chore(deps): update dependency numpy to v2 #40

Open
renovate-bot wants to merge 1 commits from renovate/numpy-2.x into master
Owner

This PR contains the following updates:

Package Type Update Change
numpy (changelog) dependencies major 1.22.3 -> 2.3.1

Release Notes

numpy/numpy

v2.3.1

Compare Source

NumPy 2.3.1 Release Notes

The NumPy 2.3.1 release is a patch release with several bug fixes,
annotation improvements, and better support for OpenBSD. Highlights are:

  • Fix bug in matmul for non-contiguous out kwarg parameter
  • Fix for Accelerate runtime warnings on M4 hardware
  • Fix new in NumPy 2.3.0 np.vectorize casting errors
  • Improved support of cpu features for FreeBSD and OpenBSD

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Brad Smith +
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • François Rozet
  • Joren Hammudoglu
  • Matti Picus
  • Mugundan Selvanayagam
  • Nathan Goldbaum
  • Sebastian Berg

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #​29140: MAINT: Prepare 2.3.x for further development
  • #​29191: BUG: fix matmul with transposed out arg (#​29179)
  • #​29192: TYP: Backport typing fixes and improvements.
  • #​29205: BUG: Revert np.vectorize casting to legacy behavior (#​29196)
  • #​29222: TYP: Backport typing fixes
  • #​29233: BUG: avoid negating unsigned integers in resize implementation...
  • #​29234: TST: Fix test that uses uninitialized memory (#​29232)
  • #​29235: BUG: Address interaction between SME and FPSR (#​29223)
  • #​29237: BUG: Enforce integer limitation in concatenate (#​29231)
  • #​29238: CI: Add support for building NumPy with LLVM for Win-ARM64
  • #​29241: ENH: Detect CPU features on OpenBSD ARM and PowerPC64
  • #​29242: ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64.

Checksums

MD5
c353ac75ea083594a6cb674b5f943d83  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
fdb5454e372d399cf570868ea7e2b192  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
dc0f17823bb1826519d6974c2b95fa90  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
7e3118fe383af697a8868ba191b9eac0  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
705aafad1250aa3e41502c5710a26ed5  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
003d6268344577b804205098e11cdaa0  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
7d0c0fd11c573c510a25dd7513e4ae0a  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
d99f993ef05966ead99df736df18b521  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
96933cac225fb8b60a9cc2c0efa14d36  numpy-2.3.1-cp311-cp311-win32.whl
f777712419f3dd586ac294ddce84b274  numpy-2.3.1-cp311-cp311-win_amd64.whl
1fe2615669de5c271a48b99356fa3528  numpy-2.3.1-cp311-cp311-win_arm64.whl
fccca48846d41d38966cc75395787f79  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
fa389e78db43f3c2841ce127c1205422  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
2554944d786abd284db4a699d4edfe1e  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
7fec491834803a8ffa3765ef3d03cea5  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
7c2d8b4412f12b9b02e98349fb5cd760  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
94dcc636a2f2478666d820e21fc91682  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
404128939d89d1ea26be105fb03b5028  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
e89d8d460060e8315c3ba68b2b649db0  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
a767bd10267ad6baef9655fb08db3fd3  numpy-2.3.1-cp312-cp312-win32.whl
f753b957fcb7f06f043cf9c6114f294c  numpy-2.3.1-cp312-cp312-win_amd64.whl
58ffa7c69587f9bf8f6025794fec7f63  numpy-2.3.1-cp312-cp312-win_arm64.whl
22a2a9a568dd0866b288ad8bd8bb3e90  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
5e1593fcc8bb3447e995622f2dca017b  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
894d56072db9358e0096538710a1a8ce  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
593cb311f5170cbcfcefb587cdcc70bb  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
22935447e75acda4075c57b332c0236a  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
5aa2040f947204e15e95ec87461a7e91  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
6516337f0347974fada21a23a818be64  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
ec956eb37b874b1ec52d6ffccda6ef65  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
0aaed62cb1bae9c1b1a44d1a4eda2db7  numpy-2.3.1-cp313-cp313-win32.whl
57829996fc12f649547f0258443bbb20  numpy-2.3.1-cp313-cp313-win_amd64.whl
a0d0dd68bbf0ab378142b2daff0a8e06  numpy-2.3.1-cp313-cp313-win_arm64.whl
b22dc66970a8017e4d0ce83ef8c938af  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
93c17afb38cf8fd876ca2bd9ea7e9612  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
283064dabb434f3dbc1a5e2514b9cb29  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
5b8c778033c98b4a0ce6e5bfc7625f05  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
2340bd78962f194bcdbee6531d954acc  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
43a92ad37dc68d719bdeeeb65b3f4d2f  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
eb110c4aa0d73558187397ddfba179ad  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
1f7f0076411ed4afa9c4553eb06564cb  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30f30dde6f806070b2164e48a632a350  numpy-2.3.1-cp313-cp313t-win32.whl
2375e2f2a5b75c5f5c908af6bb85d639  numpy-2.3.1-cp313-cp313t-win_amd64.whl
b421530a87bb8e9e3d4dc34c75d5d953  numpy-2.3.1-cp313-cp313t-win_arm64.whl
b1bc3cbf9cd407964b2bb25dfe86ca3d  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
4c2e234eb4f346f362d6e6c620fa7a56  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
98ec3c19a365d0ae926113bb349e323b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
e0c7bcd526cde46489d5a8f12e06cc77  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
41f535aa1f1acaf3d8a32a462a4cd4c8  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
2abf906a6688c98693045cbbc655d5b7  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
886559a4c541298b37245e389ce8bf10  numpy-2.3.1.tar.gz
SHA256
6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369  numpy-2.3.1-cp311-cp311-win32.whl
d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff  numpy-2.3.1-cp311-cp311-win_amd64.whl
ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a  numpy-2.3.1-cp311-cp311-win_arm64.whl
2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab  numpy-2.3.1-cp312-cp312-win32.whl
cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76  numpy-2.3.1-cp312-cp312-win_amd64.whl
7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30  numpy-2.3.1-cp312-cp312-win_arm64.whl
25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8  numpy-2.3.1-cp313-cp313-win32.whl
8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42  numpy-2.3.1-cp313-cp313-win_amd64.whl
0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e  numpy-2.3.1-cp313-cp313-win_arm64.whl
b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e  numpy-2.3.1-cp313-cp313t-win32.whl
2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc  numpy-2.3.1-cp313-cp313t-win_amd64.whl
eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244  numpy-2.3.1-cp313-cp313t-win_arm64.whl
ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
ebb8603d45bc86bbd5edb0d63e52c5fd9e7945d3a503b77e486bd88dde67a19b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
15aa4c392ac396e2ad3d0a2680c0f0dee420f9fed14eef09bdb9450ee6dcb7b7  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
c6e0bf9d1a2f50d2b65a7cf56db37c095af17b59f6c132396f7c6d5dd76484df  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
eabd7e8740d494ce2b4ea0ff05afa1b7b291e978c0ae075487c51e8bd93c0c68  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e610832418a2bc09d974cc9fecebfa51e9532d6190223bc5ef6a7402ebf3b5cb  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b  numpy-2.3.1.tar.gz

v2.3.0

Compare Source

NumPy 2.3.0 Release Notes

The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations, code
modernizations, and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.

Users running on a Mac having an M4 cpu might see various warnings about
invalid values and such. The warnings are a known problem with
Accelerate. They are annoying, but otherwise harmless. Apple promises to
fix them.

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Highlights

  • Interactive examples in the NumPy documentation.
  • Building NumPy with OpenMP Parallelization.
  • Preliminary support for Windows on ARM.
  • Improved support for free threaded Python.
  • Improved annotations.

New functions

New function numpy.strings.slice

The new function numpy.strings.slice was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.

(gh-27789)

Deprecations

  • The numpy.typing.mypy_plugin has been deprecated in favor of
    platform-agnostic static type inference. Please remove
    numpy.typing.mypy_plugin from the plugins section of your mypy
    configuration. If this change results in new errors being reported,
    kindly open an issue.

    (gh-28129)

  • The numpy.typing.NBitBase type has been deprecated and will be
    removed in a future version.

    This type was previously intended to be used as a generic upper
    bound for type-parameters, for example:

    import numpy as np
    import numpy.typing as npt
    
    def f[NT: npt.NBitBase](x: np.complexfloating[NT]) -> np.floating[NT]: ...
    

    But in NumPy 2.2.0, float64 and complex128 were changed to
    concrete subtypes, causing static type-checkers to reject
    x: np.float64 = f(np.complex128(42j)).

    So instead, the better approach is to use typing.overload:

    import numpy as np
    from typing import overload
    
    @​overload
    def f(x: np.complex64) -> np.float32: ...
    @​overload
    def f(x: np.complex128) -> np.float64: ...
    @​overload
    def f(x: np.clongdouble) -> np.longdouble: ...
    

    (gh-28884)

Expired deprecations

  • Remove deprecated macros like NPY_OWNDATA from Cython interfaces
    in favor of NPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Remove numpy/npy_1_7_deprecated_api.h and C macros like
    NPY_OWNDATA in favor of NPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Remove alias generate_divbyzero_error to
    npy_set_floatstatus_divbyzero and generate_overflow_error to
    npy_set_floatstatus_overflow (deprecated since 1.10)

    (gh-28254)

  • Remove np.tostring (deprecated since 1.19)

    (gh-28254)

  • Raise on np.conjugate of non-numeric types (deprecated since 1.13)

    (gh-28254)

  • Raise when using np.bincount(...minlength=None), use 0 instead
    (deprecated since 1.14)

    (gh-28254)

  • Passing shape=None to functions with a non-optional shape argument
    errors, use () instead (deprecated since 1.20)

    (gh-28254)

  • Inexact matches for mode and searchside raise (deprecated since
    1.20)

    (gh-28254)

  • Setting __array_finalize__ = None errors (deprecated since 1.23)

    (gh-28254)

  • np.fromfile and np.fromstring error on bad data, previously they
    would guess (deprecated since 1.18)

    (gh-28254)

  • datetime64 and timedelta64 construction with a tuple no longer
    accepts an event value, either use a two-tuple of (unit, num) or a
    4-tuple of (unit, num, den, 1) (deprecated since 1.14)

    (gh-28254)

  • When constructing a dtype from a class with a dtype attribute,
    that attribute must be a dtype-instance rather than a thing that can
    be parsed as a dtype instance (deprecated in 1.19). At some point
    the whole construct of using a dtype attribute will be deprecated
    (see #​25306)

    (gh-28254)

  • Passing booleans as partition index errors (deprecated since 1.23)

    (gh-28254)

  • Out-of-bounds indexes error even on empty arrays (deprecated since
    1.20)

    (gh-28254)

  • np.tostring has been removed, use tobytes instead (deprecated
    since 1.19)

    (gh-28254)

  • Disallow make a non-writeable array writeable for arrays with a base
    that do not own their data (deprecated since 1.17)

    (gh-28254)

  • concatenate() with axis=None uses same-kind casting by
    default, not unsafe (deprecated since 1.20)

    (gh-28254)

  • Unpickling a scalar with object dtype errors (deprecated since 1.20)

    (gh-28254)

  • The binary mode of fromstring now errors, use frombuffer instead
    (deprecated since 1.14)

    (gh-28254)

  • Converting np.inexact or np.floating to a dtype errors
    (deprecated since 1.19)

    (gh-28254)

  • Converting np.complex, np.integer, np.signedinteger,
    np.unsignedinteger, np.generic to a dtype errors (deprecated
    since 1.19)

    (gh-28254)

  • The Python built-in round errors for complex scalars. Use
    np.round or scalar.round instead (deprecated since 1.19)

    (gh-28254)

  • 'np.bool' scalars can no longer be interpreted as an index
    (deprecated since 1.19)

    (gh-28254)

  • Parsing an integer via a float string is no longer supported.
    (deprecated since 1.23) To avoid this error you can

    • make sure the original data is stored as integers.
    • use the converters=float keyword argument.
    • Use np.loadtxt(...).astype(np.int64)

    (gh-28254)

  • The use of a length 1 tuple for the ufunc signature errors. Use
    dtype or fill the tuple with None (deprecated since 1.19)

    (gh-28254)

  • Special handling of matrix is in np.outer is removed. Convert to a
    ndarray via matrix.A (deprecated since 1.20)

    (gh-28254)

  • Removed the np.compat package source code (removed in 2.0)

    (gh-28961)

C API changes

  • NpyIter_GetTransferFlags is now available to check if the iterator
    needs the Python API or if casts may cause floating point errors
    (FPE). FPEs can for example be set when casting float64(1e300) to
    float32 (overflow to infinity) or a NaN to an integer (invalid
    value).

    (gh-27883)

  • NpyIter now has no limit on the number of operands it supports.

    (gh-28080)

New NpyIter_GetTransferFlags and NpyIter_IterationNeedsAPI change

NumPy now has the new NpyIter_GetTransferFlags function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.

The NpyIter_IterationNeedsAPI function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.

(gh-27998)

New Features

  • The type parameter of np.dtype now defaults to typing.Any. This
    way, static type-checkers will infer dtype: np.dtype as
    dtype: np.dtype[Any], without reporting an error.

    (gh-28669)

  • Static type-checkers now interpret:

    • _: np.ndarray as _: npt.NDArray[typing.Any].
    • _: np.flatiter as _: np.flatiter[np.ndarray].

    This is because their type parameters now have default values.

    (gh-28940)

NumPy now registers its pkg-config paths with the pkgconf PyPI package

The pkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path. This means that
when using pkgconf
from PyPI, NumPy will be discoverable without needing for any custom
environment configuration.

[!NOTE]
This only applies when using the pkgconf package from PyPI,
or put another way, this only applies when installing pkgconf via a
Python package manager.

If you are using pkg-config or pkgconf provided by your system,
or any other source that does not use the pkgconf-pypi
project, the NumPy pkg-config directory will not be automatically added
to the search path. In these situations, you might want to use numpy-config.

(gh-28214)

Allow out=... in ufuncs to ensure array result

NumPy has the sometimes difficult behavior that it currently usually
returns scalars rather than 0-D arrays (even if the inputs were 0-D
arrays). This is especially problematic for non-numerical dtypes (e.g.
object).

For ufuncs (i.e. most simple math functions) it is now possible to use
out=... (literally `...`, e.g. out=Ellipsis) which is identical
in behavior to out not being passed, but will ensure a non-scalar
return. This spelling is borrowed from arr1d[0, ...] where the ...
also ensures a non-scalar return.

Other functions with an out= kwarg should gain support eventually.
Downstream libraries that interoperate via __array_ufunc__ or
__array_function__ may need to adapt to support this.

(gh-28576)

Building NumPy with OpenMP Parallelization

NumPy now supports OpenMP parallel processing capabilities when built
with the -Denable_openmp=true Meson build flag. This feature is
disabled by default. When enabled, np.sort and np.argsort functions
can utilize OpenMP for parallel thread execution, improving performance
for these operations.

(gh-28619)

Interactive examples in the NumPy documentation

The NumPy documentation includes a number of examples that can now be
run interactively in your browser using WebAssembly and Pyodide.

Please note that the examples are currently experimental in nature and
may not work as expected for all methods in the public API.

(gh-26745)

Improvements

  • Scalar comparisons between non-comparable dtypes such as
    np.array(1) == np.array('s') now return a NumPy bool instead of a
    Python bool.

    (gh-27288)

  • np.nditer now has no limit on the number of supported operands
    (C-integer).

    (gh-28080)

  • No-copy pickling is now supported for any array that can be
    transposed to a C-contiguous array.

    (gh-28105)

  • The __repr__ for user-defined dtypes now prefers the __name__ of
    the custom dtype over a more generic name constructed from its
    kind and itemsize.

    (gh-28250)

  • np.dot now reports floating point exceptions.

    (gh-28442)

  • np.dtypes.StringDType is now a generic
    type
    which
    accepts a type argument for na_object that defaults to
    typing.Never. For example, StringDType(na_object=None) returns a
    StringDType[None], and StringDType() returns a
    StringDType[typing.Never].

    (gh-28856)

Added warnings to np.isclose

Added warning messages if at least one of atol or rtol are either
np.nan or np.inf within np.isclose.

  • Warnings follow the user's np.seterr settings

(gh-28205)

Performance improvements and changes

Performance improvements to np.unique

np.unique now tries to use a hash table to find unique values instead
of sorting values before finding unique values. This is limited to
certain dtypes for now, and the function is now faster for those dtypes.
The function now also exposes a sorted parameter to allow returning
unique values as they were found, instead of sorting them afterwards.

(gh-26018)

Performance improvements to np.sort and np.argsort

np.sort and np.argsort functions now can leverage OpenMP for
parallel thread execution, resulting in up to 3.5x speedups on x86
architectures with AVX2 or AVX-512 instructions. This opt-in feature
requires NumPy to be built with the -Denable_openmp Meson flag. Users
can control the number of threads used by setting the OMP_NUM_THREADS
environment variable.

(gh-28619)

Performance improvements for np.float16 casts

Earlier, floating point casts to and from np.float16 types were
emulated in software on all platforms.

Now, on ARM devices that support Neon float16 intrinsics (such as recent
Apple Silicon), the native float16 path is used to achieve the best
performance.

(gh-28769)

Changes

  • The vector norm ord=inf and the matrix norms
    ord={1, 2, inf, 'nuc'} now always returns zero for empty arrays.
    Empty arrays have at least one axis of size zero. This affects
    np.linalg.norm, np.linalg.vector_norm, and
    np.linalg.matrix_norm. Previously, NumPy would raises errors or
    return zero depending on the shape of the array.

    (gh-28343)

  • A spelling error in the error message returned when converting a
    string to a float with the method np.format_float_positional has
    been fixed.

    (gh-28569)

  • NumPy's __array_api_version__ was upgraded from 2023.12 to
    2024.12.

  • numpy.count_nonzero for axis=None (default) now returns a NumPy
    scalar instead of a Python integer.

  • The parameter axis in numpy.take_along_axis function has now a
    default value of -1.

    (gh-28615)

  • Printing of np.float16 and np.float32 scalars and arrays have
    been improved by adjusting the transition to scientific notation
    based on the floating point precision. A new legacy
    np.printoptions mode '2.2' has been added for backwards
    compatibility.

    (gh-28703)

  • Multiplication between a string and integer now raises OverflowError
    instead of MemoryError if the result of the multiplication would
    create a string that is too large to be represented. This follows
    Python's behavior.

    (gh-29060)

unique_values may return unsorted data

The relatively new function (added in NumPy 2.0) unique_values may now
return unsorted results. Just as unique_counts and unique_all these
never guaranteed a sorted result, however, the result was sorted until
now. In cases where these do return a sorted result, this may change in
future releases to improve performance.

(gh-26018)

Changes to the main iterator and potential numerical changes

The main iterator, used in math functions and via np.nditer from
Python and NpyIter in C, now behaves differently for some buffered
iterations. This means that:

  • The buffer size used will often be smaller than the maximum buffer
    sized allowed by the buffersize parameter.
  • The "growinner" flag is now honored with buffered reductions when
    no operand requires buffering.

For np.sum() such changes in buffersize may slightly change numerical
results of floating point operations. Users who use "growinner" for
custom reductions could notice changes in precision (for example, in
NumPy we removed it from einsum to avoid most precision changes and
improve precision for some 64bit floating point inputs).

(gh-27883)

The minimum supported GCC version is now 9.3.0

The minimum supported version was updated from 8.4.0 to 9.3.0, primarily
in order to reduce the chance of platform-specific bugs in old GCC
versions from causing issues.

(gh-28102)

Changes to automatic bin selection in numpy.histogram

The automatic bin selection algorithm in numpy.histogram has been
modified to avoid out-of-memory errors for samples with low variation.
For full control over the selected bins the user can use set the bin
or range parameters of numpy.histogram.

(gh-28426)

Build manylinux_2_28 wheels

Wheels for linux systems will use the manylinux_2_28 tag (instead of
the manylinux2014 tag), which means dropping support for
redhat7/centos7, amazonlinux2, debian9, ubuntu18.04, and other
pre-glibc2.28 operating system versions, as per the PEP 600 support
table
.

(gh-28436)

Remove use of -Wl,-ld_classic on macOS

Remove use of -Wl,-ld_classic on macOS. This hack is no longer needed by
Spack, and results in libraries that cannot link to other libraries
built with ld (new).

(gh-28713)

Re-enable overriding functions in the numpy.strings

Re-enable overriding functions in the numpy.strings module.

