39-cp39-macosx_11_0_arm64.whl e5d5420053bbb3dd64c30e58f9363d7a9c27444c3648e61460c1237f9ec3fa14 numpy-1.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d5422d6a1ea9b15577a9432e26608c73a78faf0b9039437b075cf322c92e98e7 numpy-1.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c1ba66c48b19cc9c2975c0d354f24058888cdc674bebadceb3cdc9ec403fb5d1 numpy-1.23.3-cp39-cp39-win32.whl 78a63d2df1d947bd9d1b11d35564c2f9e4b57898aae4626638056ec1a231c40c numpy-1.23.3-cp39-cp39-win_amd64.whl 17c0e467ade9bda685d5ac7f5fa729d8d3e76b23195471adae2d6a6941bd2c18 numpy-1.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 91b8d6768a75247026e951dce3b2aac79dc7e78622fc148329135ba189813584 numpy-1.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 94c15ca4e52671a59219146ff584488907b1f9b3fc232622b47e2cf832e94fb8 numpy-1.23.3-pp38-pypy38_pp73-win_amd64.whl 51bf49c0cd1d52be0a240aa66f3458afc4b95d8993d2d04f0d91fa60c10af6cd numpy-1.23.3.tar.gz ### [`v1.23.2`](https://github.com/numpy/numpy/releases/v1.23.2) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.1...v1.23.2) ### NumPy 1.23.2 Release Notes NumPy 1.23.2 is a maintenance release that fixes bugs discovered after the 1.23.1 release. Notable features are: - Typing changes needed for Python 3.11 - Wheels for Python 3.11.0rc1 The Python versions supported for this release are 3.8-3.11. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Alexander Grund + - Bas van Beek - Charles Harris - Jon Cusick + - Matti Picus - Michael Osthege + - Pal Barta + - Ross Barnowski - Sebastian Berg #### Pull requests merged A total of 15 pull requests were merged for this release. - [#&#8203;22030](https://github.com/numpy/numpy/pull/22030): ENH: Add `__array_ufunc__` typing support to the `nin=1` ufuncs - [#&#8203;22031](https://github.com/numpy/numpy/pull/22031): MAINT, TYP: Fix `np.angle` dtype-overloads - [#&#8203;22032](https://github.com/numpy/numpy/pull/22032): MAINT: Do not let `_GenericAlias` wrap the underlying classes'... - [#&#8203;22033](https://github.com/numpy/numpy/pull/22033): TYP,MAINT: Allow `einsum` subscripts to be passed via integer... - [#&#8203;22034](https://github.com/numpy/numpy/pull/22034): MAINT,TYP: Add object-overloads for the `np.generic` rich comparisons - [#&#8203;22035](https://github.com/numpy/numpy/pull/22035): MAINT,TYP: Allow the `squeeze` and `transpose` method to... - [#&#8203;22036](https://github.com/numpy/numpy/pull/22036): BUG: Fix subarray to object cast ownership details - [#&#8203;22037](https://github.com/numpy/numpy/pull/22037): BUG: Use `Popen` to silently invoke f77 -v - [#&#8203;22038](https://github.com/numpy/numpy/pull/22038): BUG: Avoid errors on NULL during deepcopy - [#&#8203;22039](https://github.com/numpy/numpy/pull/22039): DOC: Add versionchanged for converter callable behavior. - [#&#8203;22057](https://github.com/numpy/numpy/pull/22057): MAINT: Quiet the anaconda uploads. - [#&#8203;22078](https://github.com/numpy/numpy/pull/22078): ENH: reorder includes for testing on top of system installations... - [#&#8203;22106](https://github.com/numpy/numpy/pull/22106): TST: fix test_linear_interpolation_formula_symmetric - [#&#8203;22107](https://github.com/numpy/numpy/pull/22107): BUG: Fix skip condition for test_loss_of_precision\[complex256] - [#&#8203;22115](https://github.com/numpy/numpy/pull/22115): BLD: Build python3.11.0rc1 wheels. #### Checksums ##### MD5 fe1e3480ea8c417c8f7b05f543c1448d numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl 0ab14b1afd0a55a374ca69b3b39cab3c numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl df059e5405bfe75c0ac77b01abbdb237 numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4ed412c4c078e96edf11ca3b11eef76b numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0caad53d9a5e3c5e8cd29f19a9f0c014 numpy-1.23.2-cp310-cp310-win32.whl 01e508b8b4f591daff128da1cfde8e1f numpy-1.23.2-cp310-cp310-win_amd64.whl 8ecdb7e2a87255878b748550d91cfbe0 numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl e3004aae46cec9e234f78eaf473272e0 numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl ec23c73caf581867d5ca9255b802f144 numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9b8389f528fe113247954248f0b78ce1 numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a54b136daa2fbb483909f08eecbfa3c5 numpy-1.23.2-cp311-cp311-win32.whl ead32e141857c5ef33b1a6cd88aefc0f numpy-1.23.2-cp311-cp311-win_amd64.whl df1f18e52d0a2840d101fdc9c2c6af84 numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl 04c986880bb24fac2f44face75eab914 numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl edeba58edb214390112810f7ead903a8 numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c26ea699d94d7f1009c976c66cc4def3 numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c246a78b09f8893d998d449dcab0fac3 numpy-1.23.2-cp38-cp38-win32.whl b5c5a2f961402259e301c49b8b05de55 numpy-1.23.2-cp38-cp38-win_amd64.whl d156dfae94d33eeff7fb9c6e5187e049 numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl 7f2ad7867c577eab925a31de76486765 numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl 76262a8e5d7a4d945446467467300a10 numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8ee105f4574d61a2d494418b55f63fcb numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2b7c79cae66023f8e716150223201981 numpy-1.23.2-cp39-cp39-win32.whl d7af57dd070ccb165f3893412eb602e3 numpy-1.23.2-cp39-cp39-win_amd64.whl 355a231dbd87a0f2125cc23eb8f97075 numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 4ab13c35056f67981d03f9ceec41db42 numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3a6f1e1256ee9be10d8cdf6be578fe52 numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl 9bf2a361509797de14ceee607387fe0f numpy-1.23.2.tar.gz ##### SHA256 e603ca1fb47b913942f3e660a15e55a9ebca906857edfea476ae5f0fe9b457d5 numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl 633679a472934b1c20a12ed0c9a6c9eb167fbb4cb89031939bfd03dd9dbc62b8 numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl 17e5226674f6ea79e14e3b91bfbc153fdf3ac13f5cc54ee7bc8fdbe820a32da0 numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bdc02c0235b261925102b1bd586579b7158e9d0d07ecb61148a1799214a4afd5 numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df28dda02c9328e122661f399f7655cdcbcf22ea42daa3650a26bce08a187450 numpy-1.23.2-cp310-cp310-win32.whl 