(gh-28741)

Checksums

MD5
cf552b6b6390343c24bf60365950c91c  numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl
d3c377f49f84b36297cfc2fc30c6a288  numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
4e12cd2aea876c09fdc3aaac2d0f4bac  numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl
a33af1d4e1f0ee5ed82d7933c5df9f84  numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl
cd5cf04cb8b40e65aac8264c7bf3d7c9  numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
6a45424beb8f4f23e7b2b853bc18aefa  numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
2dc1c1d1b9deb8c0626af68c0c00660a  numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl
9ff8ea227afce090dea3b4dac4653fa6  numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl
a1e9e40a20187e1f5ae2f8ba165e291b  numpy-2.3.0-cp311-cp311-win32.whl
819e4ac62a3449c79818ff5aa0e6b276  numpy-2.3.0-cp311-cp311-win_amd64.whl
347260edfd35535b15b8133280793080  numpy-2.3.0-cp311-cp311-win_arm64.whl
9c1ad46e637b876a0535de60f5b604bc  numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl
5b656fbed339bcac1af6de73b15e5dba  numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
5b86d6d0cab79d0cd381bb2e912e7e23  numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl
ea83ef5cd00d5e42bb745eee1ee0ad3f  numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl
15a5f57cb51d3d957c1b387c4bc54830  numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl
b5fa92d1093dab4c3ca0622c29c4a241  numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
666cad26086ee212047e5ea0e8906480  numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl
6263705622ca89ccadc6f458effde281  numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl
bf1bf83eca701ff70351c2d7b308e181  numpy-2.3.0-cp312-cp312-win32.whl
0707b427c1102bb904994289e1555c3d  numpy-2.3.0-cp312-cp312-win_amd64.whl
097bd498f8333d383db61105044906dc  numpy-2.3.0-cp312-cp312-win_arm64.whl
54eb5fa0444ff5dd078bb1aa30d9533f  numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl
004b4c3650562bd851e31fb925863acb  numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl
cd4e31304e51cc5dacd355730be25e4e  numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl
0ed70aa071f35060ee68d6ab407159e5  numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl
a89b304bbb52268b233ab9652fee8142  numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl
4b55cf791be482e8d8e5aaba0c10b6f2  numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl
d3a1b81da2f2cba4743d1ee5385cb4d6  numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl
fcaacdedcd8cfec7a6cb430fba7a5553  numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl
7d0deec2ad395fda48b80be59612db22  numpy-2.3.0-cp313-cp313-win32.whl
7386a22b0ef219ba043f6e085933dbd6  numpy-2.3.0-cp313-cp313-win_amd64.whl
f4559038276d0e2bfb19601484d4cdff  numpy-2.3.0-cp313-cp313-win_arm64.whl
6c586985db2e888876aa96ceaf99ee66  numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl
9726de30cce2b36940225a7ea086c824  numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl
ea021092cbb7b1e7d0984dc774bb288d  numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl
6f8261bc789eed1d3f6f7ea9ff3c2a2c  numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl
ab624ddc1425d44412541aad1f012fd9  numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl
af55bc7a8f46ec8d413eb1fbe2c200e9  numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl
830eecf7c372aa0d7d746ad031ff0ba1  numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl
28870039fde4fec369185e185bf0077e  numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl
4510373c08383787c263a4b5a21a24ef  numpy-2.3.0-cp313-cp313t-win32.whl
de883c4313f4dc984045a51b8edb4084  numpy-2.3.0-cp313-cp313t-win_amd64.whl
334f5c275a6aad46e5f46436572d3dc1  numpy-2.3.0-cp313-cp313t-win_arm64.whl
05b86d4a21a832e20e4ebdc6febf298d  numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
4589038edf55f085252f194e880d7454  numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl
7d8f0554035717dc396de7d77c696377  numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
c0cb89f0dca94446e6aa472ec6874c22  numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
14e43315dea5eddffe888986e47d8584  numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e3688182f8551c3c99b559c1696d41dc  numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl
19a5470a37d066bd3e9385918d7760e7  numpy-2.3.0.tar.gz
SHA256
c3c9fdde0fa18afa1099d6257eb82890ea4f3102847e692193b54e00312a9ae9  numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl
46d16f72c2192da7b83984aa5455baee640e33a9f1e61e656f29adf55e406c2b  numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
a0be278be9307c4ab06b788f2a077f05e180aea817b3e41cebbd5aaf7bd85ed3  numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl
99224862d1412d2562248d4710126355d3a8db7672170a39d6909ac47687a8a4  numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl
2393a914db64b0ead0ab80c962e42d09d5f385802006a6c87835acb1f58adb96  numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
7729c8008d55e80784bd113787ce876ca117185c579c0d626f59b87d433ea779  numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
06d4fb37a8d383b769281714897420c5cc3545c79dc427df57fc9b852ee0bf58  numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl
c39ec392b5db5088259c68250e342612db82dc80ce044cf16496cf14cf6bc6f8  numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl
ee9d3ee70d62827bc91f3ea5eee33153212c41f639918550ac0475e3588da59f  numpy-2.3.0-cp311-cp311-win32.whl
43c55b6a860b0eb44d42341438b03513cf3879cb3617afb749ad49307e164edd  numpy-2.3.0-cp311-cp311-win_amd64.whl
2e6a1409eee0cb0316cb64640a49a49ca44deb1a537e6b1121dc7c458a1299a8  numpy-2.3.0-cp311-cp311-win_arm64.whl
389b85335838155a9076e9ad7f8fdba0827496ec2d2dc32ce69ce7898bde03ba  numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl
9498f60cd6bb8238d8eaf468a3d5bb031d34cd12556af53510f05fcf581c1b7e  numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
622a65d40d8eb427d8e722fd410ac3ad4958002f109230bc714fa551044ebae2  numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl
b9446d9d8505aadadb686d51d838f2b6688c9e85636a0c3abaeb55ed54756459  numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl
50080245365d75137a2bf46151e975de63146ae6d79f7e6bd5c0e85c9931d06a  numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl
c24bb4113c66936eeaa0dc1e47c74770453d34f46ee07ae4efd853a2ed1ad10a  numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
4d8d294287fdf685281e671886c6dcdf0291a7c19db3e5cb4178d07ccf6ecc67  numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl
6295f81f093b7f5769d1728a6bd8bf7466de2adfa771ede944ce6711382b89dc  numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl
e6648078bdd974ef5d15cecc31b0c410e2e24178a6e10bf511e0557eed0f2570  numpy-2.3.0-cp312-cp312-win32.whl
0898c67a58cdaaf29994bc0e2c65230fd4de0ac40afaf1584ed0b02cd74c6fdd  numpy-2.3.0-cp312-cp312-win_amd64.whl
bd8df082b6c4695753ad6193018c05aac465d634834dca47a3ae06d4bb22d9ea  numpy-2.3.0-cp312-cp312-win_arm64.whl
5754ab5595bfa2c2387d241296e0381c21f44a4b90a776c3c1d39eede13a746a  numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl
d11fa02f77752d8099573d64e5fe33de3229b6632036ec08f7080f46b6649959  numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl
aba48d17e87688a765ab1cd557882052f238e2f36545dfa8e29e6a91aef77afe  numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl
4dc58865623023b63b10d52f18abaac3729346a7a46a778381e0e3af4b7f3beb  numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl
df470d376f54e052c76517393fa443758fefcdd634645bc9c1f84eafc67087f0  numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl
87717eb24d4a8a64683b7a4e91ace04e2f5c7c77872f823f02a94feee186168f  numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl
d8fa264d56882b59dcb5ea4d6ab6f31d0c58a57b41aec605848b6eb2ef4a43e8  numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl
e651756066a0eaf900916497e20e02fe1ae544187cb0fe88de981671ee7f6270  numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl
e43c3cce3b6ae5f94696669ff2a6eafd9a6b9332008bafa4117af70f4b88be6f  numpy-2.3.0-cp313-cp313-win32.whl
81ae0bf2564cf475f94be4a27ef7bcf8af0c3e28da46770fc904da9abd5279b5  numpy-2.3.0-cp313-cp313-win_amd64.whl
c8738baa52505fa6e82778580b23f945e3578412554d937093eac9205e845e6e  numpy-2.3.0-cp313-cp313-win_arm64.whl
39b27d8b38942a647f048b675f134dd5a567f95bfff481f9109ec308515c51d8  numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl
0eba4a1ea88f9a6f30f56fdafdeb8da3774349eacddab9581a21234b8535d3d3  numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl
b0f1f11d0a1da54927436505a5a7670b154eac27f5672afc389661013dfe3d4f  numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl
690d0a5b60a47e1f9dcec7b77750a4854c0d690e9058b7bef3106e3ae9117808  numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl
8b51ead2b258284458e570942137155978583e407babc22e3d0ed7af33ce06f8  numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl
aaf81c7b82c73bd9b45e79cfb9476cb9c29e937494bfe9092c26aece812818ad  numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl
f420033a20b4f6a2a11f585f93c843ac40686a7c3fa514060a97d9de93e5e72b  numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl
d344ca32ab482bcf8735d8f95091ad081f97120546f3d250240868430ce52555  numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl
48a2e8eaf76364c32a1feaa60d6925eaf32ed7a040183b807e02674305beef61  numpy-2.3.0-cp313-cp313t-win32.whl
ba17f93a94e503551f154de210e4d50c5e3ee20f7e7a1b5f6ce3f22d419b93bb  numpy-2.3.0-cp313-cp313t-win_amd64.whl
f14e016d9409680959691c109be98c436c6249eaf7f118b424679793607b5944  numpy-2.3.0-cp313-cp313t-win_arm64.whl
80b46117c7359de8167cc00a2c7d823bdd505e8c7727ae0871025a86d668283b  numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
5814a0f43e70c061f47abd5857d120179609ddc32a613138cbb6c4e9e2dbdda5  numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl
ef6c1e88fd6b81ac6d215ed71dc8cd027e54d4bf1d2682d362449097156267a2  numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
33a5a12a45bb82d9997e2c0b12adae97507ad7c347546190a18ff14c28bbca12  numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
54dfc8681c1906d239e95ab1508d0a533c4a9505e52ee2d71a5472b04437ef97  numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e017a8a251ff4d18d71f139e28bdc7c31edba7a507f72b1414ed902cbe48c74d  numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl
581f87f9e9e9db2cba2141400e160e9dd644ee248788d6f90636eeb8fd9260a6  numpy-2.3.0.tar.gz

v2.2.6

Compare Source

NumPy 2.2.6 Release Notes

NumPy 2.2.6 is a patch release that fixes bugs found after the 2.2.5
release. It is a mix of typing fixes/improvements as well as the normal
bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Ilhan Polat
  • Joren Hammudoglu
  • Marco Gorelli +
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Sayed Adel

Pull requests merged

A total of 11 pull requests were merged for this release.

  • #​28778: MAINT: Prepare 2.2.x for further development
  • #​28851: BLD: Update vendor-meson to fix module_feature conflicts arguments...
  • #​28852: BUG: fix heap buffer overflow in np.strings.find
  • #​28853: TYP: fix NDArray[floating] + float return type
  • #​28864: BUG: fix stringdtype singleton thread safety
  • #​28865: MAINT: use OpenBLAS 0.3.29
  • #​28889: MAINT: from_dlpack thread safety fixes
  • #​28913: TYP: Fix non-existent CanIndex annotation in ndarray.setfield
  • #​28915: MAINT: Avoid dereferencing/strict aliasing warnings
  • #​28916: BUG: Fix missing check for PyErr_Occurred() in _pyarray_correlate.
  • #​28966: TYP: reject complex scalar types in ndarray.__ifloordiv__

Checksums

MD5
259343f056061f6eadb2f4b8999d06d4  numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl
16fa85488e149489ce7ee044d7b0d307  numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl
f01b7aea9d2b76b1eeb49766e615d689  numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl
f2ddc2b22517f6e31caa1372b12c2499  numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl
52190e22869884f0870eb3df7a283ca9  numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8f382b9ca6770db600edd5ea2447a925  numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e604aae2ef6e01fb92ecc39aca0424d9  numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl
3e5626cf6d8bec95d430a7362e71691c  numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl
8f4f1982837618ed7636ebd432234aeb  numpy-2.2.6-cp310-cp310-win32.whl
1cfd2ac5609b4800512f0ce304e19acc  numpy-2.2.6-cp310-cp310-win_amd64.whl
116203803ceeaa911dd64810b0305b4c  numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl
0427961f3a70ed92b1c4d2c5516c5803  numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl
feb8104ed864d51c68984ff93f7255b5  numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl
f640cd91637f1d474947ecdb18d17ee8  numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl
2f87d921a50fe50d04bb62125f8638dd  numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f986c33f49d5940d6d005ff7039e420  numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0f7073c78e0aede7179c537f64856db7  numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl
7402bbedcc0b59bd6cef1c483b77dac0  numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl
93c920d40abbc10d5d056b8bfbcdad74  numpy-2.2.6-cp311-cp311-win32.whl
9162cb90bff0e4ba322f1e61da9f2fba  numpy-2.2.6-cp311-cp311-win_amd64.whl
75e9fa94b0a6ef568b532f6e0773a6a7  numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl
79d8f89e82971bb2a2f61d0ef8f1a677  numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl
fb553e49196bce93af4b0d7e1e8fad1e  numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl
01a338bc3a5349b5b7db4335fe879810  numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl
f37533a7ae4aa95da824b1df2786ac55  numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2f9ac35f955d9217b6841568ce13d636  numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df530a075c04dbef9abcac95d027c8bc  numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl
4edf8f80feec739de3e08fffe97195a3  numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl
3e2664254d9a7bb5c66df2b108aaec2f  numpy-2.2.6-cp312-cp312-win32.whl
ae2e39f1dba9b91d35edcd8736041df8  numpy-2.2.6-cp312-cp312-win_amd64.whl
2faa32e27b81105db53fb2fc25a54e0d  numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl
0d05b1bb5af5059c8775a4f10fa0ec3d  numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl
bb404027de8df58312964e26528ef591  numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl
1340a90e0f62a31691e475214f773196  numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl
954981f2846e6735798fb33c1e6fba76  numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4e4eccd129b31fbef3ced7fb338e862e  numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c704c1c56c777bc0fc0d54bbcf9f2ddb  numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl
fb459919a3433235312673bd5797ab8b  numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl
9998e8ae155872c375ce6c020654176b  numpy-2.2.6-cp313-cp313-win32.whl
03df8a78963b318b4dfede10b213dce4  numpy-2.2.6-cp313-cp313-win_amd64.whl
d1982e582eae2fb076942c0bbedcefe4  numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl
cbc7a48b9ca730a8d40927666651430a  numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl
cd1d2271c05ccc502b78827b88ff7670  numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl
c2b4fb7464e42af240ad51c8be5fb1ba  numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl
6a96c540b8df291a128bb50dfdad0ba4  numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
113d466026e770badd1061a6e1a8ca92  numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1fce5d26d8d6d021954f717b4bad483c  numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl
d980d6c4b486ad09dbf62ac5cf1b0b2a  numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl
21571229d4376f3c0458d8eb1be3ba52  numpy-2.2.6-cp313-cp313t-win32.whl
4accc0387feec817565aeaba93c79173  numpy-2.2.6-cp313-cp313t-win_amd64.whl
774589ee5f842137322ff19b56a35270  numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
f934cef42ac65a2094dd5280aa6bf9a2  numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
0e53fbb4195726c62b8f237a4bf545e9  numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3c96c89609022ecd27d44b12c2349a06  numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl
63d66dc1db9d603df0a84c870e703cfc  numpy-2.2.6.tar.gz
SHA256
b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb  numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl
8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90  numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl
37e990a01ae6ec7fe7fa1c26c55ecb672dd98b19c3d0e1d1f326fa13cb38d163  numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl
5a6429d4be8ca66d889b7cf70f536a397dc45ba6faeb5f8c5427935d9592e9cf  numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl
efd28d4e9cd7d7a8d39074a4d44c63eda73401580c5c76acda2ce969e0a38e83  numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915  numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
74d4531beb257d2c3f4b261bfb0fc09e0f9ebb8842d82a7b4209415896adc680  numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl
8fc377d995680230e83241d8a96def29f204b5782f371c532579b4f20607a289  numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl
b093dd74e50a8cba3e873868d9e93a85b78e0daf2e98c6797566ad8044e8363d  numpy-2.2.6-cp310-cp310-win32.whl
f0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3  numpy-2.2.6-cp310-cp310-win_amd64.whl
f9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae  numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl
c820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a  numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl
3d70692235e759f260c3d837193090014aebdf026dfd167834bcba43e30c2a42  numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl
481b49095335f8eed42e39e8041327c05b0f6f4780488f61286ed3c01368d491  numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl
b64d8d4d17135e00c8e346e0a738deb17e754230d7e0810ac5012750bbd85a5a  numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf  numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bd48227a919f1bafbdda0583705e547892342c26fb127219d60a5c36882609d1  numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl
9551a499bf125c1d4f9e250377c1ee2eddd02e01eac6644c080162c0c51778ab  numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl
0678000bb9ac1475cd454c6b8c799206af8107e310843532b04d49649c717a47  numpy-2.2.6-cp311-cp311-win32.whl
e8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303  numpy-2.2.6-cp311-cp311-win_amd64.whl
41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff  numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl
de749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c  numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl
894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3  numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl
71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282  numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl
f2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87  numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249  numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
37c0ca431f82cd5fa716eca9506aefcabc247fb27ba69c5062a6d3ade8cf8f49  numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl
fe27749d33bb772c80dcd84ae7e8df2adc920ae8297400dabec45f0dedb3f6de  numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl
4eeaae00d789f66c7a25ac5f34b71a7035bb474e679f410e5e1a94deb24cf2d4  numpy-2.2.6-cp312-cp312-win32.whl
c1f9540be57940698ed329904db803cf7a402f3fc200bfe599334c9bd84a40b2  numpy-2.2.6-cp312-cp312-win_amd64.whl
0811bb762109d9708cca4d0b13c4f67146e3c3b7cf8d34018c722adb2d957c84  numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl
287cc3162b6f01463ccd86be154f284d0893d2b3ed7292439ea97eafa8170e0b  numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl
f1372f041402e37e5e633e586f62aa53de2eac8d98cbfb822806ce4bbefcb74d  numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl
55a4d33fa519660d69614a9fad433be87e5252f4b03850642f88993f7b2ca566  numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl
f92729c95468a2f4f15e9bb94c432a9229d0d50de67304399627a943201baa2f  numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1bc23a79bfabc5d056d106f9befb8d50c31ced2fbc70eedb8155aec74a45798f  numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e3143e4451880bed956e706a3220b4e5cf6172ef05fcc397f6f36a550b1dd868  numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl
b4f13750ce79751586ae2eb824ba7e1e8dba64784086c98cdbbcc6a42112ce0d  numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl
5beb72339d9d4fa36522fc63802f469b13cdbe4fdab4a288f0c441b74272ebfd  numpy-2.2.6-cp313-cp313-win32.whl
b0544343a702fa80c95ad5d3d608ea3599dd54d4632df855e4c8d24eb6ecfa1c  numpy-2.2.6-cp313-cp313-win_amd64.whl
0bca768cd85ae743b2affdc762d617eddf3bcf8724435498a1e80132d04879e6  numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl
fc0c5673685c508a142ca65209b4e79ed6740a4ed6b2267dbba90f34b0b3cfda  numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl
5bd4fc3ac8926b3819797a7c0e2631eb889b4118a9898c84f585a54d475b7e40  numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl
fee4236c876c4e8369388054d02d0e9bb84821feb1a64dd59e137e6511a551f8  numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl
e1dda9c7e08dc141e0247a5b8f49cf05984955246a327d4c48bda16821947b2f  numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f447e6acb680fd307f40d3da4852208af94afdfab89cf850986c3ca00562f4fa  numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
389d771b1623ec92636b0786bc4ae56abafad4a4c513d36a55dce14bd9ce8571  numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl
8e9ace4a37db23421249ed236fdcdd457d671e25146786dfc96835cd951aa7c1  numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl
038613e9fb8c72b0a41f025a7e4c3f0b7a1b5d768ece4796b674c8f3fe13efff  numpy-2.2.6-cp313-cp313t-win32.whl
6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06  numpy-2.2.6-cp313-cp313t-win_amd64.whl
0b605b275d7bd0c640cad4e5d30fa701a8d59302e127e5f79138ad62762c3e3d  numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
7befc596a7dc9da8a337f79802ee8adb30a552a94f792b9c9d18c840055907db  numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
ce47521a4754c8f4593837384bd3424880629f718d87c5d44f8ed763edd63543  numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d042d24c90c41b54fd506da306759e06e568864df8ec17ccc17e9e884634fd00  numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl
e29554e2bef54a90aa5cc07da6ce955accb83f21ab5de01a62c8478897b264fd  numpy-2.2.6.tar.gz

v2.2.5

Compare Source

NumPy 2.2.5 Release Notes

NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4
release. It has a large number of typing fixes/improvements as well as
the normal bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Baskar Gopinath +
  • Nathan Goldbaum
  • Nicholas Christensen +
  • Sayed Adel
  • karl +

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​28545: MAINT: Prepare 2.2.x for further development
  • #​28582: BUG: Fix return type of NpyIter_GetIterNext in Cython declarations
  • #​28583: BUG: avoid deadlocks with C++ shared mutex in dispatch cache
  • #​28585: TYP: fix typing errors in _core.strings
  • #​28631: MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines
  • #​28632: BUG: Set writeable flag for writeable dlpacks.
  • #​28633: BUG: Fix crackfortran parsing error when a division occurs within...
  • #​28650: TYP: fix ndarray.tolist() and .item() for unknown dtype
  • #​28654: BUG: fix deepcopying StringDType arrays (#​28643)
  • #​28661: TYP: Accept objects that write() to str in savetxt
  • #​28663: CI: Replace QEMU armhf with native (32-bit compatibility mode)
  • #​28682: SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD
  • #​28683: TYP: add missing "b1" literals for dtype[bool]
  • #​28705: TYP: Fix false rejection of NDArray[object_].__abs__()
  • #​28706: TYP: Fix inconsistent NDArray[float64].__[r]truediv__ return...
  • #​28723: TYP: fix string-like ndarray rich comparison operators
  • #​28758: TYP: some [arg]partition fixes
  • #​28772: TYP: fix incorrect random.Generator.integers return type
  • #​28774: TYP: fix count_nonzero signature

Checksums

MD5
3a5d0889d6d7951f44bc6f7a03fa30c6  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
bcf9f4e768b070e17b2635f422a6e27d  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
e82c8fa47a65bb5c2c83295f549dab12  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
a5511a995c0f79a8b9a81f2b50e9f692  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
72bfc1f98238a8e4ba08999e61111e0e  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
146c83a5b8099d8d2607392b2ef7fedf  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ebdc80b54b008a10575e5d7bbb613f5  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
97efde6443da8f9280a5fc2614a087e5  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
c143f352206cec535b41b6b1d34c5898  numpy-2.2.5-cp310-cp310-win32.whl
0b17fbbf584785f675f1c5b24a00ff93  numpy-2.2.5-cp310-cp310-win_amd64.whl
58532622d7eff69a3c71c1ae89dea070  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
0d002c733bb02debe0b15de5ba872d1e  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
ff0c736c60be96506806061ace2251a1  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
4febdec973c4405fd08ef35e0c130de1  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
0bf4e457c612e565420e135458e70fe0  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a43b608ad15ebdc0960611497205d598  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7b4b1afd412149a9af7c25d7346fade8  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
a1e70be013820f92dbfd4796fc4044bb  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
73344e05a6fec0b38183363b4a026252  numpy-2.2.5-cp311-cp311-win32.whl
b7d5fdd23057c58d15c84eef6bfedb55  numpy-2.2.5-cp311-cp311-win_amd64.whl
801b11bb546aac2d92d7b3d5d6c90e86  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
68dc4298cad9405ad30cfb723be4ae48  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
c31c872e0fa8df5ed7f91882621a925f  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
179dfa545c32c44b77cf8db3b973785f  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
4562513ff2f1e3f31d66b8e435000141  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c80a2d8aab1a4d6a66f3fca2f0744744  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e363e0d8c116522d55b0ddd0cbf2de67  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
d31d443270c76b7238ece2f87b048d21  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
bf469fe048fa4ed75a5d8725297e283a  numpy-2.2.5-cp312-cp312-win32.whl
069b832aa15b6a815497135e7fa8cae8  numpy-2.2.5-cp312-cp312-win_amd64.whl
b2cf059c831cbcfdb4044613a1e5bc8d  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
70bcb93e55ff0f6602636602e0834607  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
00c4938d67fd5b658ad92ac26fbe9cab  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
0ca38aa51874b9252a2c9d85f81dcd07  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
6062cf707b8bc07a1600af0991a0a88e  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
62c1cf7de0327546f3a1e3852de640d3  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab3ad3390396552f76160139cc528784  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
d258ba55c9a3936fa0c113cac8bbc0cc  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
59bb7e1acb81fc4a02c3b791e110f01e  numpy-2.2.5-cp313-cp313-win32.whl
2e5728a9e5c6405d3a22138e4dd7019f  numpy-2.2.5-cp313-cp313-win_amd64.whl
d315521ec7275d0341787f2450e57e55  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
17018c7c259ae81cf2ca4f58523d7d1c  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
ef6fd6a9c6a07db004a272b82f0ea710  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
07b2baf70b84b44ca6924794d9c7e431  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
a2fb1ed562d2b6da091d980c7486d113  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
22fa9137283f463436d7b20a220071cd  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b0ae924e4834155eb5ac159ae611c292  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c7a8351484f2df9a499c68f1ac73121c  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1da753e4127a0bdcdfbfa6639568057e  numpy-2.2.5-cp313-cp313t-win32.whl
a8c869efc0888f214239e5c4f0e6acfb  numpy-2.2.5-cp313-cp313t-win_amd64.whl
7255b93f38e7d54a59d6798182f24c6a  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
6743ce025de6c245b03ca8511b306503  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
5abbeec4ff2add1c46f8779f730c73fa  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e2e01f02d05e111ef2b104d1b3afad1  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
df2e46b468f9fdf06b13b04eca9a723f  numpy-2.2.5.tar.gz
SHA256
1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88  numpy-2.2.5-cp310-cp310-win32.whl
e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7  numpy-2.2.5-cp310-cp310-win_amd64.whl
c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175  numpy-2.2.5-cp311-cp311-win32.whl
b13f04968b46ad705f7c8a80122a42ae8f620536ea38cf4bdd374302926424dd  numpy-2.2.5-cp311-cp311-win_amd64.whl
ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
47834cde750d3c9f4e52c6ca28a7361859fcaf52695c7dc3cc1a720b8922683e  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
2c1a1c6ccce4022383583a6ded7bbcda22fc635eb4eb1e0a053336425ed36dfa  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
9d75f338f5f79ee23548b03d801d28a505198297534f62416391857ea0479571  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3a801fef99668f309b88640e28d261991bfad9617c27beda4a3aec4f217ea073  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
abe38cd8381245a7f49967a6010e77dbf3680bd3627c0fe4362dd693b404c7f8  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
5a0ac90e46fdb5649ab6369d1ab6104bfe5854ab19b645bf5cda0127a13034ae  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
0cd48122a6b7eab8f06404805b1bd5856200e3ed6f8a1b9a194f9d9054631beb  numpy-2.2.5-cp312-cp312-win32.whl
ced69262a8278547e63409b2653b372bf4baff0870c57efa76c5703fd6543282  numpy-2.2.5-cp312-cp312-win_amd64.whl
059b51b658f4414fff78c6d7b1b4e18283ab5fa56d270ff212d5ba0c561846f4  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
47f9ed103af0bc63182609044b0490747e03bd20a67e391192dde119bf43d52f  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
261a1ef047751bb02f29dfe337230b5882b54521ca121fc7f62668133cb119c9  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
4520caa3807c1ceb005d125a75e715567806fed67e315cea619d5ec6e75a4191  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
3d14b17b9be5f9c9301f43d2e2a4886a33b53f4e6fdf9ca2f4cc60aeeee76372  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ba321813a00e508d5421104464510cc962a6f791aa2fca1c97b1e65027da80d  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a4cbdef3ddf777423060c6f81b5694bad2dc9675f110c4b2a60dc0181543fac7  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
54088a5a147ab71a8e7fdfd8c3601972751ded0739c6b696ad9cb0343e21ab73  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
c8b82a55ef86a2d8e81b63da85e55f5537d2157165be1cb2ce7cfa57b6aef38b  numpy-2.2.5-cp313-cp313-win32.whl
d8882a829fd779f0f43998e931c466802a77ca1ee0fe25a3abe50278616b1471  numpy-2.2.5-cp313-cp313-win_amd64.whl
e8b025c351b9f0e8b5436cf28a07fa4ac0204d67b38f01433ac7f9b870fa38c6  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
8dfa94b6a4374e7851bbb6f35e6ded2120b752b063e6acdd3157e4d2bb922eba  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
97c8425d4e26437e65e1d189d22dff4a079b747ff9c2788057bfb8114ce1e133  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
352d330048c055ea6db701130abc48a21bec690a8d38f8284e00fab256dc1376  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
8b4c0773b6ada798f51f0f8e30c054d32304ccc6e9c5d93d46cb26f3d385ab19  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
55f09e00d4dccd76b179c0f18a44f041e5332fd0e022886ba1c0bbf3ea4a18d0  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c26843fd58f65da9491165072da2cccc372530681de481ef670dcc8e27cfb066  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1a161c2c79ab30fe4501d5a2bbfe8b162490757cf90b7f05be8b80bc02f7bb8e  numpy-2.2.5-cp313-cp313t-win32.whl
d403c84991b5ad291d3809bace5e85f4bbf44a04bdc9a88ed2bb1807b3360bb8  numpy-2.2.5-cp313-cp313t-win_amd64.whl
b4ea7e1cff6784e58fe281ce7e7f05036b3e1c89c6f922a6bfbc0a7e8768adbe  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
d7543263084a85fbc09c704b515395398d31d6395518446237eac219eab9e55e  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d2e3bdadaba0e040d1e7ab39db73e0afe2c74ae277f5614dad53eadbecbbb169  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
a9c0d994680cd991b1cb772e8b297340085466a6fe964bc9d4e80f5e2f43c291  numpy-2.2.5.tar.gz

v2.2.4

Compare Source

NumPy 2.2.4 Release Notes

NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3
release. There are a large number of typing improvements, the rest of
the changes are the usual mix of bugfixes and platform maintenace.

This release supports Python versions 3.10-3.13.

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhishek Kumar
  • Andrej Zhilenkov
  • Andrew Nelson
  • Charles Harris
  • Giovanni Del Monte
  • Guan Ming(Wesley) Chiu +
  • Jonathan Albrecht +
  • Joren Hammudoglu
  • Mark Harfouche
  • Matthieu Darbois
  • Nathan Goldbaum
  • Pieter Eendebak
  • Sebastian Berg
  • Tyler Reddy
  • lvllvl +

Pull requests merged

A total of 17 pull requests were merged for this release.

Checksums

MD5
935928cbd2de140da097f6d5f4a01d72  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
bf7fd01bb177885e920173b610c195d9  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
826e52cd898567a0c446113ab7a7b362  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
9982a91d7327aea541c24aff94d3e462  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
5bdf5b63f4ee01fa808d13043b2a2275  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
677b3031105e24eaee2e0e57d7c2a306  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d857867787fe1eb236670e7fdb25f414  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
a5aff3a7eb2923878e67fbe1cd04a9e9  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
e00bd3ac85d8f34b46b7f97a8278aeb3  numpy-2.2.4-cp310-cp310-win32.whl
e5cb2a5d14bccee316bb73173be125ec  numpy-2.2.4-cp310-cp310-win_amd64.whl
494f60d8e1c3500413bd093bb3f486ea  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
a886a9f3e80a60ce6ba95b431578bbca  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
889f3b507bab9272d9b549780840a642  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
059788668d2c4e9aace4858e77c099ed  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
db9ae978afb76a4bf79df0657a66aaeb  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e36963a4c177157dc7b0775c309fa5a8  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3603e683878b74f38e5617f04ff6a369  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
afbc410fb9b42b19f4f7c81c21d6777f  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
33ff8081378188894097942f80c33e26  numpy-2.2.4-cp311-cp311-win32.whl
5b11fe8d26318d85e0bc577a654f6643  numpy-2.2.4-cp311-cp311-win_amd64.whl
91121787f396d3e98210de8b617e5d48  numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
c524d1020b4652aacf4477d1628fa1ba  numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
eb08f551bdd6772155bb39ac0da47479  numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
7cb37fc9145d0ebbea5666b4f9ed1027  numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c4452a5dc557c291904b5c51a4148237  numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bd23a12ead870759f264160ab38b2c9d  numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07b44109381985b48d1eef80feebc5ad  numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
95f1a27d33106fa9f40ee0714681c840  numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
507e550a55b19dedf267b58a487ba0bc  numpy-2.2.4-cp312-cp312-win32.whl
be21ccbf8931e92ba1fdb2dc1250bf2a  numpy-2.2.4-cp312-cp312-win_amd64.whl
e94003c2b65d81b00203711c5c42fb8e  numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
cf781fd5412ffd826e0436883452cc17  numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
92c9a30386a64f2deddad1db742bd296  numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
7fd16554fa0a15b7f99b1fabf1c4592c  numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
9293b0575a902b2d55c35567dee7679e  numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9970699bd95e8a64a562b1e6328b83d0  numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e8597c611a919a8e88229d6889c1f86e  numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
329288501f012606605bdbed368e58e9  numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
04bf8d0f6a9e279ab01df4ed0b4aeee1  numpy-2.2.4-cp313-cp313-win32.whl
66801fe84a436b7ed3be6e0082b86917  numpy-2.2.4-cp313-cp313-win_amd64.whl
3e2f31e01b45cd16a87b794477de3714  numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
7504018213a3a8fea7173e2c1d0fcfd1  numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
e299021397c3cdb941b7ffe77cf0fefe  numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
1cc2731a246079bcab361179f38e7ccb  numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
e6eccf936d25c9eda9df1a4d50ae2fdc  numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ba825efd05cca6d56c3dca9f7f1f88e7  numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
369eebec47c9c27cb4841a13e9522167  numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
554dbfa52988d01f715cbe8d4da4b409  numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
811d25a008c68086c9382487e9a4127a  numpy-2.2.4-cp313-cp313t-win32.whl
893fd2fdd42f386e300bee885bbb7778  numpy-2.2.4-cp313-cp313t-win_amd64.whl
65e284546c5ee575eca0a3726c0a1d98  numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e4e73511eac8f1a10c6abbd6fa2fa0aa  numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
a884ed5263b91fa87b5e3d14caf955a5  numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7330087a6ad1527ae20a495e2fb3b357  numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
56232f4a69b03dd7a87a55fffc5f2ebc  numpy-2.2.4.tar.gz
SHA256
8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a  numpy-2.2.4-cp310-cp310-win32.whl
0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542  numpy-2.2.4-cp310-cp310-win_amd64.whl
e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09  numpy-2.2.4-cp311-cp311-win32.whl
f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91  numpy-2.2.4-cp311-cp311-win_amd64.whl
a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4  numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854  numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24  numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee  numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba  numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592  numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb  numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f  numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00  numpy-2.2.4-cp312-cp312-win32.whl
2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146  numpy-2.2.4-cp312-cp312-win_amd64.whl
1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7  numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0  numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392  numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc  numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298  numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7  numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6  numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd  numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c  numpy-2.2.4-cp313-cp313-win32.whl
207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3  numpy-2.2.4-cp313-cp313-win_amd64.whl
8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8  numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39  numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd  numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0  numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960  numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8  numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc  numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff  numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286  numpy-2.2.4-cp313-cp313t-win32.whl
188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d  numpy-2.2.4-cp313-cp313t-win_amd64.whl
7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8  numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c  numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d  numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d  numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f  numpy-2.2.4.tar.gz

v2.2.3

Compare Source

NumPy 2.2.3 Release Notes

NumPy 2.2.3 is a patch release that fixes bugs found after the 2.2.2
release. The majority of the changes are typing improvements and fixes
for free threaded Python. Both of those areas are still under
development, so if you discover new problems, please report them.

This release supports Python versions 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • !amotzop
  • Charles Harris
  • Chris Sidebottom
  • Joren Hammudoglu
  • Matthew Brett
  • Nathan Goldbaum
  • Raghuveer Devulapalli
  • Sebastian Berg
  • Yakov Danishevsky +

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #​28185: MAINT: Prepare 2.2.x for further development
  • #​28201: BUG: fix data race in a more minimal way on stable branch
  • #​28208: BUG: Fix from_float_positional errors for huge pads
  • #​28209: BUG: fix data race in np.repeat
  • #​28212: MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should...
  • #​28224: MAINT: update highway to latest
  • #​28236: BUG: Add cpp atomic support (#​28234)
  • #​28237: BLD: Compile fix for clang-cl on WoA
  • #​28243: TYP: Avoid upcasting float64 in the set-ops
  • #​28249: BLD: better fix for clang / ARM compiles
  • #​28266: TYP: Fix timedelta64.__divmod__ and timedelta64.__mod__...
  • #​28274: TYP: Fixed missing typing information of set_printoptions
  • #​28278: BUG: backport resource cleanup bugfix from gh-28273
  • #​28282: BUG: fix incorrect bytes to stringdtype coercion
  • #​28283: TYP: Fix scalar constructors
  • #​28284: TYP: stub numpy.matlib
  • #​28285: TYP: stub the missing numpy.testing modules
  • #​28286: CI: Fix the github label for TYP: PR's and issues
  • #​28305: TYP: Backport typing updates from main
  • #​28321: BUG: fix race initializing legacy dtype casts
  • #​28324: CI: update test_moderately_small_alpha

Checksums

MD5
9cd8b5e358f89016f403a6c1a27e7e87  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
2818f5a9efcfc3bb6bf657137df26046  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
6d65c6a336cfb69fe4ddd756cad73d55  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
7f4cf33c634b33f633d4bf47f560a86d  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
3c04024badd42bfcc68c14f106efa93f  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
07658df1de0e1d3721de0aacff4313cd  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e753fc4b7c879b29442ee9bab25eddd  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
d1811f1988d88b00825bc6e943d8e22d  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
b5fe91363c16001ea30cbd5befbb0555  numpy-2.2.3-cp310-cp310-win32.whl
44dfe1df1640e4fe762bedad57cd7165  numpy-2.2.3-cp310-cp310-win_amd64.whl
6156418f596620b00a3c221baef02476  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
97b925bac245aad1297d22ad3cfaa74c  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
3f05819fcb71df1d3093e5d1c041a4e9  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
f6763893ba9a5739fefa0929fd152db2  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
e93cf6ed4e1a3f9a8009ee7f2fcb0da8  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
851dcbcbe90212c385dcdac1614cca83  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9b27cf1d6319f70370f4b0af10c03f5c  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
28d20c95ff23d27ae639b4960df777ec  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
559fefe30c0043a088adeca90231b382  numpy-2.2.3-cp311-cp311-win32.whl
5e32a1cc3dcfe729f675784a53e4d553  numpy-2.2.3-cp311-cp311-win_amd64.whl
12134dcf62b2bca2eeebb7bbc45c2a71  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
c72318236531d3ca61d229eaf96f7d04  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
1b807acc844c2ba5be7bc7586d4a3a6b  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
810d4908371bb2f08b0c7b16d3f05970  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
bb918cedd0931cb68af9e77096dedf54  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
92c6c6c5b22b207425b329f061bd18fa  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
10d48fb9d86280db1afe7224b15a51af  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
a73da0434a971b21d8a9c0596015d629  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
c5f1e734c7d872e2f9af71d32e62d59c  numpy-2.2.3-cp312-cp312-win32.whl
884c1a89844f539ab15b7016a43d231c  numpy-2.2.3-cp312-cp312-win_amd64.whl
3a2de7f886cb756cf8d0375a36721926  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
c1fe5b6a9015c2877647419caa009be0  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
bb3f3a69219bbcdb719bbe38e4e69f79  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
8158c2e980a1cbfb4d98ff3a273bb2e9  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
4d3d9b0c14db955e4b1aa1a1971d2def  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6575308269513900c94803258b89ac83  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
945b91c2093fed2a1f34597fc66e5a35  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
c5867508607f75ed23426315a7ad86d7  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
5a1497c262d9aa52ce6859a12a54ebbc  numpy-2.2.3-cp313-cp313-win32.whl
69c98e036d59eb74e4620c7649b5d7fc  numpy-2.2.3-cp313-cp313-win_amd64.whl
2535d7c0f98ad848bcf1f48f7c358e41  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
aea9afa69d510ce905b2b8dbf0e33a11  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
cc5aceacd0a44a67cdd2cf8d5a446ca3  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
32eb2ed1e734ea26c90f75b1f5616564  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f1d85f322c3e85ef748c3e5594b94226  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f24ce01ad5c352c76614a12fa5e2319  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62841d4b49c5a0cef2c2ba26a16f6959  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
d7b512f83999d05c47e55b931f2dcdfe  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
1dca2f20e0accc1741e5fb233ecf7dff  numpy-2.2.3-cp313-cp313t-win32.whl
347b71f0db5b49a25ef1ed677e47999b  numpy-2.2.3-cp313-cp313t-win_amd64.whl
3615d13c8c14c323aeda1c07d5a7fd55  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
f7d2ba950c5aa11c100bb6bf202d5799  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
b4336174c843c4943084e17945cd1165  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d856a89e028c393f8125739c56591e0  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
c6ee254bcdf1e2fdb13d87e0ee4166ba  numpy-2.2.3.tar.gz
SHA256
cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094  numpy-2.2.3-cp310-cp310-win32.whl
596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb  numpy-2.2.3-cp310-cp310-win_amd64.whl
16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5  numpy-2.2.3-cp311-cp311-win32.whl
9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f  numpy-2.2.3-cp311-cp311-win_amd64.whl
12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe  numpy-2.2.3-cp312-cp312-win32.whl
83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d  numpy-2.2.3-cp312-cp312-win_amd64.whl
7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693  numpy-2.2.3-cp313-cp313-win32.whl
5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b  numpy-2.2.3-cp313-cp313-win_amd64.whl
435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef  numpy-2.2.3-cp313-cp313t-win32.whl
aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082  numpy-2.2.3-cp313-cp313t-win_amd64.whl
3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020  numpy-2.2.3.tar.gz

v2.2.2

Compare Source

NumPy 2.2.2 Release Notes

NumPy 2.2.2 is a patch release that fixes bugs found after the 2.2.1
release. The number of typing fixes/updates is notable. This release
supports Python versions 3.10-3.13.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Alicia Boya García +
  • Charles Harris
  • Joren Hammudoglu
  • Kai Germaschewski +
  • Nathan Goldbaum
  • PTUsumit +
  • Rohit Goswami
  • Sebastian Berg