8ebf7e194b89bc66b78475bd3624d92980fca4e5bb86dda08d677d786fefc414 numpy-1.23.2-cp310-cp310-win_amd64.whl dc76bca1ca98f4b122114435f83f1fcf3c0fe48e4e6f660e07996abf2f53903c numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl ecfdd68d334a6b97472ed032b5b37a30d8217c097acfff15e8452c710e775524 numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl 5593f67e66dea4e237f5af998d31a43e447786b2154ba1ad833676c788f37cde numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ac987b35df8c2a2eab495ee206658117e9ce867acf3ccb376a19e83070e69418 numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d98addfd3c8728ee8b2c49126f3c44c703e2b005d4a95998e2167af176a9e722 numpy-1.23.2-cp311-cp311-win32.whl 8ecb818231afe5f0f568c81f12ce50f2b828ff2b27487520d85eb44c71313b9e numpy-1.23.2-cp311-cp311-win_amd64.whl 909c56c4d4341ec8315291a105169d8aae732cfb4c250fbc375a1efb7a844f8f numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl 8247f01c4721479e482cc2f9f7d973f3f47810cbc8c65e38fd1bbd3141cc9842 numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl b8b97a8a87cadcd3f94659b4ef6ec056261fa1e1c3317f4193ac231d4df70215 numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bd5b7ccae24e3d8501ee5563e82febc1771e73bd268eef82a1e8d2b4d556ae66 numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9b83d48e464f393d46e8dd8171687394d39bc5abfe2978896b77dc2604e8635d numpy-1.23.2-cp38-cp38-win32.whl dec198619b7dbd6db58603cd256e092bcadef22a796f778bf87f8592b468441d numpy-1.23.2-cp38-cp38-win_amd64.whl 4f41f5bf20d9a521f8cab3a34557cd77b6f205ab2116651f12959714494268b0 numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl 806cc25d5c43e240db709875e947076b2826f47c2c340a5a2f36da5bb10c58d6 numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl 8f9d84a24889ebb4c641a9b99e54adb8cab50972f0166a3abc14c3b93163f074 numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c403c81bb8ffb1c993d0165a11493fd4bf1353d258f6997b3ee288b0a48fce77 numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cf8c6aed12a935abf2e290860af8e77b26a042eb7f2582ff83dc7ed5f963340c numpy-1.23.2-cp39-cp39-win32.whl 5e28cd64624dc2354a349152599e55308eb6ca95a13ce6a7d5679ebff2962913 numpy-1.23.2-cp39-cp39-win_amd64.whl 806970e69106556d1dd200e26647e9bee5e2b3f1814f9da104a943e8d548ca38 numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 2bd879d3ca4b6f39b7770829f73278b7c5e248c91d538aab1e506c628353e47f numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl be6b350dfbc7f708d9d853663772a9310783ea58f6035eec649fb9c4371b5389 numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl b78d00e48261fbbd04aa0d7427cf78d18401ee0abd89c7559bbf422e5b1c7d01 numpy-1.23.2.tar.gz ### [`v1.23.1`](https://github.com/numpy/numpy/releases/v1.23.1) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.0...v1.23.1) ### NumPy 1.23.1 Release Notes The NumPy 1.23.1 is a maintenance release that fixes bugs discovered after the 1.23.0 release. Notable fixes are: - Fix searchsorted for float16 NaNs - Fix compilation on Apple M1 - Fix KeyError in crackfortran operator support (Slycot) The Python version supported for this release are 3.8-3.10. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Matthias Koeppe + - Pranab Das + - Rohit Goswami - Sebastian Berg - Serge Guelton - Srimukh Sripada + #### Pull requests merged A total of 8 pull requests were merged for this release. - [#&#8203;21866](https://github.com/numpy/numpy/pull/21866): BUG: Fix discovered MachAr (still used within valgrind) - [#&#8203;21867](https://github.com/numpy/numpy/pull/21867): BUG: Handle NaNs correctly for float16 during sorting - [#&#8203;21868](https://github.com/numpy/numpy/pull/21868): BUG: Use `keepdims` during normalization in `np.average` and... - [#&#8203;21869](https://github.com/numpy/numpy/pull/21869): DOC: mention changes to `max_rows` behaviour in `np.loadtxt` - [#&#8203;21870](https://github.com/numpy/numpy/pull/21870): BUG: Reject non integer array-likes with size 1 in delete - [#&#8203;21949](https://github.com/numpy/numpy/pull/21949): BLD: Make can_link_svml return False for 32bit builds on x86\_64 - [#&#8203;21951](https://github.com/numpy/numpy/pull/21951): BUG: Reorder extern "C" to only apply to function declarations... - [#&#8203;21952](https://github.com/numpy/numpy/pull/21952): BUG: Fix KeyError in crackfortran operator support #### Checksums ##### MD5 79f0d8c114f282b834b49209d6955f98 numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl 42a89a88ef26b768e8933ce46b1cc2bd numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl 1c1d68b3483eaf99b9a3583c8ac8bf47 numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9d3e9f7f9b3dce6cf15209e4f25f346e numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a9afb7c34b48d08fc50427ae6516b42d numpy-1.23.1-cp310-cp310-win32.whl a0e02823883bdfcec49309e108f65e13 numpy-1.23.1-cp310-cp310-win_amd64.whl f40cdf4ec7bb0cf31a90a4fa294323c2 numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl 80115a959f0fe30d6c401b2650a61c70 numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl 1cf199b3a93960c4f269853a56a8d8eb numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl aa6f0f192312c79cd770c2c395e9982a numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d07bee0ea3142a96cb5e4e16aca273ca numpy-1.23.1-cp38-cp38-win32.whl 02d0734ae8ad5e18a40c6c6de18486a0 numpy-1.23.1-cp38-cp38-win_amd64.whl e1ca14acd7d83bc74bdf6ab0bb4bd195 numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl c9152c62b2f31e742e24bfdc97b28666 numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl 05b0b37c92f7a7e7c01afac0a5322b40 numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d9810bb71a0ef9837e87ea5c44fcab5e numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4255577f857e838f7a94e3a614ddc5eb numpy-1.23.1-cp39-cp39-win32.whl 787486e3cd87b98024ffe1c969c4db7a numpy-1.23.1-cp39-cp39-win_amd64.whl 5c7b2d1471b1b9ec6ff1cb3fe1f8ac14 numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 40d5b2ff869707b0d97325ce44631135 numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 44ce1e07927cc09415df9898857792da numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl 4f8636a9c1a77ca0fb923ba55378891f numpy-1.23.1.tar.gz ##### SHA256 b15c3f1ed08df4980e02cc79ee058b788a3d0bef2fb3c9ca90bb8cbd5b8a3a04 numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl 9ce242162015b7e88092dccd0e854548c0926b75c7924a3495e02c6067aba1f5 numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl e0d7447679ae9a7124385ccf0ea990bb85bb869cef217e2ea6c844b6a6855073 numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3119daed207e9410eaf57dcf9591fdc68045f60483d94956bee0bfdcba790953 numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3ab67966c8d45d55a2bdf40701536af6443763907086c0a6d1232688e27e5447 numpy-1.23.1-cp310-cp310-win32.whl 1865fdf51446839ca3fffaab172461f2b781163f6f395f1aed256b1ddc253622 numpy-1.23.1-cp310-cp310-win_amd64.whl aeba539285dcf0a1ba755945865ec61240ede5432df41d6e29fab305f4384db2 numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl 7e8229f3687cdadba2c4faef39204feb51ef7c1a9b669247d49a24f3e2e1617c numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl 68b69f52e6545af010b76516f5daaef6173e73353e3295c5cb9f96c35d755641 numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1408c3527a74a0209c781ac82bde2182b0f0bf54dea6e6a363fe0cc4488a7ce7 numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 47f10ab202fe4d8495ff484b5561c65dd59177949ca07975663f4494f7269e3e numpy-1.23.1-cp38-cp38-win32.whl 37e5ebebb0eb54c5b4a9b04e6f3018e16b8ef257d26c8945925ba8105008e645 numpy-1.23.1-cp38-cp38-win_amd64.whl 173f28921b15d341afadf6c3898a34f20a0569e4ad5435297ba262ee8941e77b numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl 876f60de09734fbcb4e27a97c9a286b51284df1326b1ac5f1bf0ad3678236b22 numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl 35590b9c33c0f1c9732b3231bb6a72d1e4f77872390c47d50a615686ae7ed3fd numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a35c4e64dfca659fe4d0f1421fc0f05b8ed1ca8c46fb73d9e5a7f175f85696bb numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c2f91f88230042a130ceb1b496932aa717dcbd665350beb821534c5c7e15881c numpy-1.23.1-cp39-cp39-win32.whl 37ece2bd095e9781a7156852e43d18044fd0d742934833335599c583618181b9 numpy-1.23.1-cp39-cp39-win_amd64.whl 8002574a6b46ac3b5739a003b5233376aeac5163e5dcd43dd7ad062f3e186129 numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 5d732d17b8a9061540a10fda5bfeabca5785700ab5469a5e9b93aca5e2d3a5fb numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 55df0f7483b822855af67e38fb3a526e787adf189383b4934305565d71c4b148 numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl d748ef349bfef2e1194b59da37ed5a29c19ea8d7e6342019921ba2ba4fd8b624 numpy-1.23.1.tar.gz ### [`v1.23.0`](https://github.com/numpy/numpy/releases/v1.23.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.22.4...v1.23.0) ### NumPy 1.23.0 Release Notes The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. The highlights are: - Implementation of `loadtxt` in C, greatly improving its performance. - Exposing DLPack at the Python level for easy data exchange. - Changes to the promotion and comparisons of structured dtypes. - Improvements to f2py. See below for the details, #### New functions - A masked array specialization of `ndenumerate` is now available as `numpy.ma.ndenumerate`. It provides an alternative to `numpy.ndenumerate` and skips masked values by default. ([gh-20020](https://github.com/numpy/numpy/pull/20020)) - `numpy.from_dlpack` has been added to allow easy exchange of data using the DLPack protocol. It accepts Python objects that implement the `__dlpack__` and `__dlpack_device__` methods and returns a ndarray object which is generally the view of the data of the input object. ([gh-21145](https://github.com/numpy/numpy/pull/21145)) #### Deprecations - Setting `__array_finalize__` to `None` is deprecated. It must now be a method and may wish to call `super().__array_finalize__(obj)` after checking for `None` or if the NumPy version is sufficiently new. ([gh-20766](https://github.com/numpy/numpy/pull/20766)) - Using `axis=32` (`axis=np.MAXDIMS`) in many cases had the same meaning as `axis=None`. This is deprecated and `axis=None` must be used instead. ([gh-20920](https://github.com/numpy/numpy/pull/20920)) - The hook function `PyDataMem_SetEventHook` has been deprecated and the demonstration of its use in tool/allocation_tracking has been removed. The ability to track allocations is now built-in to python via `tracemalloc`. ([gh-20394](https://github.com/numpy/numpy/pull/20394)) - `numpy.distutils` has been deprecated, as a result of `distutils` itself being deprecated. It will not be present in NumPy for Python >= 3.12, and will be removed completely 2 years after the release of Python 3.12 For more details, see `distutils-status-migration`{.interpreted-text role="ref"}. ([gh-20875](https://github.com/numpy/numpy/pull/20875)) - `numpy.loadtxt` will now give a `DeprecationWarning` when an integer `dtype` is requested but the value is formatted as a floating point number. ([gh-21663](https://github.com/numpy/numpy/pull/21663)) #### Expired deprecations - The `NpzFile.iteritems()` and `NpzFile.iterkeys()` methods have been removed as part of the continued removal of Python 2 compatibility. This concludes the deprecation from 1.15. ([gh-16830](https://github.com/numpy/numpy/pull/16830)) - The `alen` and `asscalar` functions have been removed. ([gh-20414](https://github.com/numpy/numpy/pull/20414)) - The `UPDATEIFCOPY` array flag has been removed together with the enum `NPY_ARRAY_UPDATEIFCOPY`. The associated (and deprecated) `PyArray_XDECREF_ERR` was also removed. These were all deprecated in 1.14. They are replaced by `WRITEBACKIFCOPY`, that requires calling `PyArray_ResoveWritebackIfCopy` before the array is deallocated. ([gh-20589](https://github.com/numpy/numpy/pull/20589)) - Exceptions will be raised during array-like creation. When an object raised an exception during access of the special attributes `__array__` or `__array_interface__`, this exception was usually ignored. This behaviour was deprecated in 1.21, and the exception will now be raised. ([gh-20835](https://github.com/numpy/numpy/pull/20835)) - Multidimensional indexing with non-tuple values is not allowed. Previously, code such as `arr[ind]` where `ind = [[0, 1], [0, 1]]` produced a `FutureWarning` and was interpreted as a multidimensional index (i.e., `arr[tuple(ind)]`). Now this example is treated like an array index over a single dimension (`arr[array(ind)]`). Multidimensional indexing with anything but a tuple was deprecated in NumPy 1.15. ([gh-21029](https://github.com/numpy/numpy/pull/21029)) - Changing to a dtype of different size in F-contiguous arrays is no longer permitted. Deprecated since Numpy 1.11.0. See below for an extended explanation of the effects of this change. ([gh-20722](https://github.com/numpy/numpy/pull/20722)) #### New Features ##### crackfortran has support for operator and assignment overloading `crackfortran` parser now understands operator and assignment definitions in a module. They are added in the `body` list of the module which contains a new key `implementedby` listing the names of the subroutines or functions implementing the operator or assignment. ([gh-15006](https://github.com/numpy/numpy/pull/15006)) ##### f2py supports reading access type attributes from derived type statements As a result, one does not need to use `public` or `private` statements to specify derived type access properties. ([gh-15844](https://github.com/numpy/numpy/pull/15844)) ##### New parameter `ndmin` added to `genfromtxt` This parameter behaves the same as `ndmin` from `numpy.loadtxt`. ([gh-20500](https://github.com/numpy/numpy/pull/20500)) ##### `np.loadtxt` now supports quote character and single converter function `numpy.loadtxt` now supports an additional `quotechar` keyword argument which is not set by default. Using `quotechar='"'` will read quoted fields as used by the Excel CSV dialect. Further, it is now possible to pass a single callable rather than a dictionary for the `converters` argument. ([gh-20580](https://github.com/numpy/numpy/pull/20580)) ##### Changing to dtype of a different size now requires contiguity of only the last axis Previously, viewing an array with a dtype of a different item size required that the entire array be C-contiguous. This limitation would unnecessarily force the user to make contiguous copies of non-contiguous arrays before being able to change the dtype. This change affects not only `ndarray.view`, but other construction mechanisms, including the discouraged direct assignment to `ndarray.dtype`. This change expires the deprecation regarding the viewing of F-contiguous arrays, described elsewhere in the release notes. ([gh-20722](https://github.com/numpy/numpy/pull/20722)) ##### Deterministic output files for F2PY For F77 inputs, `f2py` will generate `modname-f2pywrappers.f` unconditionally, though these may be empty. For free-form inputs, `modname-f2pywrappers.f`, `modname-f2pywrappers2.f90` will both be generated unconditionally, and may be empty. This allows writing generic output rules in `cmake` or `meson` and other build systems. Older behavior can be restored by passing `--skip-empty-wrappers` to `f2py`. `f2py-meson`{.interpreted-text role="ref"} details usage. ([gh-21187](https://github.com/numpy/numpy/pull/21187)) ##### `keepdims` parameter for `average` The parameter `keepdims` was added to the functions `numpy.average` and `numpy.ma.average`. The parameter has the same meaning as it does in reduction functions such as `numpy.sum` or `numpy.mean`. ([gh-21485](https://github.com/numpy/numpy/pull/21485)) ##### New parameter `equal_nan` added to `np.unique` `np.unique` was changed in 1.21 to treat all `NaN` values as equal and return a single `NaN`. Setting `equal_nan=False` will restore pre-1.21 behavior to treat `NaNs` as unique. Defaults to `True`. ([gh-21623](https://github.com/numpy/numpy/pull/21623)) #### Compatibility notes ##### 1D `np.linalg.norm` preserves float input types, even for scalar results Previously, this would promote to `float64` when the `ord` argument was not one of the explicitly listed values, e.g. `ord=3`: >>> f32 = np.float32([1, 2]) >>> np.linalg.norm(f32, 2).dtype dtype('float32') >>> np.linalg.norm(f32, 3) dtype('float64') # numpy 1.22 dtype('float32') # numpy 1.23 This change affects only `float32` and `float16` vectors with `ord` other than `-Inf`, `0`, `1`, `2`, and `Inf`. ([gh-17709](https://github.com/numpy/numpy/pull/17709)) ##### Changes to structured (void) dtype promotion and comparisons In general, NumPy now defines correct, but slightly limited, promotion for structured dtypes by promoting the subtypes of each field instead of raising an exception: >>> np.result_type(np.dtype("i,i"), np.dtype("i,d")) dtype([('f0', '<i4'), ('f1', '<f8')]) For promotion matching field names, order, and titles are enforced, however padding is ignored. Promotion involving structured dtypes now always ensures native byte-order for all fields (which may change the result of `np.concatenate`) and ensures that the result will be "packed", i.e. all fields are ordered contiguously and padding is removed. See `structured_dtype_comparison_and_promotion`{.interpreted-text role="ref"} for further details. The `repr` of aligned structures will now never print the long form including `offsets` and `itemsize` unless the structure includes padding not guaranteed by `align=True`. In alignment with the above changes to the promotion logic, the casting safety has been updated: - `"equiv"` enforces matching names and titles. The itemsize is allowed to differ due to padding. - `"safe"` allows mismatching field names and titles - The cast safety is limited by the cast safety of each included field. - The order of fields is used to decide cast safety of each individual field. Previously, the field names were used and only unsafe casts were possible when names mismatched. The main important change here is that name mismatches are now considered "safe" casts. ([gh-19226](https://github.com/numpy/numpy/pull/19226)) ##### `NPY_RELAXED_STRIDES_CHECKING` has been removed NumPy cannot be compiled with `NPY_RELAXED_STRIDES_CHECKING=0` anymore. Relaxed strides have been the default for many years and the option was initially introduced to allow a smoother transition. ([gh-20220](https://github.com/numpy/numpy/pull/20220)) ##### `np.loadtxt` has recieved several changes The row counting of `numpy.loadtxt` was fixed. `loadtxt` ignores fully empty lines in the file, but counted them towards `max_rows`. When `max_rows` is used and the file contains empty lines, these will now not be counted. Previously, it was possible that the result contained fewer than `max_rows` rows even though more data was available to be read. If the old behaviour is required, `itertools.islice` may be used: import itertools lines = itertools.islice(open("file"), 0, max_rows) result = np.loadtxt(lines, ...) While