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #​28050: MAINT: Prepare 2.2.x for further development
  • #​28055: TYP: fix void arrays not accepting str keys in __setitem__
  • #​28066: TYP: fix unnecessarily broad integer binop return types (#​28065)
  • #​28112: TYP: Better ndarray binop return types for float64 &...
  • #​28113: TYP: Return the correct bool from issubdtype
  • #​28114: TYP: Always accept date[time] in the datetime64 constructor
  • #​28120: BUG: Fix auxdata initialization in ufunc slow path
  • #​28131: BUG: move reduction initialization to ufunc initialization
  • #​28132: TYP: Fix interp to accept and return scalars
  • #​28137: BUG: call PyType_Ready in f2py to avoid data races
  • #​28145: BUG: remove unnecessary call to PyArray_UpdateFlags
  • #​28160: BUG: Avoid data race in PyArray_CheckFromAny_int
  • #​28175: BUG: Fix f2py directives and --lower casing
  • #​28176: TYP: Fix overlapping overloads issue in 2->1 ufuncs
  • #​28177: TYP: preserve shape-type in ndarray.astype()
  • #​28178: TYP: Fix missing and spurious top-level exports

Checksums

MD5
749cb2adf8043551aae22bbf0ed3130a  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
bc79fa2e44316b7ce9bacb48a993ed91  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
c6b2caa2bbb645b5950dccb77efb1dbb  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
8c410efac169af880cacbbac8a731658  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
21d165669635a9b680d03b0b4e7f5b98  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a34ef5e7c967136fdc59c822e99f87d6  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a81749effc5160ff8dde7eb2ebe868c4  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
546612d82fae082697879aaf2b985b1b  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
d874e626f58175ad603cb68fda2a4e28  numpy-2.2.2-cp310-cp310-win32.whl
20564a5caeb621061267f9d80c1e7ed0  numpy-2.2.2-cp310-cp310-win_amd64.whl
ef5336ddae73feef891844a205f89b15  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
7a0c8804cb6ebca82b1cf3063b410687  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
1682639d0420a532f8894c4a8685b23d  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
d33d53efc5744b577cb8a6ac9971cfdb  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
c85b92e2ed7ef0eaeb15909ad73aea22  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
efa1a587f607a37336c477bed977ea64  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e0effe9902e262704a115c6f7095daf7  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
425e0cebeb1c2c91bba42ae195836268  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
57121319a2fbb76eed4b268282ed668e  numpy-2.2.2-cp311-cp311-win32.whl
fdb54e7345ff657d208fbb52469a5861  numpy-2.2.2-cp311-cp311-win_amd64.whl
bdf299e0abc45b5c5113a1cc5505636a  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
30c25784c07965592cf88104b6c02508  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
65e630a0de5403c41a0083198bc14442  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
6d9f50717e7b40f1ebdf139f83cc7504  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
6b092a9280ada70482d44f538752fc0b  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9c273da8438391eab30f6c1c4898be5d  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d619047dcaf041b806a7b59ff0a798d5  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
fa5d0d979104456d7c43a183223c8587  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
3b8689aedff5037cad85b018e2d5e43a  numpy-2.2.2-cp312-cp312-win32.whl
a2340ff05cae7e09f63bfcfd4e75ea87  numpy-2.2.2-cp312-cp312-win_amd64.whl
044e86bd65492af34a59e4109fbeed16  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
7ca0f0e8c8d3d80ec473ec33929c2ae3  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
4b866ad895e007005afe8a29837cf7d6  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
2e6247faabf6d0ac0fafaca0bb405ff8  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
773982551185ae327cdefe416e73acfc  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1c0ecc958a555a8a95c92c1dd7dc2358  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9f662eb58b8f711585550d6fdf8afa4f  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
53471186fc990eb22e82a0512b310438  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
6b4d65349c74dd91853a7cc6b5c5786e  numpy-2.2.2-cp313-cp313-win32.whl
33dc5bab2d3f752ef00f81021d68cb5a  numpy-2.2.2-cp313-cp313-win_amd64.whl
0acc5069c5ab4fe3ea7c35956636c462  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
01e3f727594a12eee6d0677113525b96  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
7b1ddabcb187b18caa52055bb2b2dc67  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
a09f5c138ad8c87b9692eea99f344a98  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
289ec3155aa21c5a161b2d61d2cf3c2d  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6bb3eb03d400ad708942afbfebd07abc  numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62f8ef2a5c9e76b0e43851a7bb9c0379  numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
59b4b77118f958dd07484686e82b1e7a  numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
726b58ec542581c5e46adfd4c5c0fed0  numpy-2.2.2-cp313-cp313t-win32.whl
f2b4eab55a963e8cd4c6c1e573c9a59f  numpy-2.2.2-cp313-cp313t-win_amd64.whl
f6a93eaebee6f9890a4922571141ecb5  numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fb457bbe2d231e836d2230b06d4706ca  numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
df4c07a48a24621167c12704ba5ac0de  numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d1108b9060469eb28bb4a4cffa7b98f  numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
ac108586d3aeab9e2d0134b744763eb9  numpy-2.2.2.tar.gz
SHA256
7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e  numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl
2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e  numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715  numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl
995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a  numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl
b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97  numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957  numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d  numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl
09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd  numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160  numpy-2.2.2-cp310-cp310-win32.whl
64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014  numpy-2.2.2-cp310-cp310-win_amd64.whl
642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189  numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl
6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323  numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac  numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl
451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e  numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl
bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c  numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f  numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826  numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl
d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8  numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50  numpy-2.2.2-cp311-cp311-win32.whl
da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2  numpy-2.2.2-cp311-cp311-win_amd64.whl
ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467  numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a  numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825  numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl
8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37  numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl
2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748  numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0  numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278  numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl
9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba  numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283  numpy-2.2.2-cp312-cp312-win32.whl
5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb  numpy-2.2.2-cp312-cp312-win_amd64.whl
b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc  numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl
d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369  numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl
22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd  numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl
128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be  numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl
250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84  numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff  numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0  numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl
57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de  numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl
4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9  numpy-2.2.2-cp313-cp313-win32.whl
5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369  numpy-2.2.2-cp313-cp313-win_amd64.whl
b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391  numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl
9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39  numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl
41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317  numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl
7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49  numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl
0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2  numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9fad446ad0bc886855ddf5909cbf8cb5d0faa637aaa6277fb4b19ade134ab3c7  numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
149d1113ac15005652e8d0d3f6fd599360e1a708a4f98e43c9c77834a28238cb  numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl
106397dbbb1896f99e044efc90360d098b3335060375c26aa89c0d8a97c5f648  numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl
0eec19f8af947a61e968d5429f0bd92fec46d92b0008d0a6685b40d6adf8a4f4  numpy-2.2.2-cp313-cp313t-win32.whl
97b974d3ba0fb4612b77ed35d7627490e8e3dff56ab41454d9e8b23448940576  numpy-2.2.2-cp313-cp313t-win_amd64.whl
b0531f0b0e07643eb089df4c509d30d72c9ef40defa53e41363eca8a8cc61495  numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e9e82dcb3f2ebbc8cb5ce1102d5f1c5ed236bf8a11730fb45ba82e2841ec21df  numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
e0d4142eb40ca6f94539e4db929410f2a46052a0fe7a2c1c59f6179c39938d2a  numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
356ca982c188acbfa6af0d694284d8cf20e95b1c3d0aefa8929376fea9146f60  numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl
ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f  numpy-2.2.2.tar.gz

v2.2.1

Compare Source

NumPy 2.2.1 Release Notes

NumPy 2.2.1 is a patch release following 2.2.0. It fixes bugs found
after the 2.2.0 release and has several maintenance pins to work around
upstream changes.

There was some breakage in downstream projects following the 2.2.0
release due to updates to NumPy typing. Because of problems due to MyPy
defects, we recommend using basedpyright for type checking, it can be
installed from PyPI. The Pylance extension for Visual Studio Code is
also based on Pyright. Problems that persist when using basedpyright
should be reported as issues on the NumPy github site.

This release supports Python 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Simon Altrogge
  • Thomas A Caswell
  • Warren Weckesser
  • Yang Wang +

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #​27935: MAINT: Prepare 2.2.x for further development
  • #​27950: TEST: cleanups
  • #​27958: BUG: fix use-after-free error in npy_hashtable.cpp (#​27955)
  • #​27959: BLD: add missing include
  • #​27982: BUG:fix compile error libatomic link test to meson.build
  • #​27990: TYP: Fix falsely rejected value types in ndarray.__setitem__
  • #​27991: MAINT: Don't wrap #include <Python.h> with extern "C"
  • #​27993: BUG: Fix segfault in stringdtype lexsort
  • #​28006: MAINT: random: Tweak module code in mtrand.pyx to fix a Cython...
  • #​28007: BUG: Cython API was missing NPY_UINTP.
  • #​28021: CI: pin scipy-doctest to 1.5.1
  • #​28044: TYP: allow None in operand sequence of nditer

Checksums

MD5
d3032be00b974d44aae687fd78a897b4  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
49863a39471cf191402da96512e52cb6  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
31c912e2fa723b877f2d710c26332927  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
95af4f6b620c76f9ccb8c5693c99737d  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
c1b113ad487a3bece6d7a70e0cf70f17  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e93369ddbb637d9d5a820b2bb79588c4  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b3de0a2c345541d2c9a322df360ca497  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
e3e62b93245d9e37cc03ec3cfaf68118  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
004063642d3c3792a3f5ff0241a3fa0f  numpy-2.2.1-cp310-cp310-win32.whl
462b0704ebfd79120edfe6431adc57f4  numpy-2.2.1-cp310-cp310-win_amd64.whl
a739a2dfbceaa1140e564424b2a57540  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
91731d46f4ce4b04db512400f4e76ccb  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
93f50db664a6986c2ebed3ceb588f7cc  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
8cc0d82b938d71f45a67c74e07ddc7fd  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
fc7b253096fc566bbcbadfdf6b034f1b  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b88238965c708578f2c198d1c6e2cf70  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df20d649bb023f98e487b229f01e9708  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
e23d2bfbdb1bd1b2872c9e6e15f64dca  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
cce4ebb9afc1470db243c2ab4cc6639b  numpy-2.2.1-cp311-cp311-win32.whl
c96783ee8ad6ce1efee94821929a12f5  numpy-2.2.1-cp311-cp311-win_amd64.whl
0b2024655573f96a595c7f5072205e84  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
22483d8935f5dc128393ad671fde7d8e  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
61d38533acaa90fb24657f089d177a6c  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
ecd4289c703356f5b4fd7e440bf94ce8  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
a05208461ea09079ae569414d82a606c  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c66f10580fa26d1d17b2bdda96a5fc5  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60a01c86b1fc55e4ba8f2b41f690703b  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
4bcac2b7f8510b0a6582b7d8661257be  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
7c24a6a3b5c5b2c53c6807bf06c595c5  numpy-2.2.1-cp312-cp312-win32.whl
dc9f3c1eaade4da63e5f87e878e5805e  numpy-2.2.1-cp312-cp312-win_amd64.whl
9aacdedcb2cb3d6a45dfb823148e01cf  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
8a2598b081c8af4ea6f6bbccc8965882  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
e58b8db1a97599ed02a630eb86616bb9  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
be6871a4edd2cd92b147421b9290e047  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
6d3f141f3a8ecd04e1a1f7c1f89a8ca2  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eba9d71e631521bd1d9882f8bfbc01d2  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07f7ea0a7f9f6ce0ba5e016dff2a91e8  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
a015f42afa15be8b87fc64120c245f18  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
881b9b20e68b317850ad7b6306ac1c51  numpy-2.2.1-cp313-cp313-win32.whl
35bd751636dcea0ca0534ad9dee8057a  numpy-2.2.1-cp313-cp313-win_amd64.whl
7057313b668a4a26b5386203ebc040d9  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
02031b405d028714126c26ffc5772f0e  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
73eb35111b027d6771d9a91eb21ad7ef  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
01f9a5eb7ec872d9682bb6a174897b35  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
9bc363d2782931efa2648b42ce358a4c  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b6492f49b50e892a7134baf2dba9f88d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a1c458a98cd9c7ad63f9c301398f4d63  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
38d2bf31247d9005c7a0197aa992cf1d  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30e6acf4391728d0a3a5e3494bd4a2c8  numpy-2.2.1-cp313-cp313t-win32.whl
2100b60306e75288799fca60bd00b84f  numpy-2.2.1-cp313-cp313t-win_amd64.whl
f975551321147c307bbdff4889061b47  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
cefbc2de3aa5ef518ce652fdaab00c96  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7e379c1d0a5be8e548e35fa7abe1d2c0  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3cba151351656a83e4c84c942cf490e7  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
57c5757508a50d1daefa4b689e9701cb  numpy-2.2.1.tar.gz
SHA256
5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95  numpy-2.2.1-cp310-cp310-win32.whl
b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf  numpy-2.2.1-cp310-cp310-win_amd64.whl
40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd  numpy-2.2.1-cp311-cp311-win32.whl
360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16  numpy-2.2.1-cp311-cp311-win_amd64.whl
694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2  numpy-2.2.1-cp312-cp312-win32.whl
ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8  numpy-2.2.1-cp312-cp312-win_amd64.whl
f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e  numpy-2.2.1-cp313-cp313-win32.whl
164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60  numpy-2.2.1-cp313-cp313-win_amd64.whl
4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2  numpy-2.2.1-cp313-cp313t-win32.whl
bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268  numpy-2.2.1-cp313-cp313t-win_amd64.whl
7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918  numpy-2.2.1.tar.gz

v2.2.0

Compare Source

NumPy 2.2.0 Release Notes

The NumPy 2.2.0 release is quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

  • New functions matvec and vecmat, see below.
  • Many improved annotations.
  • Improved support for the new StringDType.
  • Improved support for free threaded Python
  • Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

  • _add_newdoc_ufunc is now deprecated. ufunc.__doc__ = newdoc
    should be used instead.

    (gh-27735)

Expired deprecations

  • bool(np.array([])) and other empty arrays will now raise an error.
    Use arr.size > 0 instead to check whether an array has no
    elements.

    (gh-27160)

Compatibility notes

  • numpy.cov now properly transposes single-row (2d
    array) design matrices when rowvar=False. Previously, single-row
    design matrices would return a scalar in this scenario, which is not
    correct, so this is a behavior change and an array of the
    appropriate shape will now be returned.

    (gh-27661)

New Features

  • New functions for matrix-vector and vector-matrix products

    Two new generalized ufuncs were defined:

    • numpy.matvec - matrix-vector product, treating the
      arguments as stacks of matrices and column vectors,
      respectively.
    • numpy.vecmat - vector-matrix product, treating the
      arguments as stacks of column vectors and matrices,
      respectively. For complex vectors, the conjugate is taken.

    These add to the existing numpy.matmul as well as to
    numpy.vecdot, which was added in numpy 2.0.

    Note that numpy.matmul never takes a complex
    conjugate, also not when its left input is a vector, while both
    numpy.vecdot and numpy.vecmat do take
    the conjugate for complex vectors on the left-hand side (which are
    taken to be the ones that are transposed, following the physics
    convention).

    (gh-25675)

  • np.complexfloating[T, T] can now also be written as
    np.complexfloating[T]

    (gh-27420)

  • UFuncs now support __dict__ attribute and allow overriding
    __doc__ (either directly or via ufunc.__dict__["__doc__"]).
    __dict__ can be used to also override other properties, such as
    __module__ or __qualname__.

    (gh-27735)

  • The "nbit" type parameter of np.number and its subtypes now
    defaults to typing.Any. This way, type-checkers will infer
    annotations such as x: np.floating as x: np.floating[Any], even
    in strict mode.

    (gh-27736)

Improvements

  • The datetime64 and timedelta64 hashes now correctly match the
    Pythons builtin datetime and timedelta ones. The hashes now
    evaluated equal even for equal values with different time units.

    (gh-14622)

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

  • Improved support for empty memmap. Previously an empty
    memmap would fail unless a non-zero offset was set.
    Now a zero-size memmap is supported even if
    offset=0. To achieve this, if a memmap is mapped to
    an empty file that file is padded with a single byte.

    (gh-27723)

  • A regression has been fixed which allows F2PY users to expose variables
    to Python in modules with only assignments, and also fixes situations
    where multiple modules are present within a single source file.

    (gh-27695)

Performance improvements and changes

  • Improved multithreaded scaling on the free-threaded build when many
    threads simultaneously call the same ufunc operations.

    (gh-27896)

  • NumPy now uses fast-on-failure attribute lookups for protocols. This
    can greatly reduce overheads of function calls or array creation
    especially with custom Python objects. The largest improvements will
    be seen on Python 3.12 or newer.

    (gh-27119)

  • OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
    benchmarking, there are 5 clusters of performance around these
    kernels: PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX.

  • OpenBLAS on windows is linked without quadmath, simplifying
    licensing

  • Due to a regression in OpenBLAS on windows, the performance
    improvements when using multiple threads for OpenBLAS 0.3.26 were
    reverted.

    (gh-27147)

  • NumPy now indicates hugepages also for large np.zeros allocations
    on linux. Thus should generally improve performance.

    (gh-27808)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

  • The type annotations of numpy.float64 and numpy.complex128 now
    reflect that they are also subtypes of the built-in float and
    complex types, respectively. This update prevents static
    type-checkers from reporting errors in cases such as:

    x: float = numpy.float64(6.28)  # valid
    z: complex = numpy.complex128(-1j)  # valid
    

    (gh-27334)

  • The repr of arrays large enough to be summarized (i.e., where
    elements are replaced with ...) now includes the shape of the
    array, similar to what already was the case for arrays with zero
    size and non-obvious shape. With this change, the shape is always
    given when it cannot be inferred from the values. Note that while
    written as shape=..., this argument cannot actually be passed in
    to the np.array constructor. If you encounter problems, e.g., due
    to failing doctests, you can use the print option legacy=2.1 to
    get the old behaviour.

    (gh-27482)

  • Calling __array_wrap__ directly on NumPy arrays or scalars now
    does the right thing when return_scalar is passed (Added in NumPy
    2). It is further safe now to call the scalar __array_wrap__ on a
    non-scalar result.

    (gh-27807)

  • Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
    1_1 is end of life.

    (gh-27088)

  • The NEP 50 promotion state settings are now removed. They were always
    meant as temporary means for testing. A warning will be given if the
    environment variable is set to anything but NPY_PROMOTION_STATE=weak
    while _set_promotion_state and _get_promotion_state are removed. In
    case code used _no_nep50_warning, a contextlib.nullcontext could be
    used to replace it when not available.