generally much faster and improved, `numpy.loadtxt` may now fail to converter certain strings to numbers that were previously successfully read. The most important cases for this are: - Parsing floating point values such as `1.0` into integers is now deprecated. - Parsing hexadecimal floats such as `0x3p3` will fail - An `_` was previously accepted as a thousands delimiter `100_000`. This will now result in an error. If you experience these limitations, they can all be worked around by passing appropriate `converters=`. NumPy now supports passing a single converter to be used for all columns to make this more convenient. For example, `converters=float.fromhex` can read hexadecimal float numbers and `converters=int` will be able to read `100_000`. Further, the error messages have been generally improved. However, this means that error types may differ. In particularly, a `ValueError` is now always raised when parsing of a single entry fails. ([gh-20580](https://github.com/numpy/numpy/pull/20580)) #### Improvements ##### `ndarray.__array_finalize__` is now callable This means subclasses can now use `super().__array_finalize__(obj)` without worrying whether `ndarray` is their superclass or not. The actual call remains a no-op. ([gh-20766](https://github.com/numpy/numpy/pull/20766)) ##### Add support for VSX4/Power10 With VSX4/Power10 enablement, the new instructions available in Power ISA 3.1 can be used to accelerate some NumPy operations, e.g., floor_divide, modulo, etc. ([gh-20821](https://github.com/numpy/numpy/pull/20821)) ##### `np.fromiter` now accepts objects and subarrays The `numpy.fromiter` function now supports object and subarray dtypes. Please see he function documentation for examples. ([gh-20993](https://github.com/numpy/numpy/pull/20993)) ##### Math C library feature detection now uses correct signatures Compiling is preceded by a detection phase to determine whether the underlying libc supports certain math operations. Previously this code did not respect the proper signatures. Fixing this enables compilation for the `wasm-ld` backend (compilation for web assembly) and reduces the number of warnings. ([gh-21154](https://github.com/numpy/numpy/pull/21154)) ##### `np.kron` now maintains subclass information `np.kron` maintains subclass information now such as masked arrays while computing the Kronecker product of the inputs ```python >>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]]) >>> np.kron(x,x) masked_array( data=[[1, --, --, --], [--, 4, --, --], [--, --, 4, --], [--, --, --, 16]], mask=[[False, True, True, True], [ True, False, True, True], [ True, True, False, True], [ True, True, True, False]], fill_value=999999) ``` :warning: Warning, `np.kron` output now follows `ufunc` ordering (`multiply`) to determine the output class type ```python >>> class myarr(np.ndarray): >>> __array_priority__ = -1 >>> a = np.ones([2, 2]) >>> ma = myarray(a.shape, a.dtype, a.data) >>> type(np.kron(a, ma)) == np.ndarray False # Before it was True >>> type(np.kron(a, ma)) == myarr True ``` ([gh-21262](https://github.com/numpy/numpy/pull/21262)) #### Performance improvements and changes ##### Faster `np.loadtxt` `numpy.loadtxt` is now generally much faster than previously as most of it is now implemented in C. ([gh-20580](https://github.com/numpy/numpy/pull/20580)) ##### Faster reduction operators Reduction operations like `numpy.sum`, `numpy.prod`, `numpy.add.reduce`, `numpy.logical_and.reduce` on contiguous integer-based arrays are now much faster. ([gh-21001](https://github.com/numpy/numpy/pull/21001)) ##### Faster `np.where` `numpy.where` is now much faster than previously on unpredictable/random input data. ([gh-21130](https://github.com/numpy/numpy/pull/21130)) ##### Faster operations on NumPy scalars Many operations on NumPy scalars are now significantly faster, although rare operations (e.g. with 0-D arrays rather than scalars) may be slower in some cases. However, even with these improvements users who want the best performance for their scalars, may want to convert a known NumPy scalar into a Python one using `scalar.item()`. ([gh-21188](https://github.com/numpy/numpy/pull/21188)) ##### Faster `np.kron` `numpy.kron` is about 80% faster as the product is now computed using broadcasting. ([gh-21354](https://github.com/numpy/numpy/pull/21354)) #### Checksums ##### MD5 21839aaeab3088e685d7c8d0e1856a23 numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl e657684ea521c50de0197aabfb44e78d numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl 219017660861fdec59b852630e3fef2a numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 03c3df83b8327910482a7d24ebe9213b numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b8f06ce4054acc147845a9643bd36082 numpy-1.23.0-cp310-cp310-win32.whl 877322db5a62634eef4e351db99a070d numpy-1.23.0-cp310-cp310-win_amd64.whl 7bb54f95e74306eff733466b6343695f numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl 5514a0030e5cf065e916950737d6d129 numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl 22d43465791814fe50e03ded430bd80c numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 771a1f7e488327645bac5b54dd2f6286 numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 449bfa2d55aff3e722d2fc85a7549620 numpy-1.23.0-cp38-cp38-win32.whl 60c7d27cf92dadb6d206df6e65b1032f numpy-1.23.0-cp38-cp38-win_amd64.whl dc2a5c5d2223f7b45a45f7f760d0f2db numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl ba5729353c3521ed7ee72c796e77a546 numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl 06d5cd49de096482944dead2eb92d783 numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6ff50a994f6006349b5f1415e4da6f45 numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 49185f219512403ef23d43d6f2adbefd numpy-1.23.0-cp39-cp39-win32.whl ff126a84dcf91700f9ca13ff606d109f numpy-1.23.0-cp39-cp39-win_amd64.whl e1462428487dc599cdffb723dec642c4 numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl fef1d20265135737fbc0f91ca4441990 numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4f8142288202a32c682d01921d6c2c78 numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl 513e4241d06b8fae5732cd049cdf3b57 numpy-1.23.0.tar.gz ##### SHA256 58bfd40eb478f54ff7a5710dd61c8097e169bc36cc68333d00a9bcd8def53b38 numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl 196cd074c3f97c4121601790955f915187736f9cf458d3ee1f1b46aff2b1ade0 numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl f1d88ef79e0a7fa631bb2c3dda1ea46b32b1fe614e10fedd611d3d5398447f2f numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d54b3b828d618a19779a84c3ad952e96e2c2311b16384e973e671aa5be1f6187 numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2b2da66582f3a69c8ce25ed7921dcd8010d05e59ac8d89d126a299be60421171 numpy-1.23.0-cp310-cp310-win32.whl 97a76604d9b0e79f59baeca16593c711fddb44936e40310f78bfef79ee9a835f numpy-1.23.0-cp310-cp310-win_amd64.whl d8cc87bed09de55477dba9da370c1679bd534df9baa171dd01accbb09687dac3 numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl f0f18804df7370571fb65db9b98bf1378172bd4e962482b857e612d1fec0f53e numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl ac86f407873b952679f5f9e6c0612687e51547af0e14ddea1eedfcb22466babd numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ae8adff4172692ce56233db04b7ce5792186f179c415c37d539c25de7298d25d numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe8b9683eb26d2c4d5db32cd29b38fdcf8381324ab48313b5b69088e0e355379 numpy-1.23.0-cp38-cp38-win32.whl 5043bcd71fcc458dfb8a0fc5509bbc979da0131b9d08e3d5f50fb0bbb36f169a numpy-1.23.0-cp38-cp38-win_amd64.whl 1c29b44905af288b3919803aceb6ec7fec77406d8b08aaa2e8b9e63d0fe2f160 numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl 98e8e0d8d69ff4d3fa63e6c61e8cfe2d03c29b16b58dbef1f9baa175bbed7860 numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl 79a506cacf2be3a74ead5467aee97b81fca00c9c4c8b3ba16dbab488cd99ba10 numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 092f5e6025813e64ad6d1b52b519165d08c730d099c114a9247c9bb635a2a450 numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d6ca8dabe696c2785d0c8c9b0d8a9b6e5fdbe4f922bde70d57fa1a2848134f95 numpy-1.23.0-cp39-cp39-win32.whl fc431493df245f3c627c0c05c2bd134535e7929dbe2e602b80e42bf52ff760bc numpy-1.23.0-cp39-cp39-win_amd64.whl f9c3fc2adf67762c9fe1849c859942d23f8d3e0bee7b5ed3d4a9c3eeb50a2f07 numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl d0d2094e8f4d760500394d77b383a1b06d3663e8892cdf5df3c592f55f3bff66 numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 94b170b4fa0168cd6be4becf37cb5b127bd12a795123984385b8cd4aca9857e5 numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl bd3fa4fe2e38533d5336e1272fc4e765cabbbde144309ccee8675509d5cd7b05 numpy-1.23.0.tar.gz ### [`v1.22.4`](https://github.com/numpy/numpy/releases/v1.22.4) [Compare Source](https://github.com/numpy/numpy/compare/v1.22.3...v1.22.4) ### NumPy 1.22.4 Release Notes NumPy 1.22.4 is a maintenance release that fixes bugs discovered after the 1.22.3 release. In addition, the wheels for this release are built using the recently released Cython 0.29.30, which should fix the reported problems with [debugging](https://github.com/numpy/numpy/issues/21008). The Python versions supported for this release are 3.8-3.10. Note that the Mac wheels are now based on OS X 10.15 rather than 10.6 that was used in previous NumPy release cycles. #### Contributors A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Alexander Shadchin - Bas van Beek - Charles Harris - Hood Chatham - Jarrod Millman - John-Mark Gurney + - Junyan Ou + - Mariusz Felisiak + - Ross Barnowski - Sebastian Berg - Serge Guelton - Stefan van der Walt #### Pull requests merged A total of 22 pull requests were merged for this release. - [#&#8203;21191](https://github.com/numpy/numpy/pull/21191): TYP, BUG: Fix `np.lib.stride_tricks` re-exported under the... - [#&#8203;21192](https://github.com/numpy/numpy/pull/21192): TST: Bump mypy from 0.931 to 0.940 - [#&#8203;21243](https://github.com/numpy/numpy/pull/21243): MAINT: Explicitly re-export the types in `numpy._typing` - [#&#8203;21245](https://github.com/numpy/numpy/pull/21245): MAINT: Specify sphinx, numpydoc versions for CI doc builds - [#&#8203;21275](https://github.com/numpy/numpy/pull/21275): BUG: Fix typos - [#&#8203;21277](https://github.com/numpy/numpy/pull/21277): ENH, BLD: Fix math feature detection for wasm - [#&#8203;21350](https://github.com/numpy/numpy/pull/21350): MAINT: Fix failing simd and cygwin tests. - [#&#8203;21438](https://github.com/numpy/numpy/pull/21438): MAINT: Fix failing Python 3.8 32-bit Windows test. - [#&#8203;21444](https://github.com/numpy/numpy/pull/21444): BUG: add linux guard per [#&#8203;21386](https://github.com/numpy/numpy/issues/21386) - [#&#8203;21445](https://github.com/numpy/numpy/pull/21445): BUG: Allow legacy dtypes to cast to datetime again - [#&#8203;21446](https://github.com/numpy/numpy/pull/21446): BUG: Make mmap handling safer in frombuffer - [#&#8203;21447](https://github.com/numpy/numpy/pull/21447): BUG: Stop using PyBytesObject.ob_shash deprecated in Python 3.11. - [#&#8203;21448](https://github.com/numpy/numpy/pull/21448): ENH: Introduce numpy.core.setup_common.NPY_CXX_FLAGS - [#&#8203;21472](https://github.com/numpy/numpy/pull/21472): BUG: Ensure compile errors are raised correclty - [#&#8203;21473](https://github.com/numpy/numpy/pull/21473): BUG: Fix segmentation fault - [#&#8203;21474](https://github.com/numpy/numpy/pull/21474): MAINT: Update doc requirements - [#&#8203;21475](https://github.com/numpy/numpy/pull/21475): MAINT: Mark `npy_memchr` with `no_sanitize("alignment")` on clang - [#&#8203;21512](https://github.com/numpy/numpy/pull/21512): DOC: Proposal - make the doc landing page cards more similar... - [#&#8203;21525](https://github.com/numpy/numpy/pull/21525): MAINT: Update Cython version to 0.29.30. - [#&#8203;21536](https://github.com/numpy/numpy/pull/21536): BUG: Fix GCC error during build configuration - [#&#8203;21541](https://github.com/numpy/numpy/pull/21541): REL: Prepare for the NumPy 1.22.4 release. - [#&#8203;21547](https://github.com/numpy/numpy/pull/21547): MAINT: Skip tests that fail on PyPy. #### Checksums ##### MD5 a19351fd3dc0b3bbc733495ed18b8f24 numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl 0730f9e196f70ad89f246bf95ccf05d5 numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl 63c74e5395a2b31d8adc5b1aa0c62471 numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl f99778023770c12f896768c90f7712e5 numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 757d68b0cdb4e28ffce8574b6a2f3c5e numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 