    (gh-27156)

Checksums

MD5
1b58b9e275e80364cd02dafb3f8daf35  numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
7d3773d9b665b2d7cfec0cc0b760e69e  numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
8ef666a462d3765ccfd5288f2fdf8e08  numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
e4f9e3117075ffe53d7993253c774158  numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
fd60e410e5db402a2d0c0cb4dd23281d  numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64c083cdbd91eb8670cd72b619f3a039  numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c3c75c2299f5163770e2e42f0dee5276  numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
f6ab05f787221bbaf8fb4a9778af5467  numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
9b04caec124cadf90005ccdb662aad9f  numpy-2.2.0-cp310-cp310-win32.whl
58934f23b6bc71fb1f984b688c1c6136  numpy-2.2.0-cp310-cp310-win_amd64.whl
769e53438154e53ba490fb4f816c083e  numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
aa8060c013c04133b63780025eef4451  numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
72c10ef28a0ddffe6bf2495954ab82e0  numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
946b2510c86eb48e374e6987582c9b46  numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
3f5203ae901ddd78cb298582eda07627  numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fd14624d40100a5eb0181bf393394448  numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7c86d51d89dbc5a6860d65641ea131ef  numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
895c6588c74019b94fb3c740b9e9a0f5  numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
1468ae1cb59a43991b199cfa6f1e5679  numpy-2.2.0-cp311-cp311-win32.whl
48a3792698a81917320b91a30c0bacf4  numpy-2.2.0-cp311-cp311-win_amd64.whl
db4377351f167d82adc66b16965d11bd  numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
3f3978b5e480ed18d55b1799d9a534ff  numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
584b4063eb66688b607f7e7bdca58011  numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl
dfacf4ee4842d845f5e12f912ebc2055  numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl
2f10d9bc44635078a6222ed50c9fd0f2  numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bb69665b4b68b7af82939132972e8261  numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
92e9b03039ab737e6799dbd9d057fce2  numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
a4198f53e3906394012ab88dffff4077  numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
f9cb2f38ae8272ab5eb4b209c59be45f  numpy-2.2.0-cp312-cp312-win32.whl
6ffe9e1abf69bb8c4ee2e913b1badfde  numpy-2.2.0-cp312-cp312-win_amd64.whl
330838b6e06481341b35f8d4b6b50bbb  numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
4fb63be6d2b92acfba0c2eaedce82e06  numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl
e4086f43f9ce29b5adf939e1b5150f03  numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl
ba74e1f7142954127fb2aef544a6b05e  numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl
83f51806139d5adc70a2e309d0300ad1  numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bf9af9abb1e30521b3491f0748ba6199  numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4d30c57bd7103b36a4bf7a4a9e25e10d  numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
5b12557dde538f99fd87d1682638a212  numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
ee7689d2ecbcbd7c883f69099bd41892  numpy-2.2.0-cp313-cp313-win32.whl
370a2b14681c6dc4af8596f62d96bb20  numpy-2.2.0-cp313-cp313-win_amd64.whl
e6fd32fb42fd89c7659e799d65c19557  numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl
8e9b0579f2e22f38f57399ab18d6e651  numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl
71a7ee75208a633a8c36d4ed5b551c33  numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl
3d76dfe8c2e26dc42b97fdf086ce1fa5  numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl
b70ea00b40fb7d1b5d84868d8a073afb  numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a6bc7090a4e2b1e9deabd0671c691129  numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9789193a075e8d494851fe7955a23af7  numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
8c199d25bd806f737950428232b0dfa5  numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
1f566cfe4880ca30a591a828634da429  numpy-2.2.0-cp313-cp313t-win32.whl
eb9ea9f8fba78e7ae5b1415de1ee5c2c  numpy-2.2.0-cp313-cp313t-win_amd64.whl
9fbe2640c73e4f391019db5af6e854f5  numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fc89986fda7ba19c7c50712f1fc1e342  numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d76c5769a3fdfb9e25b3c1a951bd021f  numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c138d726fee19ec6ba85eaa2ba9a3390  numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl
81a58d5fd26fe983162dc3cea2989b7a  numpy-2.2.0.tar.gz
SHA256
1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa  numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219  numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e  numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9  numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3  numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83  numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a  numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31  numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661  numpy-2.2.0-cp310-cp310-win32.whl
54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4  numpy-2.2.0-cp310-cp310-win_amd64.whl
9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6  numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90  numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608  numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da  numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74  numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e  numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b  numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d  numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410  numpy-2.2.0-cp311-cp311-win32.whl
16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73  numpy-2.2.0-cp311-cp311-win_amd64.whl
cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3  numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e  numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67  numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl
e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e  numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl
57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038  numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03  numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a  numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef  numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1  numpy-2.2.0-cp312-cp312-win32.whl
3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3  numpy-2.2.0-cp312-cp312-win_amd64.whl
f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367  numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae  numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl
1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69  numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl
5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13  numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl
18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671  numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571  numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d  numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742  numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e  numpy-2.2.0-cp313-cp313-win32.whl
a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2  numpy-2.2.0-cp313-cp313-win_amd64.whl
7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95  numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl
f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c  numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl
b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca  numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl
6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d  numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl
e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529  numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3  numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab  numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72  numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066  numpy-2.2.0-cp313-cp313t-win32.whl
d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881  numpy-2.2.0-cp313-cp313t-win_amd64.whl
e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773  numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e  numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7  numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221  numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl
140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0  numpy-2.2.0.tar.gz

v2.1.3

Compare Source

NumPy 2.1.3 Release Notes

NumPy 2.1.3 is a maintenance release that fixes bugs and regressions
discovered after the 2.1.2 release. This release also adds support
for free threaded Python 3.13 on Windows.

The Python versions supported by this release are 3.10-3.13.

Improvements

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhishek Kumar +
  • Austin +
  • Benjamin A. Beasley +
  • Charles Harris
  • Christian Lorentzen
  • Marcel Telka +
  • Matti Picus
  • Michael Davidsaver +
  • Nathan Goldbaum
  • Peter Hawkins
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Sebastian Berg
  • dependabot[bot]
  • kp2pml30 +

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #​27512: MAINT: prepare 2.1.x for further development
  • #​27537: MAINT: Bump actions/cache from 4.0.2 to 4.1.1
  • #​27538: MAINT: Bump pypa/cibuildwheel from 2.21.2 to 2.21.3
  • #​27539: MAINT: MSVC does not support #warning directive
  • #​27543: BUG: Fix user dtype can-cast with python scalar during promotion
  • #​27561: DEV: bump python to 3.12 in environment.yml
  • #​27562: BLD: update vendored Meson to 1.5.2
  • #​27563: BUG: weighted quantile for some zero weights (#​27549)
  • #​27565: MAINT: Use miniforge for macos conda test.
  • #​27566: BUILD: satisfy gcc-13 pendantic errors
  • #​27569: BUG: handle possible error for PyTraceMallocTrack
  • #​27570: BLD: start building Windows free-threaded wheels [wheel build]
  • #​27571: BUILD: vendor tempita from Cython
  • #​27574: BUG: Fix warning "differs in levels of indirection" in npy_atomic.h...
  • #​27592: MAINT: Update Highway to latest
  • #​27593: BUG: Adjust numpy.i for SWIG 4.3 compatibility
  • #​27616: BUG: Fix Linux QEMU CI workflow
  • #​27668: BLD: Do not set __STDC_VERSION__ to zero during build
  • #​27669: ENH: fix wasm32 runtime type error in numpy._core
  • #​27672: BUG: Fix a reference count leak in npy_find_descr_for_scalar.
  • #​27673: BUG: fixes for StringDType/unicode promoters

Checksums

MD5
3f2f22827dd321ae86b5ab4fa888d0db  numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
13da2761d1abe71731a2806537369115  numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
5aef4a78b69cd90d0f6fff8f88817991  numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
12da7f09cd5707634878f85845c9de10  numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
5b999693362815b56855533469aea0ca  numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8c49f457127bfb4f167c91583e5167af  numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f31c0e80b18afc0c04cada401cbe0358  numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
2c0709812e27bcaf74d75ac8ed45614b  numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
a65b28800e78942b9e60e03e96cfd0c0  numpy-2.1.3-cp310-cp310-win32.whl
d8358545732fe4ee1ecf407b06567d81  numpy-2.1.3-cp310-cp310-win_amd64.whl
34942f9a1391532e2c3168043c0021d5  numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
0d69ec06e303b5112788db68a8fdde1b  numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
da1988c8d3a9db5947a2bd51290b8b95  numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl
b5eba73c2abaf5a81535f4b1034fe8d2  numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
63cc090209718aa1d0f0fbd3fd03bc0b  numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
55f14ca7b55554d4a043369ae5f1837f  numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4e58e0645d81ff84c0fb75311d2a97d6  numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
30235088a5f86d1f343bfec458f6292d  numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
c80a03952b2f4950f1eb9d1656413fec  numpy-2.1.3-cp311-cp311-win32.whl
d8c1a5a441b89591af8f09dfa0b2d4d5  numpy-2.1.3-cp311-cp311-win_amd64.whl
2cebcea71e71e8b09a25179b240ee240  numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl
faf5df4bd35ca362795cda193da49591  numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl
573f195910fc3b3e9ac5379816280f89  numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl
900548b2acb82ed0e306943fb68de802  numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl
81cded28bb87c4987b1d975fe768c3a1  numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2b83cb346bca97475fa5e39e704c45f1  numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06d8593cb7a2aae157e028c3d4cb3c96  numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl
eea8b148a6a2fee37b87291043e00bda  numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
d407b7c48457789914f28004f41d6ea2  numpy-2.1.3-cp312-cp312-win32.whl
117574ee1a645e63a6d69e20c8673665  numpy-2.1.3-cp312-cp312-win_amd64.whl
0c9ffd1f1f1e96186f30a578b85da653  numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl
cd430b2caf09d21680616aef5d4a439d  numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl
b431935148221b79bda9490b1d069e3c  numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl
b3ff577c78097b187bd58f20b6e88642  numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl
8186f86f8d94a5505e6dcebe6c056ab7  numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2c5b2381a4a4e3d9865ccb346d44a7ed  numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
85786d12388d60b904c02eb12df55b37  numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl
da68282c0418a22730643906e5dd58a1  numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl
fe47e181a70d3e865e5d6a27e5fa71cd  numpy-2.1.3-cp313-cp313-win32.whl
8b7f290784c95cf620e0ac1af5470f1d  numpy-2.1.3-cp313-cp313-win_amd64.whl
4f0c3f8c81cb6bd43a9f1f7bef7db82d  numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl
133905fd003c9504fc5bb9ce71e4103b  numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl
12fe4f265dbda251309f109cbcd46f07  numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl
b60e418506b969e6df2c0d600bf3c6d4  numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl
c2b7160b748f4c1c483a7954e5024250  numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8097ddb45c8c821085c19d940bcbe6de  numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
209f55dc1ed6da23a5ea3e11ca962308  numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl
06a1792849b601c7bdd38e39bc5cb5f1  numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl
86630bf207e8cbe6933232cb2a47a6c0  numpy-2.1.3-cp313-cp313t-win32.whl
6af9109b82c0acdcf8b0e81dc0e4c517  numpy-2.1.3-cp313-cp313t-win_amd64.whl
c7e821e086346afc0078acb237f30431  numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
5b938b2da78b1c84044df8cdb2e8e63a  numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
ef251f3b6aa022b1c2fac14889d6d9d3  numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
356c7bb6067ae0dccc4a54efc1879e74  numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl
11096358375945114577a0c82b2c6038  numpy-2.1.3.tar.gz
SHA256
c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff  numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl
b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5  numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl
825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1  numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl
6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd  numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl
e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3  numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098  numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c  numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4  numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl
72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23  numpy-2.1.3-cp310-cp310-win32.whl
ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0  numpy-2.1.3-cp310-cp310-win_amd64.whl
4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d  numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl
c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41  numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl
576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9  numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl
973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09  numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl
762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a  numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b  numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee  numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0  numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl
d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9  numpy-2.1.3-cp311-cp311-win32.whl
d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2  numpy-2.1.3-cp311-cp311-win_amd64.whl
f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e  numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl
13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958  numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl
a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8  numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl
0fa14563cc46422e99daef53d725d0c326e99e468a9320a240affffe87852564  numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl
8637dcd2caa676e475503d1f8fdb327bc495554e10838019651b76d17b98e512  numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2312b2aa89e1f43ecea6da6ea9a810d06aae08321609d8dc0d0eda6d946a541b  numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a38c19106902bb19351b83802531fea19dee18e5b37b36454f27f11ff956f7fc  numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl
02135ade8b8a84011cbb67dc44e07c58f28575cf9ecf8ab304e51c05528c19f0  numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl
e6988e90fcf617da2b5c78902fe8e668361b43b4fe26dbf2d7b0f8034d4cafb9  numpy-2.1.3-cp312-cp312-win32.whl
0d30c543f02e84e92c4b1f415b7c6b5326cbe45ee7882b6b77db7195fb971e3a  numpy-2.1.3-cp312-cp312-win_amd64.whl
96fe52fcdb9345b7cd82ecd34547fca4321f7656d500eca497eb7ea5a926692f  numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl
f653490b33e9c3a4c1c01d41bc2aef08f9475af51146e4a7710c450cf9761598  numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl
dc258a761a16daa791081d026f0ed4399b582712e6fc887a95af09df10c5ca57  numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl
016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe  numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl
c181ba05ce8299c7aa3125c27b9c2167bca4a4445b7ce73d5febc411ca692e43  numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56  numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ea4dedd6e394a9c180b33c2c872b92f7ce0f8e7ad93e9585312b0c5a04777a4a  numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl
b0df3635b9c8ef48bd3be5f862cf71b0a4716fa0e702155c45067c6b711ddcef  numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl
50ca6aba6e163363f132b5c101ba078b8cbd3fa92c7865fd7d4d62d9779ac29f  numpy-2.1.3-cp313-cp313-win32.whl
747641635d3d44bcb380d950679462fae44f54b131be347d5ec2bce47d3df9ed  numpy-2.1.3-cp313-cp313-win_amd64.whl
996bb9399059c5b82f76b53ff8bb686069c05acc94656bb259b1d63d04a9506f  numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl
45966d859916ad02b779706bb43b954281db43e185015df6eb3323120188f9e4  numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl
baed7e8d7481bfe0874b566850cb0b85243e982388b7b23348c6db2ee2b2ae8e  numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl
a9f7f672a3388133335589cfca93ed468509cb7b93ba3105fce780d04a6576a0  numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl
d7aac50327da5d208db2eec22eb11e491e3fe13d22653dce51b0f4109101b408  numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4394bc0dbd074b7f9b52024832d16e019decebf86caf909d94f6b3f77a8ee3b6  numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
50d18c4358a0a8a53f12a8ba9d772ab2d460321e6a93d6064fc22443d189853f  numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl
14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17  numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl
08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48  numpy-2.1.3-cp313-cp313t-win32.whl
2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4  numpy-2.1.3-cp313-cp313t-win_amd64.whl
4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f  numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4  numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d  numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb  numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl
aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761  numpy-2.1.3.tar.gz

v2.1.2

Compare Source

NumPy 2.1.2 Release Notes

NumPy 2.1.2 is a maintenance release that fixes bugs and regressions
discovered after the 2.1.1 release.

The Python versions supported by this release are 3.10-3.13.

Contributors

A total of 11 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Chris Sidebottom
  • Ishan Koradia +
  • João Eiras +
  • Katie Rust +
  • Marten van Kerkwijk
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Pieter Eendebak
  • Slava Gorloff +

Pull requests merged

A total of 14 pull requests were merged for this release.

  • #​27333: MAINT: prepare 2.1.x for further development
  • #​27400: BUG: apply critical sections around populating the dispatch cache
  • #​27406: BUG: Stub out get_build_msvc_version if distutils.msvccompiler...
  • #​27416: BUILD: fix missing include for std::ptrdiff_t for C++23 language...
  • #​27433: BLD: pin setuptools to avoid breaking numpy.distutils
  • #​27437: BUG: Allow unsigned shift argument for np.roll
  • #​27439: BUG: Disable SVE VQSort
  • #​27471: BUG: rfftn axis bug
  • #​27479: BUG: Fix extra decref of PyArray_UInt8DType.
  • #​27480: CI: use PyPI not scientific-python-nightly-wheels for CI doc...
  • #​27481: MAINT: Check for SVE support on demand
  • #​27484: BUG: initialize the promotion state to be weak
  • #​27501: MAINT: Bump pypa/cibuildwheel from 2.20.0 to 2.21.2
  • #​27506: BUG: avoid segfault on bad arguments in ndarray.__array_function__

Checksums

MD5
4aae28b7919b126485c1aaccee37a6ba  numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl
172614423a82ef73d8752ad8a59cbafc  numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
5ee5e7a8a892cbe96ee228ca5fe7546b  numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl
9ce6f9222dfabd32e66b883f1fe015aa  numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl
291da8bfeb7c9a3491ec35ecb2596335  numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9317d9b049f09c0193f074a6458cf79b  numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1f2c121533715d8b099d6498e4498f81  numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
2834df46e2cb2e81cbe4fd1ce9b96b4b  numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
cbc3ae2c176324fe2a9c04ec0aff181f  numpy-2.1.2-cp310-cp310-win32.whl
e4d74f9d188dc3fe7a65adf8c01e98cc  numpy-2.1.2-cp310-cp310-win_amd64.whl
cbcece9c21ed1daf60f3729a37b32266  numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl
0e62474993ff6faca9c467f68cc16ceb  numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl
8747e85e09b2000a0af5a8226740dc92  numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl
34e7f3591ce81926518a36c92038a056  numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl
0ec3e617161b42d643aaa4b8d3e477f5  numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2a6a419b4672bfb4f3f6a98c0e575bb  numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8c14b4d03fc8672e43eddd3ede89be09  numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
dc183e12b24317bf210fb093da598d29  numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
4918f2c32ca3be20c7c5d8551e649757  numpy-2.1.2-cp311-cp311-win32.whl
a8991919b6fae3c7a77c260f60a5e2e2  numpy-2.1.2-cp311-cp311-win_amd64.whl
879f307d16f9222c49508be5ea6491fc  numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl
fe9dfac7bee0cff178737e1706aee61a  numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl
1f0c671db3294f4df8bffedc41a2e37f  numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl
d131c4bd6ba29b05a5b7fa74e87a0506  numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl
8f9cca33590be334d44cc026a3716966  numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3692a9290dd430e56e1b15387c25b7af  numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3549439284dbb1a05785b535c3de60d9  numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl
b9934410f20505e5c4b70974cd8fdc26  numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl
96759e3380e4893b9b88d5d498d856b2  numpy-2.1.2-cp312-cp312-win32.whl
f94c7405ed72a136e374ab82400fefdc  numpy-2.1.2-cp312-cp312-win_amd64.whl
2ea775cb4da02f39edf3089af60bddd5  numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl
354d0970154dd002573f4291e0e9de76  numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl
bbfee75640b337e12f894d0b54727d66  numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl
a443fff50571df87f687ad55c9060d25  numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl
9f8cd7de5b5aa5ad8ba52608a4b0a3b8  numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c198fe3deaa77fb94d15284b4e26b875  numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0a59171c983fc2d8ea599bdf382c3d6a  numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl
5ba974cd59fb8c9fc94787c754a5f636  numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl
93d5c642606fe8abeff0e6db31ebe88f  numpy-2.1.2-cp313-cp313-win32.whl
f6455bb4311ddde071a5ea2e14016003  numpy-2.1.2-cp313-cp313-win_amd64.whl
d2a21857c924d4b1b3c8ae8a9e9b9bb4  numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl
cd6afcbd05835255750a2fba6012c565  numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl
d2fab663ea84f1cfe13dfc00dae74fb6  numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl
9477b923000d63617324c487a4ce0e28  numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl
84b621a2c9a8c077bc9c471abd2b3933  numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b1c341c7192d03e8f0f5e7c4b9b6f894  numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b59750ea55cf274854f64109bf67a112  numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl
33f4d63f81ad85c1ea873197f2189d89  numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl
f26a9ac42953c84c94f8203b2dbc61c0  numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e7cf2857582d507dfa3e8644dd3562a6  numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
9e3d44cb302c629c00fde8f25809b04d  numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3f97ee2d9962cf9d84624f725bdd2a8f  numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl
3d92e07d34f60dbac6b82a0982a98757  numpy-2.1.2.tar.gz
SHA256
30d53720b726ec36a7f88dc873f0eec8447fbc93d93a8f079dfac2629598d6ee  numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl
e8d3ca0a72dd8846eb6f7dfe8f19088060fcb76931ed592d29128e0219652884  numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl
fc44e3c68ff00fd991b59092a54350e6e4911152682b4782f68070985aa9e648  numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl
7c1c60328bd964b53f8b835df69ae8198659e2b9302ff9ebb7de4e5a5994db3d  numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl
6cdb606a7478f9ad91c6283e238544451e3a95f30fb5467fbf715964341a8a86  numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d666cb72687559689e9906197e3bec7b736764df6a2e58ee265e360663e9baf7  numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c6eef7a2dbd0abfb0d9eaf78b73017dbfd0b54051102ff4e6a7b2980d5ac1a03  numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
12edb90831ff481f7ef5f6bc6431a9d74dc0e5ff401559a71e5e4611d4f2d466  numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl
a65acfdb9c6ebb8368490dbafe83c03c7e277b37e6857f0caeadbbc56e12f4fb  numpy-2.1.2-cp310-cp310-win32.whl
860ec6e63e2c5c2ee5e9121808145c7bf86c96cca9ad396c0bd3e0f2798ccbe2  numpy-2.1.2-cp310-cp310-win_amd64.whl
b42a1a511c81cc78cbc4539675713bbcf9d9c3913386243ceff0e9429ca892fe  numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl
faa88bc527d0f097abdc2c663cddf37c05a1c2f113716601555249805cf573f1  numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl
c82af4b2ddd2ee72d1fc0c6695048d457e00b3582ccde72d8a1c991b808bb20f  numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl
13602b3174432a35b16c4cfb5de9a12d229727c3dd47a6ce35111f2ebdf66ff4  numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl
1ebec5fd716c5a5b3d8dfcc439be82a8407b7b24b230d0ad28a81b61c2f4659a  numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2b49c3c0804e8ecb05d59af8386ec2f74877f7ca8fd9c1e00be2672e4d399b1  numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2cbba4b30bf31ddbe97f1c7205ef976909a93a66bb1583e983adbd155ba72ac2  numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
8e00ea6fc82e8a804433d3e9cedaa1051a1422cb6e443011590c14d2dea59146  numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl
5006b13a06e0b38d561fab5ccc37581f23c9511879be7693bd33c7cd15ca227c  numpy-2.1.2-cp311-cp311-win32.whl
f1eb068ead09f4994dec71c24b2844f1e4e4e013b9629f812f292f04bd1510d9  numpy-2.1.2-cp311-cp311-win_amd64.whl
d7bf0a4f9f15b32b5ba53147369e94296f5fffb783db5aacc1be15b4bf72f43b  numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl
b1d0fcae4f0949f215d4632be684a539859b295e2d0cb14f78ec231915d644db  numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl
f751ed0a2f250541e19dfca9f1eafa31a392c71c832b6bb9e113b10d050cb0f1  numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl
bd33f82e95ba7ad632bc57837ee99dba3d7e006536200c4e9124089e1bf42426  numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl
1b8cde4f11f0a975d1fd59373b32e2f5a562ade7cde4f85b7137f3de8fbb29a0  numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6d95f286b8244b3649b477ac066c6906fbb2905f8ac19b170e2175d3d799f4df  numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab4754d432e3ac42d33a269c8567413bdb541689b02d93788af4131018cbf366  numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl
e585c8ae871fd38ac50598f4763d73ec5497b0de9a0ab4ef5b69f01c6a046142  numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl
9c6c754df29ce6a89ed23afb25550d1c2d5fdb9901d9c67a16e0b16eaf7e2550  numpy-2.1.2-cp312-cp312-win32.whl
456e3b11cb79ac9946c822a56346ec80275eaf2950314b249b512896c0d2505e  numpy-2.1.2-cp312-cp312-win_amd64.whl
a84498e0d0a1174f2b3ed769b67b656aa5460c92c9554039e11f20a05650f00d  numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl
4d6ec0d4222e8ffdab1744da2560f07856421b367928026fb540e1945f2eeeaf  numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl
259ec80d54999cc34cd1eb8ded513cb053c3bf4829152a2e00de2371bd406f5e  numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl
675c741d4739af2dc20cd6c6a5c4b7355c728167845e3c6b0e824e4e5d36a6c3  numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl
05b2d4e667895cc55e3ff2b56077e4c8a5604361fc21a042845ea3ad67465aa8  numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
43cca367bf94a14aca50b89e9bc2061683116cfe864e56740e083392f533ce7a  numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
76322dcdb16fccf2ac56f99048af32259dcc488d9b7e25b51e5eca5147a3fb98  numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl
32e16a03138cabe0cb28e1007ee82264296ac0983714094380b408097a418cfe  numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl
242b39d00e4944431a3cd2db2f5377e15b5785920421993770cddb89992c3f3a  numpy-2.1.2-cp313-cp313-win32.whl
f2ded8d9b6f68cc26f8425eda5d3877b47343e68ca23d0d0846f4d312ecaa445  numpy-2.1.2-cp313-cp313-win_amd64.whl
2ffef621c14ebb0188a8633348504a35c13680d6da93ab5cb86f4e54b7e922b5  numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl
ad369ed238b1959dfbade9018a740fb9392c5ac4f9b5173f420bd4f37ba1f7a0  numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl
d82075752f40c0ddf57e6e02673a17f6cb0f8eb3f587f63ca1eaab5594da5b17  numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl
1600068c262af1ca9580a527d43dc9d959b0b1d8e56f8a05d830eea39b7c8af6  numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl
a26ae94658d3ba3781d5e103ac07a876b3e9b29db53f68ed7df432fd033358a8  numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
13311c2db4c5f7609b462bc0f43d3c465424d25c626d95040f073e30f7570e35  numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2abbf905a0b568706391ec6fa15161fad0fb5d8b68d73c461b3c1bab6064dd62  numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl
ef444c57d664d35cac4e18c298c47d7b504c66b17c2ea91312e979fcfbdfb08a  numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl
bdd407c40483463898b84490770199d5714dcc9dd9b792f6c6caccc523c00952  numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
da65fb46d4cbb75cb417cddf6ba5e7582eb7bb0b47db4b99c9fe5787ce5d91f5  numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
1c193d0b0238638e6fc5f10f1b074a6993cb13b0b431f64079a509d63d3aa8b7  numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a7d80b2e904faa63068ead63107189164ca443b42dd1930299e0d1cb041cec2e  numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl
13532a088217fa624c99b843eeb54640de23b3414b14aa66d023805eb731066c  numpy-2.1.2.tar.gz