50becf2e048e54dc5227dfe8378aae1e numpy-1.22.4-cp310-cp310-win32.whl 79dfdc29a4730e44d6df33dbea5b35b0 numpy-1.22.4-cp310-cp310-win_amd64.whl 8fd8f04d71ead55c2773d1b46668ca67 numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl 41a7c6240081010824cc0d5c02900fe6 numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl 6bc066d3f61da3304c82d92f3f900a4f numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 86d959605c66ccba11c6504f25fff0d7 numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ae0405894c065349a511e4575b919e2a numpy-1.22.4-cp38-cp38-win32.whl c9a731d08081396b7a1b66977734d2ac numpy-1.22.4-cp38-cp38-win_amd64.whl 4d9b97d74799e5fc48860f0b4a3b255a numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl c99fa7e04cb7cc23f1713f2023b4e489 numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl dda3815df12b8a99c6c3069f69997521 numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl 9b7c5b39d5611d92b66eb545d44b25db numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 90fc45eaf8b8c4fac3f3ebd105a5a856 numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9562153d4a83d773c20eb626cbd65cde numpy-1.22.4-cp39-cp39-win32.whl 711b23acce54a18ce74fc80f48f48062 numpy-1.22.4-cp39-cp39-win_amd64.whl ab803b24ea557452e828adba1b986af3 numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 09b3a41ea0b9bc20bd1691cf88f0b0d3 numpy-1.22.4.tar.gz b44849506fbb54cdef9dbb435b2b1987 numpy-1.22.4.zip ##### SHA256 ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3 numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl 1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887 numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl 7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0 numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl 43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74 numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e numpy-1.22.4-cp310-cp310-win32.whl 3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077 numpy-1.22.4-cp310-cp310-win_amd64.whl 59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1 numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72 numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6 numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0 numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba numpy-1.22.4-cp38-cp38-win32.whl e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76 numpy-1.22.4-cp38-cp38-win_amd64.whl 4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5 numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl 2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802 numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd numpy-1.22.4-cp39-cp39-win32.whl f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32 numpy-1.22.4-cp39-cp39-win_amd64.whl 0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207 numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b4308198d0e41efaa108e57d69973398439c7299a9d551680cdd603cf6d20709 numpy-1.22.4.tar.gz 425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af numpy-1.22.4.zip </details> --- ### Configuration 📅 **Schedule**: At any time (no schedule defined). 🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied. ♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, click this checkbox. --- This PR has been generated by [Renovate Bot](https://github.com/renovatebot/renovate).
renovate-bot added 1 commit 2022-06-14 01:43:57 +00:00
chore(deps): update dependency numpy to v1.22.4
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
3148df0074
deepak was assigned by renovate-bot 2022-06-14 01:43:57 +00:00
renovate-bot changed title from chore(deps): update dependency numpy to v1.22.4 to chore(deps): update dependency numpy to v1.23.0 2022-06-23 01:33:47 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 3148df0074 to f17273a001 2022-06-23 01:33:51 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.23.0 to chore(deps): update dependency numpy to v1.23.1 2022-07-09 01:31:03 +00:00
renovate-bot force-pushed renovate/numpy-1.x from f17273a001 to 78abd63d46 2022-07-09 01:31:05 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.23.1 to chore(deps): update dependency numpy to v1.23.2 2022-08-14 01:33:26 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 78abd63d46 to 8b52c6dae3 2022-08-14 01:33:29 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.23.2 to chore(deps): update dependency numpy to v1.23.3 2022-09-10 01:34:41 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 8b52c6dae3 to e04fed0368 2022-09-10 01:34:45 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.23.3 to chore(deps): update dependency numpy to v1.23.4 2022-10-13 01:34:40 +00:00
renovate-bot force-pushed renovate/numpy-1.x from e04fed0368 to 0952c90b72 2022-10-13 01:34:43 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.23.4 to chore(deps): update dependency numpy to v1.23.5 2022-11-20 01:33:23 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 0952c90b72 to 28fd3174cf 2022-11-20 01:33:27 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.23.5 to chore(deps): update dependency numpy to v1.24.0 2022-12-19 01:31:30 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 28fd3174cf to f9b0243a79 2022-12-19 01:31:34 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.24.0 to chore(deps): update dependency numpy to v1.24.1 2022-12-27 01:31:23 +00:00
renovate-bot force-pushed renovate/numpy-1.x from f9b0243a79 to b913ae9680 2022-12-27 01:31:26 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.24.1 to chore(deps): update dependency numpy to v1.24.2 2023-02-06 01:31:18 +00:00
renovate-bot force-pushed renovate/numpy-1.x from b913ae9680 to 5fb6360083 2023-02-06 01:31:24 +00:00 Compare
renovate-bot force-pushed renovate/numpy-1.x from 5fb6360083 to a0e7d2afe6 2023-04-10 01:31:45 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.24.2 to chore(deps): update dependency numpy to v1.24.3 2023-04-23 01:31:10 +00:00
renovate-bot force-pushed renovate/numpy-1.x from a0e7d2afe6 to 6cd80f3ddb 2023-04-23 01:31:11 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.24.3 to chore(deps): update dependency numpy to v1.25.0 2023-06-18 01:31:20 +00:00
Author
Owner

⚠ Artifact update problem

Renovate failed to update an artifact related to this branch. You probably do not want to merge this PR as-is.