v2.1.1

Compare Source

NumPy 2.1.1 Release Notes

NumPy 2.1.1 is a maintenance release that fixes bugs and regressions
discovered after the 2.1.0 release.

The Python versions supported by this release are 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Charles Harris
  • Mateusz Sokół
  • Maximilian Weigand +
  • Nathan Goldbaum
  • Pieter Eendebak
  • Sebastian Berg

Pull requests merged

A total of 10 pull requests were merged for this release.

  • #​27236: REL: Prepare for the NumPy 2.1.0 release [wheel build]
  • #​27252: MAINT: prepare 2.1.x for further development
  • #​27259: BUG: revert unintended change in the return value of set_printoptions
  • #​27266: BUG: fix reference counting bug in __array_interface__ implementation...
  • #​27267: TST: Add regression test for missing descr in array-interface
  • #​27276: BUG: Fix #​27256 and #​27257
  • #​27278: BUG: Fix array_equal for numeric and non-numeric scalar types
  • #​27287: MAINT: Update maintenance/2.1.x after the 2.0.2 release
  • #​27303: BLD: cp311- macosx_arm64 wheels [wheel build]
  • #​27304: BUG: f2py: better handle filtering of public/private subroutines

Checksums

MD5
3053a97400db800b7377749e691eb39e  numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
84b752a2220dce7c96ff89eef4f4aec3  numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
47ed4f704a64261f07ca24ef2e674524  numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
b8a45caa870aee980c298053cf064d28  numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
e097ad5eee572b791b4a25eedad6df4a  numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ae502c99315884cda7f0236a07c035c4  numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
841a859d975c55090c0b60b72aab93a3  numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
d51be2b17f5b87aac64ab80fdfafc85e  numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
1f8249bd725397c6233fe6a0e8ad18b1  numpy-2.1.1-cp310-cp310-win32.whl
d38d6f06589c1ec104a6a31ff6035781  numpy-2.1.1-cp310-cp310-win_amd64.whl
6a18fe3029aae00986975250313bf16f  numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
5b0b3aa01fbd0b5a8b0f354bb878351e  numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
1c492dad399abe7b97274b4c6c12ae53  numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
4d55d91e71b62eb5fa6561c606524f60  numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
88e99ecd063c178f25bc08d20792a9bf  numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f3c8b0e4fb059b9219e8ec86d9fda861  numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df632b5fed7eb78d39e7194d2475c19b  numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
65499daccdb178d26e322d9f359cf146  numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
eb97327fd7aa6027e2409d0dcca1129a  numpy-2.1.1-cp311-cp311-win32.whl
9e4b05b38cbff22c2bdfead528b9d2bc  numpy-2.1.1-cp311-cp311-win_amd64.whl
6b8a359bb865b5c624fd9ffc848393e1  numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
eaf8dce312efa2b0f17ad46612fb1681  numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
c861ff048b336284fe7c0791b1a6b0b4  numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
7e1befccfe729dc5d6c450a5fb6b801c  numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
ea0a401ef653a167221987a10cbef260  numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
97326ac792d26f2e536a519c82f2d6bc  numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fdd2a82232c03d11bbc7cec0a8e01ab0  numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
0d6716e9a7b2c0d6e5ace9c01b9bca01  numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
ba589ed2a79c88187c3b8574ae72a1c7  numpy-2.1.1-cp312-cp312-win32.whl
806ca7c1e2a2013b786edbb619f6da47  numpy-2.1.1-cp312-cp312-win_amd64.whl
647665353e5af5884df4e51610990c22  numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
bfd3b3c5c4616ef99d917bd94d39114a  numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
cb989095f9c74e3b32250a984390faeb  numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl
55ad7548e58f61b9a4f91749e36d237f  numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl
5bc73d67dd1032524bfd36ef877b09e4  numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c7dfb09db8284cb75296f708c3f77ea3  numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7cf90ce1b844a97aeea1a5b8c71fb49b  numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl
6ec8baeac5f979a3b98017679d457bbc  numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
1f198cb5210c76faae81359a83d58230  numpy-2.1.1-cp313-cp313-win32.whl
1766258213ad41f7e36f2209ee6d2a30  numpy-2.1.1-cp313-cp313-win_amd64.whl
f0a7a0456308dbeb739ad886f1632f16  numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl
302c9cf7b4aa695974500ee1935a92c9  numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl
f4aa7d784992abb9bd9fe9db09c01c06  numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl
3bb4ae9906499609769f1774438149a5  numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl
ff6b9e1993d3d540074736014b1d13af  numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
749489c091ee9c00abf1ad1ef822c3ca  numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
32d2daf4064031f365ced5036757ad8b  numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl
603dfe4ef56c01e1fc0dcc9d5e3090ed  numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl
70fa2d3b78633bb6061c90e17364f27f  numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
9a430be5d14b689ed051eccc540dfbdc  numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7291ff124e471d32c03464da18ff108d  numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e56ce141724af119c7c647a8705827a5  numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl
f63b4750618bfa5490f10cae37fde998  numpy-2.1.1.tar.gz
SHA256
c8a0e34993b510fc19b9a2ce7f31cb8e94ecf6e924a40c0c9dd4f62d0aac47d9  numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
7dd86dfaf7c900c0bbdcb8b16e2f6ddf1eb1fe39c6c8cca6e94844ed3152a8fd  numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl
5889dd24f03ca5a5b1e8a90a33b5a0846d8977565e4ae003a63d22ecddf6782f  numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl
59ca673ad11d4b84ceb385290ed0ebe60266e356641428c845b39cd9df6713ab  numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl
13ce49a34c44b6de5241f0b38b07e44c1b2dcacd9e36c30f9c2fcb1bb5135db7  numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
913cc1d311060b1d409e609947fa1b9753701dac96e6581b58afc36b7ee35af6  numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
caf5d284ddea7462c32b8d4a6b8af030b6c9fd5332afb70e7414d7fdded4bfd0  numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
57eb525e7c2a8fdee02d731f647146ff54ea8c973364f3b850069ffb42799647  numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
9a8e06c7a980869ea67bbf551283bbed2856915f0a792dc32dd0f9dd2fb56728  numpy-2.1.1-cp310-cp310-win32.whl
d10c39947a2d351d6d466b4ae83dad4c37cd6c3cdd6d5d0fa797da56f710a6ae  numpy-2.1.1-cp310-cp310-win_amd64.whl
0d07841fd284718feffe7dd17a63a2e6c78679b2d386d3e82f44f0108c905550  numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl
b5613cfeb1adfe791e8e681128f5f49f22f3fcaa942255a6124d58ca59d9528f  numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl
0b8cc2715a84b7c3b161f9ebbd942740aaed913584cae9cdc7f8ad5ad41943d0  numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl
b49742cdb85f1f81e4dc1b39dcf328244f4d8d1ded95dea725b316bd2cf18c95  numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl
e8d5f8a8e3bc87334f025194c6193e408903d21ebaeb10952264943a985066ca  numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d51fc141ddbe3f919e91a096ec739f49d686df8af254b2053ba21a910ae518bf  numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98ce7fb5b8063cfdd86596b9c762bf2b5e35a2cdd7e967494ab78a1fa7f8b86e  numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
24c2ad697bd8593887b019817ddd9974a7f429c14a5469d7fad413f28340a6d2  numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
397bc5ce62d3fb73f304bec332171535c187e0643e176a6e9421a6e3eacef06d  numpy-2.1.1-cp311-cp311-win32.whl
ae8ce252404cdd4de56dcfce8b11eac3c594a9c16c231d081fb705cf23bd4d9e  numpy-2.1.1-cp311-cp311-win_amd64.whl
7c803b7934a7f59563db459292e6aa078bb38b7ab1446ca38dd138646a38203e  numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl
6435c48250c12f001920f0751fe50c0348f5f240852cfddc5e2f97e007544cbe  numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl
3269c9eb8745e8d975980b3a7411a98976824e1fdef11f0aacf76147f662b15f  numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl
fac6e277a41163d27dfab5f4ec1f7a83fac94e170665a4a50191b545721c6521  numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl
fcd8f556cdc8cfe35e70efb92463082b7f43dd7e547eb071ffc36abc0ca4699b  numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d2b9cd92c8f8e7b313b80e93cedc12c0112088541dcedd9197b5dee3738c1201  numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
afd9c680df4de71cd58582b51e88a61feed4abcc7530bcd3d48483f20fc76f2a  numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl
8661c94e3aad18e1ea17a11f60f843a4933ccaf1a25a7c6a9182af70610b2313  numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
950802d17a33c07cba7fd7c3dcfa7d64705509206be1606f196d179e539111ed  numpy-2.1.1-cp312-cp312-win32.whl
3fc5eabfc720db95d68e6646e88f8b399bfedd235994016351b1d9e062c4b270  numpy-2.1.1-cp312-cp312-win_amd64.whl
046356b19d7ad1890c751b99acad5e82dc4a02232013bd9a9a712fddf8eb60f5  numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl
6e5a9cb2be39350ae6c8f79410744e80154df658d5bea06e06e0ac5bb75480d5  numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl
d4c57b68c8ef5e1ebf47238e99bf27657511ec3f071c465f6b1bccbef12d4136  numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl
8ae0fd135e0b157365ac7cc31fff27f07a5572bdfc38f9c2d43b2aff416cc8b0  numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl
981707f6b31b59c0c24bcda52e5605f9701cb46da4b86c2e8023656ad3e833cb  numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ca4b53e1e0b279142113b8c5eb7d7a877e967c306edc34f3b58e9be12fda8df  numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e097507396c0be4e547ff15b13dc3866f45f3680f789c1a1301b07dadd3fbc78  numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl
f7506387e191fe8cdb267f912469a3cccc538ab108471291636a96a54e599556  numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
251105b7c42abe40e3a689881e1793370cc9724ad50d64b30b358bbb3a97553b  numpy-2.1.1-cp313-cp313-win32.whl
f212d4f46b67ff604d11fff7cc62d36b3e8714edf68e44e9760e19be38c03eb0  numpy-2.1.1-cp313-cp313-win_amd64.whl
920b0911bb2e4414c50e55bd658baeb78281a47feeb064ab40c2b66ecba85553  numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl
bab7c09454460a487e631ffc0c42057e3d8f2a9ddccd1e60c7bb8ed774992480  numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl
cea427d1350f3fd0d2818ce7350095c1a2ee33e30961d2f0fef48576ddbbe90f  numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl
e30356d530528a42eeba51420ae8bf6c6c09559051887196599d96ee5f536468  numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl
e8dfa9e94fc127c40979c3eacbae1e61fda4fe71d84869cc129e2721973231ef  numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
910b47a6d0635ec1bd53b88f86120a52bf56dcc27b51f18c7b4a2e2224c29f0f  numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
13cc11c00000848702322af4de0147ced365c81d66053a67c2e962a485b3717c  numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl
53e27293b3a2b661c03f79aa51c3987492bd4641ef933e366e0f9f6c9bf257ec  numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl
7be6a07520b88214ea85d8ac8b7d6d8a1839b0b5cb87412ac9f49fa934eb15d5  numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
52ac2e48f5ad847cd43c4755520a2317f3380213493b9d8a4c5e37f3b87df504  numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
50a95ca3560a6058d6ea91d4629a83a897ee27c00630aed9d933dff191f170cd  numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
99f4a9ee60eed1385a86e82288971a51e71df052ed0b2900ed30bc840c0f2e39  numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl
d0cf7d55b1051387807405b3898efafa862997b4cba8aa5dbe657be794afeafd  numpy-2.1.1.tar.gz

v2.1.0

Compare Source

NumPy 2.1.0 Release Notes

NumPy 2.1.0 provides support for the upcoming Python 3.13 release and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get us back into our usual release
cycle after the extended development of 2.0. The highlights for this
release are:

  • Support for the array-api 2023.12 standard.
  • Support for Python 3.13.
  • Preliminary support for free threaded Python 3.13.

Python versions 3.10-3.13 are supported in this release.

New functions

New function numpy.unstack

A new function np.unstack(array, axis=...) was added, which splits an
array into a tuple of arrays along an axis. It serves as the inverse of
[numpy.stack]{.title-ref}.

(gh-26579)

Deprecations

  • The fix_imports keyword argument in numpy.save is deprecated.
    Since NumPy 1.17, numpy.save uses a pickle protocol that no longer
    supports Python 2, and ignored fix_imports keyword. This keyword
    is kept only for backward compatibility. It is now deprecated.

    (gh-26452)

  • Passing non-integer inputs as the first argument of
    [bincount]{.title-ref} is now deprecated, because such inputs are
    silently cast to integers with no warning about loss of precision.

    (gh-27076)

Expired deprecations

  • Scalars and 0D arrays are disallowed for numpy.nonzero and
    numpy.ndarray.nonzero.

    (gh-26268)

  • set_string_function internal function was removed and
    PyArray_SetStringFunction was stubbed out.

    (gh-26611)

C API changes

API symbols now hidden but customizable

NumPy now defaults to hide the API symbols it adds to allow all NumPy
API usage. This means that by default you cannot dynamically fetch the
NumPy API from another library (this was never possible on windows).

If you are experiencing linking errors related to PyArray_API or
PyArray_RUNTIME_VERSION, you can define the NPY_API_SYMBOL_ATTRIBUTE
to opt-out of this change.

If you are experiencing problems due to an upstream header including
NumPy, the solution is to make sure you
#include "numpy/ndarrayobject.h" before their header and import NumPy
yourself based on including-the-c-api.

(gh-26103)

Many shims removed from npy_3kcompat.h

Many of the old shims and helper functions were removed from
npy_3kcompat.h. If you find yourself in need of these, vendor the
previous version of the file into your codebase.

(gh-26842)

New PyUFuncObject field process_core_dims_func

The field process_core_dims_func was added to the structure
PyUFuncObject. For generalized ufuncs, this field can be set to a
function of type PyUFunc_ProcessCoreDimsFunc that will be called when
the ufunc is called. It allows the ufunc author to check that core
dimensions satisfy additional constraints, and to set output core
dimension sizes if they have not been provided.

(gh-26908)

New Features

Preliminary Support for Free-Threaded CPython 3.13

CPython 3.13 will be available as an experimental free-threaded build.
See https://py-free-threading.github.io, PEP 703 and the
CPython 3.13 release notes for more detail about free-threaded Python.

NumPy 2.1 has preliminary support for the free-threaded build of CPython
3.13. This support was enabled by fixing a number of C thread-safety
issues in NumPy. Before NumPy 2.1, NumPy used a large number of C global
static variables to store runtime caches and other state. We have either
refactored to avoid the need for global state, converted the global
state to thread-local state, or added locking.

Support for free-threaded Python does not mean that NumPy is thread
safe. Read-only shared access to ndarray should be safe. NumPy exposes
shared mutable state and we have not added any locking to the array
object itself to serialize access to shared state. Care must be taken in
user code to avoid races if you would like to mutate the same array in
multiple threads. It is certainly possible to crash NumPy by mutating an
array simultaneously in multiple threads, for example by calling a ufunc
and the resize method simultaneously. For now our guidance is:
"don't do that". In the future we would like to provide stronger
guarantees.

Object arrays in particular need special care, since the GIL previously
provided locking for object array access and no longer does. See
Issue #​27199 for more information about object
arrays in the free-threaded build.

If you are interested in free-threaded Python, for example because you
have a multiprocessing-based workflow that you are interested in running
with Python threads, we encourage testing and experimentation.

If you run into problems that you suspect are because of NumPy, please
open an issue,
checking first if the bug also occurs in the "regular" non-free-threaded CPython 3.13
build. Many threading bugs can also occur in code that releases
the GIL; disabling the GIL only makes it easier to hit threading bugs.

(gh-26157)

f2py can generate freethreading-compatible C extensions

Pass --freethreading-compatible to the f2py CLI tool to produce a C
extension marked as compatible with the free threading CPython
interpreter. Doing so prevents the interpreter from re-enabling the GIL
at runtime when it imports the C extension. Note that f2py does not
analyze fortran code for thread safety, so you must verify that the
wrapped fortran code is thread safe before marking the extension as
compatible.

(gh-26981)

  • numpy.reshape and numpy.ndarray.reshape now support shape and
    copy arguments.

    (gh-26292)

  • NumPy now supports DLPack v1, support for older versions will be
    deprecated in the future.

    (gh-26501)

  • numpy.asanyarray now supports copy and device arguments,
    matching numpy.asarray.

    (gh-26580)

  • numpy.printoptions, numpy.get_printoptions, and
    numpy.set_printoptions now support a new option, override_repr,
    for defining custom repr(array) behavior.

    (gh-26611)

  • numpy.cumulative_sum and numpy.cumulative_prod were added as
    Array API compatible alternatives for numpy.cumsum and
    numpy.cumprod. The new functions can include a fixed initial
    (zeros for sum and ones for prod) in the result.

    (gh-26724)

  • numpy.clip now supports max and min keyword arguments which
    are meant to replace a_min and a_max. Also, for np.clip(a) or
    np.clip(a, None, None) a copy of the input array will be returned
    instead of raising an error.

    (gh-26724)

  • numpy.astype now supports device argument.

    (gh-26724)

Improvements

histogram auto-binning now returns bin sizes >=1 for integer input data

For integer input data, bin sizes smaller than 1 result in spurious
empty bins. This is now avoided when the number of bins is computed
using one of the algorithms provided by histogram_bin_edges.

(gh-12150)

ndarray shape-type parameter is now covariant and bound to tuple[int, ...]

Static typing for ndarray is a long-term effort that continues with
this change. It is a generic type with type parameters for the shape and
the data type. Previously, the shape type parameter could be any value.
This change restricts it to a tuple of ints, as one would expect from
using ndarray.shape. Further, the shape-type parameter has been
changed from invariant to covariant. This change also applies to the
subtypes of ndarray, e.g. numpy.ma.MaskedArray. See the
typing docs
for more information.

(gh-26081)

np.quantile with method closest_observation chooses nearest even order statistic

This changes the definition of nearest for border cases from the nearest
odd order statistic to nearest even order statistic. The numpy
implementation now matches other reference implementations.

(gh-26656)

lapack_lite is now thread safe

NumPy provides a minimal low-performance version of LAPACK named
lapack_lite that can be used if no BLAS/LAPACK system is detected at
build time.

Until now, lapack_lite was not thread safe. Single-threaded use cases
did not hit any issues, but running linear algebra operations in
multiple threads could lead to errors, incorrect results, or segfaults
due to data races.

We have added a global lock, serializing access to lapack_lite in
multiple threads.

(gh-26750)

The numpy.printoptions context manager is now thread and async-safe

In prior versions of NumPy, the printoptions were defined using a
combination of Python and C global variables. We have refactored so the
state is stored in a python ContextVar, making the context manager
thread and async-safe.

(gh-26846)

Type hinting numpy.polynomial

Starting from the 2.1 release, PEP 484 type annotations have been
included for the functions and convenience classes in numpy.polynomial
and its sub-packages.

(gh-26897)

Improved numpy.dtypes type hints

The type annotations for numpy.dtypes are now a better reflection of
the runtime: The numpy.dtype type-aliases have been replaced with
specialized dtype subtypes, and the previously missing annotations
for numpy.dtypes.StringDType have been added.

(gh-27008)

Performance improvements and changes

  • numpy.save now uses pickle protocol version 4 for saving arrays
    with object dtype, which allows for pickle objects larger than 4GB
    and improves saving speed by about 5% for large arrays.

    (gh-26388)

  • OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
    benchmarking, there are 5 clusters of performance around these
    kernels: PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX.

    (gh-27147)

  • OpenBLAS on windows is linked without quadmath, simplifying
    licensing

    (gh-27147)

  • Due to a regression in OpenBLAS on windows, the performance
    improvements when using multiple threads for OpenBLAS 0.3.26 were
    reverted.

    (gh-27147)

ma.cov and ma.corrcoef are now significantly faster

The private function has been refactored along with ma.cov and
ma.corrcoef. They are now significantly faster, particularly on large,
masked arrays.

(gh-26285)

Changes

  • As numpy.vecdot is now a ufunc it has a less precise signature.
    This is due to the limitations of ufunc's typing stub.

    (gh-26313)

  • numpy.floor, numpy.ceil, and numpy.trunc now won't perform
    casting to a floating dtype for integer and boolean dtype input
    arrays.

    (gh-26766)

ma.corrcoef may return a slightly different result

A pairwise observation approach is currently used in ma.corrcoef to
calculate the standard deviations for each pair of variables. This has
been changed as it is being used to normalise the covariance, estimated
using ma.cov, which does not consider the observations for each
variable in a pairwise manner, rendering it unnecessary. The
normalisation has been replaced by the more appropriate standard
deviation for each variable, which significantly reduces the wall time,
but will return slightly different estimates of the correlation
coefficients in cases where the observations between a pair of variables
are not aligned. However, it will return the same estimates in all other
cases, including returning the same correlation matrix as corrcoef
when using a masked array with no masked values.

(gh-26285)

Cast-safety fixes in copyto and full

copyto now uses NEP 50 correctly and applies this to its cast safety.
Python integer to NumPy integer casts and Python float to NumPy float
casts are now considered "safe" even if assignment may fail or
precision may be lost. This means the following examples change
slightly:

  • np.copyto(int8_arr, 1000) previously performed an unsafe/same-kind cast
    of the Python integer. It will now always raise, to achieve an
    unsafe cast you must pass an array or NumPy scalar.

  • np.copyto(uint8_arr, 1000, casting="safe") will raise an
    OverflowError rather than a TypeError due to same-kind casting.

  • np.copyto(float32_arr, 1e300, casting="safe") will overflow to
    inf (float32 cannot hold 1e300) rather raising a TypeError.

Further, only the dtype is used when assigning NumPy scalars (or 0-d
arrays), meaning that the following behaves differently:

  • np.copyto(float32_arr, np.float64(3.0), casting="safe") raises.
  • np.coptyo(int8_arr, np.int64(100), casting="safe") raises.
    Previously, NumPy checked whether the 100 fits the int8_arr.

This aligns copyto, full, and full_like with the correct NumPy 2
behavior.

(gh-27091)

Checksums

MD5
2323404663c0b2a86362319d7526eb80  numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
3d4bca8d05eb1eba859e77ff8f91d843  numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
9bd065f147dbf3f2d59ab57bff4f0074  numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl
47d177533511901cd6bf77f72cbd3d6e  numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl
530b7f38f64216f1322b39bc50f36c0c  numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d2a3161a10811a675a29a63e25636d83  numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4e9fb20b080f7931791da71708740b83  numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
776eb610795d63217980a36eb23bf268  numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl
8328b9e2afa4013aaf3e4963349445e2  numpy-2.1.0-cp310-cp310-win32.whl
e3184b9979192c8d7b80deb2af16d6bb  numpy-2.1.0-cp310-cp310-win_amd64.whl
54571aef9d9081e35bebef10f8d64e75  numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
841dac2386c1da870a384b64cd31e32b  numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl
0fe85239ebe336d2baaddcb0ed001dc7  numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl
772a55a6c46f7b643af4640c2ca68d70  numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64fefbc527229521cf2a516b778b8aa7  numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5cdb3d262d8c513b0f08cd1b6ba48512  numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
16140f5de42e87d84b80c350fd014893  numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl
5e37df534d167af1966e099e0be9d94a  numpy-2.1.0-cp311-cp311-win32.whl
ee443aa000621bed8bb2d6a94afd89b5  numpy-2.1.0-cp311-cp311-win_amd64.whl
d8c911fc34a8dad4ed821036563b5758  numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl
ec25d637c43ae8229052e62a4f40f2d2  numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
67c7abca3d0339f17a8543abc0e7bf11  numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl
0d36ec6a64cbef1d727eb608a236ad2c  numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl
0eedab574a3b75ec237be910e9717153  numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
73dd2a5d0c85007bf5fdb4b7f66b8451  numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
94fb0cfbc647a34177c766570fad752b  numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
de3efbbcd792a1f82d0e3e175ea02ca9  numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl
9a63ebbfb3c4c6eba77ef0723a5dc86f  numpy-2.1.0-cp312-cp312-win32.whl
c68bc27545ac68c54935a1d0278b18f6  numpy-2.1.0-cp312-cp312-win_amd64.whl
f2795bb974af42e2723e32af9b14b66d  numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl
2f7426b06a332ea7a20159f3c06d67d1  numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl
fcef18e031fc8588227023bac55d9636  numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl
cbb5ca4dc798ea397344c93a2549e73e  numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl
573213bea3a67452a310355adc7c6aa1  numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
24f8c8a1235aeaedb8f154a984b3c78b  numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b2ef762c0ebb02b58a339c1e38f032b2  numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl
50e68cbfeb330aff607969c30251632d  numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl
21228342cd1b4ff8c7ec1aea45c07186  numpy-2.1.0-cp313-cp313-win32.whl
8d234b05f0c4faf7b9884a1f0f19c23d  numpy-2.1.0-cp313-cp313-win_amd64.whl
e0c19ca29fa8e8e051107cd36b978f05  numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl
98756f2ff9adc2cf374c28db77e28312  numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl
69786349d1f392dc6ac3fe00271e941b  numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl
4d1481bcb17aaebfc785e005455da223  numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl
1d403eda14369ab023d5ae1c15dce25c  numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cdeece2cd6508eeee5a4c3150b58ec59  numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
85347b754d8324c508f7aeb7de243feb  numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl
6ff18d36d0940de6c1cc962a61b44bd5  numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl
2f7d60a99c236a8f909bd86b8ed1e3a4  numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
dc610133d9f09e5b3d396859e75c5593  numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
6a2883ee5b16ab5c031037cc63c20e9b  numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c914ba2fe3fcdcd04c8fe6a8374ea5fb  numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl
4cb2230ffa1cc41329ae29bd69ee08de  numpy-2.1.0.tar.gz
SHA256
6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8  numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911  numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673  numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl
899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b  numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl
08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b  numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f  numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84  numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33  numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl
f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211  numpy-2.1.0-cp310-cp310-win32.whl
f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa  numpy-2.1.0-cp310-cp310-win_amd64.whl
76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce  numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1  numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl
9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e  numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl
54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb  numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3  numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36  numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd  numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl
ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e  numpy-2.1.0-cp311-cp311-win32.whl
0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b  numpy-2.1.0-cp311-cp311-win_amd64.whl
fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736  numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl
f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529  numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1  numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl
b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8  numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl
a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745  numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111  numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0  numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574  numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl
c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02  numpy-2.1.0-cp312-cp312-win32.whl
a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc  numpy-2.1.0-cp312-cp312-win_amd64.whl
8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667  numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl
442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e  numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl
848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33  numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl
54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b  numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl
652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195  numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977  numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1  numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl
44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62  numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl
ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324  numpy-2.1.0-cp313-cp313-win32.whl
de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5  numpy-2.1.0-cp313-cp313-win_amd64.whl
343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06  numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl
f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883  numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl
5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300  numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl
1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d  numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl
3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd  numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6  numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a  numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl
624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb  numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl
15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b  numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d  numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575  numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2  numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl
7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2  numpy-2.1.0.tar.gz

v2.0.2

Compare Source

NumPy 2.0.2 Release Notes

NumPy 2.0.2 is a maintenance release that fixes bugs and regressions
discovered after the 2.0.1 release.

The Python versions supported by this release are 3.9-3.12.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bruno Oliveira +
  • Charles Harris
  • Chris Sidebottom
  • Christian Heimes +
  • Christopher Sidebottom
  • Mateusz Sokół
  • Matti Picus
  • Nathan Goldbaum
  • Pieter Eendebak
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Sebastian Berg
  • Yair Chuchem +

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​27000: REL: Prepare for the NumPy 2.0.1 release [wheel build]
  • #​27001: MAINT: prepare 2.0.x for further development
  • #​27021: BUG: cfuncs.py: fix crash when sys.stderr is not available
  • #​27022: DOC: Fix migration note for alltrue and sometrue
  • #​27061: BUG: use proper input and output descriptor in array_assign_subscript...
  • #​27073: BUG: Mirror VQSORT_ENABLED logic in Quicksort
  • #​27074: BUG: Bump Highway to latest master
  • #​27077: BUG: Off by one in memory overlap check
  • #​27122: BUG: Use the new npyv_loadable_stride_ functions for ldexp and...
  • #​27126: BUG: Bump Highway to latest
  • #​27128: BUG: add missing error handling in public_dtype_api.c
  • #​27129: BUG: fix another cast setup in array_assign_subscript
  • #​27130: BUG: Fix building NumPy in FIPS mode
  • #​27131: BLD: update vendored Meson for cross-compilation patches
  • #​27146: MAINT: Scipy openblas 0.3.27.44.4
  • #​27151: BUG: Do not accidentally store dtype metadata in np.save
  • #​27195: REV: Revert undef I and document it
  • #​27213: BUG: Fix NPY_RAVEL_AXIS on backwards compatible NumPy 2 builds
  • #​27279: BUG: Fix array_equal for numeric and non-numeric scalar types

Checksums

MD5
ae4bc199b56d20305984b7465d6fbdf1  numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
ecce0a682c2ccaaa14500b87ffb69f63  numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
a94f34bec8a62dab95ce9883a87a82a6  numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl
a0a26dadf73264d31b7a6952b816d7c8  numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl
972f4366651a1a2ef00f630595104d15  numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6cffef937fe67a3879abefd3d2c40fb8  numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3717a5deda20f465720717a1a7a293a6  numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
e31136ecc97bb76b3cb7e86bfc9471ac  numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl
9703a02ca6b63ca53f83660d089f4294  numpy-2.0.2-cp310-cp310-win32.whl
12c097ef2c7492282a5514b5c4b68784  numpy-2.0.2-cp310-cp310-win_amd64.whl
f11d11bfa3aaf371d2e7fa0160e3208b  numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl
86fc67666fc6e27740fde7dacb19c484  numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl
5fd12e0dd7162ea9599c49bbb6e6730e  numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl
a40f473db729ea10ae401ce71899120a  numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl
36ea96e0be954896597543d726157eda  numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cfa726b6d5445687020fc4d4f7191e42  numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dfb9a7b7fe218e931b0dfb885a8250d6  numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
d8bf100186e6cd1b2f27eb617ba9e581  numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl
4fe937eba0fc4d28a65c0ba571c809fc  numpy-2.0.2-cp311-cp311-win32.whl
a9a0f8e1bc4d825272514896e3b17f15  numpy-2.0.2-cp311-cp311-win_amd64.whl
5ef80ec3b2db487d89c590eb301a7aa4  numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl
1bb398d93422bb9baf63c958ed1aa492  numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl
cc8d990a1ad3f4d66d0143ea709ccc99  numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl
4fee57e854bc3e9a267e865740438d53  numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl
c2c18eef5118607c0b023f6267ee9774  numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2928ed26d7153a488bfb126424d86c8f  numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e32167073981b0a1a419aaaec741773e  numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl
80a10803a3122472c1bf6c4617d0d1c5  numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl
39724e27a003b6ce9b1bcbf251e50b4b  numpy-2.0.2-cp312-cp312-win32.whl
8319d0b3d23285d4698cbece73b23fde  numpy-2.0.2-cp312-cp312-win_amd64.whl
da0f655880bbcb53094816b77cd493d1  numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl
47347c028f6ccf47d6a22724111fc96f  numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl
26a5c8dec993258522fcef84ef0c040e  numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl
fe447af86983ef2262e605a941bd46af  numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl
96477b8563e6d4e2db710f4915a4c5e0  numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4e8255cdff60de62944aed1f4235ff68  numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
05d8465b87ca983eee044b66bc725391  numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
dcf448ef80720bae7de6724f92499754  numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl
71557f67f24d39db709cc4ccb85ae5b5  numpy-2.0.2-cp39-cp39-win32.whl
f5dc31c5530037c4d1d990696b1d041c  numpy-2.0.2-cp39-cp39-win_amd64.whl
a8f814da1a4509724346c14cd838b5dc  numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
918f072481d014229dd5f0f5ba75306f  numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
fcbe2e38506fbbbeda509a89063563d3  numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b99eff795ca26f8a513aace76a45a356  numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl
d517a3be706295c4a4c8f75f5ee7b261  numpy-2.0.2.tar.gz
SHA256
51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece  numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04  numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66  numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl
becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b  numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl
2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd  numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318  numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8  numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326  numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl
984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97  numpy-2.0.2-cp310-cp310-win32.whl
c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131  numpy-2.0.2-cp310-cp310-win_amd64.whl
49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448  numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl
11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195  numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl
807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57  numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl
8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a  numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl
a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669  numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951  numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9  numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15  numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl
a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4  numpy-2.0.2-cp311-cp311-win32.whl
286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc  numpy-2.0.2-cp311-cp311-win_amd64.whl
df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b  numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl
8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e  numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl
9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c  numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl
a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c  numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl
c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692  numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a  numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c  numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl
ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded  numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl
671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5  numpy-2.0.2-cp312-cp312-win32.whl
cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a  numpy-2.0.2-cp312-cp312-win_amd64.whl
9059e10581ce4093f735ed23f3b9d283b9d517ff46009ddd485f1747eb22653c  numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl
423e89b23490805d2a5a96fe40ec507407b8ee786d66f7328be214f9679df6dd  numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl
2b2955fa6f11907cf7a70dab0d0755159bca87755e831e47932367fc8f2f2d0b  numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl
97032a27bd9d8988b9a97a8c4d2c9f2c15a81f61e2f21404d7e8ef00cb5be729  numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl
1e795a8be3ddbac43274f18588329c72939870a16cae810c2b73461c40718ab1  numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f26b258c385842546006213344c50655ff1555a9338e2e5e02a0756dc3e803dd  numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5fec9451a7789926bcf7c2b8d187292c9f93ea30284802a0ab3f5be8ab36865d  numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
9189427407d88ff25ecf8f12469d4d39d35bee1db5d39fc5c168c6f088a6956d  numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl
905d16e0c60200656500c95b6b8dca5d109e23cb24abc701d41c02d74c6b3afa  numpy-2.0.2-cp39-cp39-win32.whl
a3f4ab0caa7f053f6797fcd4e1e25caee367db3112ef2b6ef82d749530768c73  numpy-2.0.2-cp39-cp39-win_amd64.whl
7f0a0c6f12e07fa94133c8a67404322845220c06a9e80e85999afe727f7438b8  numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
312950fdd060354350ed123c0e25a71327d3711584beaef30cdaa93320c392d4  numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
26df23238872200f63518dd2aa984cfca675d82469535dc7162dc2ee52d9dd5c  numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385  numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl
883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78  numpy-2.0.2.tar.gz

v2.0.1

Compare Source

NumPy 2.0.1 Release Notes

NumPy 2.0.1 is a maintenance release that fixes bugs and regressions
discovered after the 2.0.0 release. NumPy 2.0.1 is the last planned
release in the 2.0.x series, 2.1.0rc1 should be out shortly.

The Python versions supported by this release are 3.9-3.12.

NOTE: Do not use the GitHub generated "Source code" files listed in the "Assets", they are garbage.

Improvements

np.quantile with method closest_observation chooses nearest even order statistic

This changes the definition of nearest for border cases from the nearest
odd order statistic to nearest even order statistic. The numpy
implementation now matches other reference implementations.

(gh-26656)

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​vahidmech +
  • Alex Herbert +
  • Charles Harris
  • Giovanni Del Monte +
  • Leo Singer
  • Lysandros Nikolaou
  • Matti Picus
  • Nathan Goldbaum
  • Patrick J. Roddy +
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Rostan Tabet +
  • Sebastian Berg
  • Tyler Reddy
  • Yannik Wicke +

Pull requests merged

A total of 24 pull requests were merged for this release.