♻ Renovate will retry this branch, including artifacts, only when one of the following happens:

  • any of the package files in this branch needs updating, or
  • the branch becomes conflicted, or
  • you click the rebase/retry checkbox if found above, or
  • you rename this PR's title to start with "rebase!" to trigger it manually

The artifact failure details are included below:

File name: poetry.lock
The currently activated Python version 3.10.2 is not supported by the project (>=3.8.1,<3.10).
Trying to find and use a compatible version. 

  NoCompatiblePythonVersionFound

  Poetry was unable to find a compatible version. If you have one, you can explicitly use it via the "env use" command.

  at /usr/local/poetry/1.1.13/venv/lib/python3.10/site-packages/poetry/utils/env.py:768 in create_venv
       764│                     python_minor = ".".join(python_patch.split(".")[:2])
       765│                     break
       766│ 
       767│             if not executable:
    →  768│                 raise NoCompatiblePythonVersionFound(
       769│                     self._poetry.package.python_versions
       770│                 )
       771│ 
       772│         if root_venv:


### ⚠ Artifact update problem Renovate failed to update an artifact related to this branch. You probably do not want to merge this PR as-is. ♻ Renovate will retry this branch, including artifacts, only when one of the following happens: - any of the package files in this branch needs updating, or - the branch becomes conflicted, or - you click the rebase/retry checkbox if found above, or - you rename this PR's title to start with "rebase!" to trigger it manually The artifact failure details are included below: ##### File name: poetry.lock ``` The currently activated Python version 3.10.2 is not supported by the project (>=3.8.1,<3.10). Trying to find and use a compatible version. NoCompatiblePythonVersionFound Poetry was unable to find a compatible version. If you have one, you can explicitly use it via the "env use" command. at /usr/local/poetry/1.1.13/venv/lib/python3.10/site-packages/poetry/utils/env.py:768 in create_venv 764│ python_minor = ".".join(python_patch.split(".")[:2]) 765│ break 766│ 767│ if not executable: → 768│ raise NoCompatiblePythonVersionFound( 769│ self._poetry.package.python_versions 770│ ) 771│ 772│ if root_venv: ```
renovate-bot force-pushed renovate/numpy-1.x from 6cd80f3ddb to 61cbd31b77 2023-06-18 01:31:22 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.25.0 to chore(deps): update dependency numpy to v1.25.1 2023-07-09 01:30:51 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 61cbd31b77 to d883cc91c7 2023-07-09 01:30:52 +00:00 Compare
renovate-bot force-pushed renovate/numpy-1.x from d883cc91c7 to 2081fe8c20 2023-07-25 01:30:49 +00:00 Compare
renovate-bot force-pushed renovate/numpy-1.x from 2081fe8c20 to e0fc64f892 2023-07-28 01:30:43 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.25.1 to chore(deps): update dependency numpy to v1.25.2 2023-08-01 01:30:33 +00:00
renovate-bot force-pushed renovate/numpy-1.x from e0fc64f892 to b026e69e3d 2023-08-01 01:30:36 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.25.2 to chore(deps): update dependency numpy to v1.26.0 2023-09-17 01:30:38 +00:00
renovate-bot force-pushed renovate/numpy-1.x from b026e69e3d to 8f3a190a43 2023-09-17 01:30:40 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.26.0 to chore(deps): update dependency numpy to v1.26.1 2023-10-15 01:33:01 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 8f3a190a43 to f26d0029d1 2023-10-15 01:33:03 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.26.1 to chore(deps): update dependency numpy to v1.26.2 2023-11-13 01:30:57 +00:00
renovate-bot force-pushed renovate/numpy-1.x from f26d0029d1 to 4bd2f99b7f 2023-11-13 01:31:00 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.26.2 to chore(deps): update dependency numpy to v1.26.3 2024-01-03 01:31:01 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 4bd2f99b7f to 8a293ae29e 2024-01-03 01:31:02 +00:00 Compare
renovate-bot changed title from chore(deps): update dependency numpy to v1.26.3 to chore(deps): update dependency numpy to v1.26.4 2024-02-06 01:30:58 +00:00
renovate-bot force-pushed renovate/numpy-1.x from 8a293ae29e to ce0d891bf4 2024-02-06 01:30:59 +00:00 Compare
renovate-bot force-pushed renovate/numpy-1.x from ce0d891bf4 to 86d4089d26 2024-02-29 01:30:43 +00:00 Compare
renovate-bot force-pushed renovate/numpy-1.x from 86d4089d26 to 0548a57861 2024-04-29 01:31:05 +00:00 Compare
renovate-bot force-pushed renovate/numpy-1.x from 0548a57861 to 4a7cd2b0e3 2024-05-02 01:31:00 +00:00 Compare
renovate-bot force-pushed renovate/numpy-1.x from 4a7cd2b0e3 to b3c3412609 2024-05-04 01:30:57 +00:00 Compare
renovate-bot force-pushed renovate/numpy-1.x from b3c3412609 to c288e42e5f 2024-05-21 01:30:45 +00:00 Compare
Some checks failed
renovate/artifacts Artifact file update failure
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
This pull request can be merged automatically.
This branch is out-of-date with the base branch
You are not authorized to merge this pull request.

Checkout

From your project repository, check out a new branch and test the changes.
git fetch -u origin renovate/numpy-1.x:renovate/numpy-1.x
git checkout renovate/numpy-1.x
Sign in to join this conversation.
No Reviewers
No Label
1 Participants
Notifications
Due Date
No due date set.
Dependencies

No dependencies set.

Reference: physics/deepdog#16
No description provided.