  • #​26711: MAINT: prepare 2.0.x for further development
  • #​26792: TYP: fix incorrect import in ma/extras.pyi stub
  • #​26793: DOC: Mention '1.25' legacy printing mode in set_printoptions
  • #​26794: DOC: Remove mention of NaN and NAN aliases from constants
  • #​26821: BLD: Fix x86-simd-sort build failure on openBSD
  • #​26822: BUG: Ensure output order follows input in numpy.fft
  • #​26823: TYP: fix missing sys import in numeric.pyi
  • #​26832: DOC: remove hack to override _add_newdocs_scalars
  • #​26835: BUG: avoid side-effect of 'include complex.h'
  • #​26836: BUG: fix max_rows and chunked string/datetime reading in loadtxt
  • #​26837: BUG: fix PyArray_ImportNumPyAPI under -Werror=strict-prototypes
  • #​26856: DOC: Update some documentation
  • #​26868: BUG: fancy indexing copy
  • #​26869: BUG: Mismatched allocation domains in PyArray_FillWithScalar
  • #​26870: BUG: Handle --f77flags and --f90flags for meson [wheel build]
  • #​26887: BUG: Fix new DTypes and new string promotion when signature is...
  • #​26888: BUG: remove numpy.f2py from excludedimports
  • #​26959: BUG: Quantile closest_observation to round to nearest even order
  • #​26960: BUG: Fix off-by-one error in amount of characters in strip
  • #​26961: API: Partially revert unique with return_inverse
  • #​26962: BUG,MAINT: Fix utf-8 character stripping memory access
  • #​26963: BUG: Fix out-of-bound minimum offset for in1d table method
  • #​26971: BUG: fix f2py tests to work with v2 API
  • #​26995: BUG: Add object cast to avoid warning with limited API

Checksums

MD5
a3e7d0f361ee7302448cae3c10844dd3  numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl
cff8546b69e43ae7b5050f05bdc25df2  numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl
1713d23342528f4f8f4027970f010068  numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl
20020d28606ea58f986a262daa6018f1  numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl
db22154ea943a707917aebc79e449bc5  numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fe86cd85f240216f64eb076a62a229d2  numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e0ca08f85150af3cc6050d64e8c0bd27  numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
b76f432906f62e31f0e09c41f3f08b4c  numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl
28e8109e4ef524fa5c272d6faec870ae  numpy-2.0.1-cp310-cp310-win32.whl
874beffaefdc73da42300ce691c2419c  numpy-2.0.1-cp310-cp310-win_amd64.whl
7bbe029f650c924e952da117842d456d  numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl
6d3d6ae26c520e93cef7f11ba3951f57  numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl
de6082d719437eb7468ae31c407c503e  numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl
d15a8d95661f8a1dfcc4eb089f9b46e8  numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl
c181105e074ee575ccf2c992e40f947a  numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
00d22b299343fcdc78fbb0716ead6243  numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d9c4f49dbedb3f3d0158f00db459bd25  numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
63caa03e0625327ad3a756e01c83a6ca  numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl
99d01d768a115d448ca2b4680de15191  numpy-2.0.1-cp311-cp311-win32.whl
8d1a31eccc8b9f077312095b11f62cb2  numpy-2.0.1-cp311-cp311-win_amd64.whl
6cc86f7761a33941d8c1c552186e774b  numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl
67c48f352afff5f41108f1b9561d1d5c  numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl
1068d4eadcac6a869e0e457853b7e611  numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl
dfb667450315fddcf84381fc8ef16892  numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl
69822bbbbb65d8a7d00ae32b435f61cc  numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
883ed6c41395fb2def6cc0d64dcb817f  numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4b1e9fd464821a7d1de3a8ddf911311e  numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl
79e6557f40b8ed8f5973b404d98eab3d  numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl
85596f15d4cf85c2f78b4cc12c2cad1e  numpy-2.0.1-cp312-cp312-win32.whl
487c7c2944306f62b3770576ce903a91  numpy-2.0.1-cp312-cp312-win_amd64.whl
491093641afa21e65d6e629eb70571fc  numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl
5008b16c20f3d7e5a0c7764712f8908e  numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl
14633b898f863ea797c40ba1cf226c29  numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl
9054ecb69d21b364e59e94aab24247cb  numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl
be028cf4bb691921943939de17593dd7  numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9c440ad02ff0a954f696637de37aab2d  numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
27aec0d286eabe26d8e9149f4572dba1  numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
b02eda82ee511ee27185c8a4073ea35c  numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl
cf579b902325e023b2dc444692eb5991  numpy-2.0.1-cp39-cp39-win32.whl
302c8c3118a5f55d9ef35ed8e517f6b1  numpy-2.0.1-cp39-cp39-win_amd64.whl
34c17fe980accfb76c6f348f85b3cfef  numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
02676eb84379b0a223288d6fd9d76942  numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
b5300e6fe110bf69e1a8901c5c09e3f8  numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
204a3ea7fb851e08d166c74f73f9b8a3  numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl
5df3c50fc124c3167404d396115898d0  numpy-2.0.1.tar.gz
SHA256
0fbb536eac80e27a2793ffd787895242b7f18ef792563d742c2d673bfcb75134  numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl
69ff563d43c69b1baba77af455dd0a839df8d25e8590e79c90fcbe1499ebde42  numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl
1b902ce0e0a5bb7704556a217c4f63a7974f8f43e090aff03fcf262e0b135e02  numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl
f1659887361a7151f89e79b276ed8dff3d75877df906328f14d8bb40bb4f5101  numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl
4658c398d65d1b25e1760de3157011a80375da861709abd7cef3bad65d6543f9  numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4127d4303b9ac9f94ca0441138acead39928938660ca58329fe156f84b9f3015  numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e5eeca8067ad04bc8a2a8731183d51d7cbaac66d86085d5f4766ee6bf19c7f87  numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
9adbd9bb520c866e1bfd7e10e1880a1f7749f1f6e5017686a5fbb9b72cf69f82  numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl
7b9853803278db3bdcc6cd5beca37815b133e9e77ff3d4733c247414e78eb8d1  numpy-2.0.1-cp310-cp310-win32.whl
81b0893a39bc5b865b8bf89e9ad7807e16717f19868e9d234bdaf9b1f1393868  numpy-2.0.1-cp310-cp310-win_amd64.whl
75b4e316c5902d8163ef9d423b1c3f2f6252226d1aa5cd8a0a03a7d01ffc6268  numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl
6e4eeb6eb2fced786e32e6d8df9e755ce5be920d17f7ce00bc38fcde8ccdbf9e  numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl
a1e01dcaab205fbece13c1410253a9eea1b1c9b61d237b6fa59bcc46e8e89343  numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl
a8fc2de81ad835d999113ddf87d1ea2b0f4704cbd947c948d2f5513deafe5a7b  numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl
5a3d94942c331dd4e0e1147f7a8699a4aa47dffc11bf8a1523c12af8b2e91bbe  numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
15eb4eca47d36ec3f78cde0a3a2ee24cf05ca7396ef808dda2c0ddad7c2bde67  numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b83e16a5511d1b1f8a88cbabb1a6f6a499f82c062a4251892d9ad5d609863fb7  numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
1f87fec1f9bc1efd23f4227becff04bd0e979e23ca50cc92ec88b38489db3b55  numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl
36d3a9405fd7c511804dc56fc32974fa5533bdeb3cd1604d6b8ff1d292b819c4  numpy-2.0.1-cp311-cp311-win32.whl
08458fbf403bff5e2b45f08eda195d4b0c9b35682311da5a5a0a0925b11b9bd8  numpy-2.0.1-cp311-cp311-win_amd64.whl
6bf4e6f4a2a2e26655717a1983ef6324f2664d7011f6ef7482e8c0b3d51e82ac  numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl
7d6fddc5fe258d3328cd8e3d7d3e02234c5d70e01ebe377a6ab92adb14039cb4  numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl
5daab361be6ddeb299a918a7c0864fa8618af66019138263247af405018b04e1  numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl
ea2326a4dca88e4a274ba3a4405eb6c6467d3ffbd8c7d38632502eaae3820587  numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl
529af13c5f4b7a932fb0e1911d3a75da204eff023ee5e0e79c1751564221a5c8  numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6790654cb13eab303d8402354fabd47472b24635700f631f041bd0b65e37298a  numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cbab9fc9c391700e3e1287666dfd82d8666d10e69a6c4a09ab97574c0b7ee0a7  numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl
99d0d92a5e3613c33a5f01db206a33f8fdf3d71f2912b0de1739894668b7a93b  numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl
173a00b9995f73b79eb0191129f2455f1e34c203f559dd118636858cc452a1bf  numpy-2.0.1-cp312-cp312-win32.whl
bb2124fdc6e62baae159ebcfa368708867eb56806804d005860b6007388df171  numpy-2.0.1-cp312-cp312-win_amd64.whl
bfc085b28d62ff4009364e7ca34b80a9a080cbd97c2c0630bb5f7f770dae9414  numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl
8fae4ebbf95a179c1156fab0b142b74e4ba4204c87bde8d3d8b6f9c34c5825ef  numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl
72dc22e9ec8f6eaa206deb1b1355eb2e253899d7347f5e2fae5f0af613741d06  numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl
ec87f5f8aca726117a1c9b7083e7656a9d0d606eec7299cc067bb83d26f16e0c  numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl
1f682ea61a88479d9498bf2091fdcd722b090724b08b31d63e022adc063bad59  numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8efc84f01c1cd7e34b3fb310183e72fcdf55293ee736d679b6d35b35d80bba26  numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3fdabe3e2a52bc4eff8dc7a5044342f8bd9f11ef0934fcd3289a788c0eb10018  numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
24a0e1befbfa14615b49ba9659d3d8818a0f4d8a1c5822af8696706fbda7310c  numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl
f9cf5ea551aec449206954b075db819f52adc1638d46a6738253a712d553c7b4  numpy-2.0.1-cp39-cp39-win32.whl
e9e81fa9017eaa416c056e5d9e71be93d05e2c3c2ab308d23307a8bc4443c368  numpy-2.0.1-cp39-cp39-win_amd64.whl
61728fba1e464f789b11deb78a57805c70b2ed02343560456190d0501ba37b0f  numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
12f5d865d60fb9734e60a60f1d5afa6d962d8d4467c120a1c0cda6eb2964437d  numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
eacf3291e263d5a67d8c1a581a8ebbcfd6447204ef58828caf69a5e3e8c75990  numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2c3a346ae20cfd80b6cfd3e60dc179963ef2ea58da5ec074fd3d9e7a1e7ba97f  numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl
485b87235796410c3519a699cfe1faab097e509e90ebb05dcd098db2ae87e7b3  numpy-2.0.1.tar.gz

v2.0.0

Compare Source

NumPy 2.0.0 Release Notes

NumPy 2.0.0 is the first major release since 2006. It is the result of
11 months of development since the last feature release and is the work
of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python
and C APIs.

This major release includes breaking changes that could not happen in a
regular minor (feature) release - including an ABI break, changes to
type promotion rules, and API changes which may not have been emitting
deprecation warnings in 1.26.x. Key documents related to how to adapt to
changes in NumPy 2.0, in addition to these release notes, include:

Highlights

Highlights of this release include:

  • New features:
    • A new variable-length string dtype, numpy.dtypes.StringDType and a new
      numpy.strings namespace with performant ufuncs for string operations,
    • Support for float32 and longdouble in all
      numpy.fft functions,
    • Support for the array API standard in the main numpy
      namespace.
  • Performance improvements:
    • Sorting functions sort, argsort,
      partition, argpartition have been
      accelerated through the use of the Intel x86-simd-sort and
      Google Highway libraries, and may see large (hardware-specific)
      speedups,
    • macOS Accelerate support and binary wheels for macOS >=14, with
      significant performance improvements for linear algebra
      operations on macOS, and wheels that are about 3 times smaller,
    • numpy.char fixed-length string operations have
      been accelerated by implementing ufuncs that also support
      numpy.dtypes.StringDType in addition to the
      fixed-length string dtypes,
    • A new tracing and introspection API,
      numpy.lib.introspect.opt_func_info, to determine
      which hardware-specific kernels are available and will be
      dispatched to.
    • numpy.save now uses pickle protocol version 4 for saving
      arrays with object dtype, which allows for pickle objects larger
      than 4GB and improves saving speed by about 5% for large arrays.
  • Python API improvements:
    • A clear split between public and private API, with a new module
      structure and each public function now available in a single place.
    • Many removals of non-recommended functions and aliases. This
      should make it easier to learn and use NumPy. The number of
      objects in the main namespace decreased by ~10% and in
      numpy.lib by ~80%.
    • Canonical dtype names and a new numpy.isdtype` introspection
      function,
  • C API improvements:
    • A new public C API for creating custom dtypes,
    • Many outdated functions and macros removed, and private
      internals hidden to ease future extensibility,
    • New, easier to use, initialization functions: PyArray_ImportNumPyAPI
      and PyUFunc_ImportUFuncAPI.
  • Improved behavior:
    • Improvements to type promotion behavior was changed by adopting NEP 50.
      This fixes many user surprises about promotions which previously often
      depended on data values of input arrays rather than only their dtypes.
      Please see the NEP and the numpy-2-migration-guide for details as this
      change can lead to changes in output dtypes and lower precision results
      for mixed-dtype operations.
    • The default integer type on Windows is now int64 rather than
      int32, matching the behavior on other platforms,
    • The maximum number of array dimensions is changed from 32 to 64
  • Documentation:
    • The reference guide navigation was significantly improved, and
      there is now documentation on NumPy's
      module structure,
    • The building from source documentation was completely rewritten,

Furthermore there are many changes to NumPy internals, including
continuing to migrate code from C to C++, that will make it easier to
improve and maintain NumPy in the future.

The "no free lunch" theorem dictates that there is a price to pay for
all these API and behavior improvements and better future extensibility.
This price is:

  1. Backwards compatibility. There are a significant number of breaking
    changes to both the Python and C APIs. In the majority of cases,
    there are clear error messages that will inform the user how to
    adapt their code. However, there are also changes in behavior for
    which it was not possible to give such an error message - these
    cases are all covered in the Deprecation and Compatibility sections
    below, and in the numpy-2-migration-guide.

    Note that there is a ruff mode to auto-fix many things in Python
    code.

  2. Breaking changes to the NumPy ABI. As a result, binaries of packages
    that use the NumPy C API and were built against a NumPy 1.xx release
    will not work with NumPy 2.0. On import, such packages will see an
    ImportError with a message about binary incompatibility.

    It is possible to build binaries against NumPy 2.0 that will work at
    runtime with both NumPy 2.0 and 1.x. See numpy-2-abi-handling for more
    details.

    All downstream packages that depend on the NumPy ABI are advised
    to do a new release built against NumPy 2.0 and verify that that
    release works with both 2.0 and 1.26 - ideally in the period between
    2.0.0rc1 (which will be ABI-stable) and the final 2.0.0 release to
    avoid problems for their users.

The Python versions supported by this release are 3.9-3.12.

NumPy 2.0 Python API removals

  • np.geterrobj, np.seterrobj and the related ufunc keyword
    argument extobj= have been removed. The preferred replacement for
    all of these is using the context manager with np.errstate():.

    (gh-23922)

  • np.cast has been removed. The literal replacement for
    np.cast[dtype](arg) is np.asarray(arg, dtype=dtype).

  • np.source has been removed. The preferred replacement is
    inspect.getsource.

  • np.lookfor has been removed.

    (gh-24144)

  • numpy.who has been removed. As an alternative for the removed
    functionality, one can use a variable explorer that is available in
    IDEs such as Spyder or Jupyter Notebook.

    (gh-24321)

  • Warnings and exceptions present in numpy.exceptions,
    e.g, numpy.exceptions.ComplexWarning,
    numpy.exceptions.VisibleDeprecationWarning, are no
    longer exposed in the main namespace.

  • Multiple niche enums, expired members and functions have been
    removed from the main namespace, such as: ERR_*, SHIFT_*,
    np.fastCopyAndTranspose, np.kernel_version, np.numarray,
    np.oldnumeric and np.set_numeric_ops.

    (gh-24316)

  • Replaced from ... import * in the numpy/__init__.py with
    explicit imports. As a result, these main namespace members got
    removed: np.FLOATING_POINT_SUPPORT, np.FPE_*, np.NINF,
    np.PINF, np.NZERO, np.PZERO, np.CLIP, np.WRAP, np.WRAP,
    np.RAISE, np.BUFSIZE, np.UFUNC_BUFSIZE_DEFAULT,
    np.UFUNC_PYVALS_NAME, np.ALLOW_THREADS, np.MAXDIMS,
    np.MAY_SHARE_EXACT, np.MAY_SHARE_BOUNDS, add_newdoc,
    np.add_docstring and np.add_newdoc_ufunc.

    (gh-24357)

  • Alias np.float_ has been removed. Use np.float64 instead.

  • Alias np.complex_ has been removed. Use np.complex128 instead.

  • Alias np.longfloat has been removed. Use np.longdouble instead.

  • Alias np.singlecomplex has been removed. Use np.complex64
    instead.

  • Alias np.cfloat has been removed. Use np.complex128 instead.

  • Alias np.longcomplex has been removed. Use np.clongdouble
    instead.

  • Alias np.clongfloat has been removed. Use np.clongdouble
    instead.

  • Alias np.string_ has been removed. Use np.bytes_ instead.

  • Alias np.unicode_ has been removed. Use np.str_ instead.

  • Alias np.Inf has been removed. Use np.inf instead.

  • Alias np.Infinity has been removed. Use np.inf instead.

  • Alias np.NaN has been removed. Use np.nan instead.

  • Alias np.infty has been removed. Use np.inf instead.

  • Alias np.mat has been removed. Use np.asmatrix instead.

  • np.issubclass_ has been removed. Use the issubclass builtin
    instead.

  • np.asfarray has been removed. Use np.asarray with a proper dtype
    instead.

  • np.set_string_function has been removed. Use np.set_printoptions
    instead with a formatter for custom printing of NumPy objects.

  • np.tracemalloc_domain is now only available from np.lib.

  • np.recfromcsv and recfromtxt are now only available from
    np.lib.npyio.

  • np.issctype, np.maximum_sctype, np.obj2sctype,
    np.sctype2char, np.sctypes, np.issubsctype were all removed
    from the main namespace without replacement, as they where niche
    members.

  • Deprecated np.deprecate and np.deprecate_with_doc has been
    removed from the main namespace. Use DeprecationWarning instead.

  • Deprecated np.safe_eval has been removed from the main namespace.
    Use ast.literal_eval instead.

    (gh-24376)

  • np.find_common_type has been removed. Use numpy.promote_types or
    numpy.result_type instead. To achieve semantics for the
    scalar_types argument, use numpy.result_type and pass 0,
    0.0, or 0j as a Python scalar instead.

  • np.round_ has been removed. Use np.round instead.

  • np.nbytes has been removed. Use np.dtype(<dtype>).itemsize
    instead.

    (gh-24477)

  • np.compare_chararrays has been removed from the main namespace.
    Use np.char.compare_chararrays instead.

  • The charrarray in the main namespace has been deprecated. It can
    be imported without a deprecation warning from np.char.chararray
    for now, but we are planning to fully deprecate and remove
    chararray in the future.

  • np.format_parser has been removed from the main namespace. Use
    np.rec.format_parser instead.

    (gh-24587)

  • Support for seven data type string aliases has been removed from
    np.dtype: int0, uint0, void0, object0, str0, bytes0
    and bool8.

    (gh-24807)

  • The experimental numpy.array_api submodule has been removed. Use
    the main numpy namespace for regular usage instead, or the
    separate array-api-strict package for the compliance testing use
    case for which numpy.array_api was mostly used.

    (gh-25911)

__array_prepare__ is removed

UFuncs called __array_prepare__ before running computations for normal
ufunc calls (not generalized ufuncs, reductions, etc.). The function was
also called instead of __array_wrap__ on the results of some linear
algebra functions.

It is now removed. If you use it, migrate to __array_ufunc__ or rely
on __array_wrap__ which is called with a context in all cases,
although only after the result array is filled. In those code paths,
__array_wrap__ will now be passed a base class, rather than a subclass
array.

(gh-25105)

Deprecations

  • np.compat has been deprecated, as Python 2 is no longer supported.

  • numpy.int8 and similar classes will no longer support conversion
    of out of bounds python integers to integer arrays. For example,
    conversion of 255 to int8 will not return -1. numpy.iinfo(dtype)
    can be used to check the machine limits for data types. For example,
    np.iinfo(np.uint16) returns min = 0 and max = 65535.

    np.array(value).astype(dtype) will give the desired result.

  • np.safe_eval has been deprecated. ast.literal_eval should be
    used instead.

    (gh-23830)

  • np.recfromcsv, np.recfromtxt, np.disp, np.get_array_wrap,
    np.maximum_sctype, np.deprecate and np.deprecate_with_doc have
    been deprecated.

    (gh-24154)

  • np.trapz has been deprecated. Use np.trapezoid or a
    scipy.integrate function instead.

  • np.in1d has been deprecated. Use np.isin instead.

  • Alias np.row_stack has been deprecated. Use np.vstack directly.

    (gh-24445)

  • __array_wrap__ is now passed arr, context, return_scalar and
    support for implementations not accepting all three are deprecated.
    Its signature should be
    __array_wrap__(self, arr, context=None, return_scalar=False)

    (gh-25409)

  • Arrays of 2-dimensional vectors for np.cross have been deprecated.
    Use arrays of 3-dimensional vectors instead.

    (gh-24818)

  • np.dtype("a") alias for np.dtype(np.bytes_) was deprecated. Use
    np.dtype("S") alias instead.

    (gh-24854)

  • Use of keyword arguments x and y with functions
    assert_array_equal and assert_array_almost_equal has been
    deprecated. Pass the first two arguments as positional arguments
    instead.

    (gh-24978)

numpy.fft deprecations for n-D transforms with None values in arguments

Using fftn, ifftn, rfftn, irfftn, fft2, ifft2, rfft2 or
irfft2 with the s parameter set to a value that is not None and
the axes parameter set to None has been deprecated, in line with the
array API standard. To retain current behaviour, pass a sequence [0,
..., k-1] to axes for an array of dimension k.

Furthermore, passing an array to s which contains None values is
deprecated as the parameter is documented to accept a sequence of
integers in both the NumPy docs and the array API specification. To use
the default behaviour of the corresponding 1-D transform, pass the value
matching the default for its n parameter. To use the default behaviour
for every axis, the s argument can be omitted.

(gh-25495)

np.linalg.lstsq now defaults to a new rcond value

numpy.linalg.lstsq now uses the new rcond value of the
machine precision times max(M, N). Previously, the machine precision
was used but a FutureWarning was given to notify that this change will
happen eventually. That old behavior can still be achieved by passing
rcond=-1.

(gh-25721)

Expired deprecations

  • The np.core.umath_tests submodule has been removed from the public
    API. (Deprecated in NumPy 1.15)

    (gh-23809)

  • The PyDataMem_SetEventHook deprecation has expired and it is
    removed. Use tracemalloc and the np.lib.tracemalloc_domain
    domain. (Deprecated in NumPy 1.23)

    (gh-23921)

  • The deprecation of set_numeric_ops and the C functions
    PyArray_SetNumericOps and PyArray_GetNumericOps has been expired
    and the functions removed. (Deprecated in NumPy 1.16)

    (gh-23998)

  • The fasttake, fastclip, and fastputmask ArrFuncs deprecation
    is now finalized.

  • The deprecated function fastCopyAndTranspose and its C counterpart
    are now removed.

  • The deprecation of PyArray_ScalarFromObject is now finalized.

    (gh-24312)

  • np.msort has been removed. For a replacement, np.sort(a, axis=0)
    should be used instead.

    (gh-24494)

  • np.dtype(("f8", 1) will now return a shape 1 subarray dtype rather
    than a non-subarray one.

    (gh-25761)

  • Assigning to the .data attribute of an ndarray is disallowed and
    will raise.

  • np.binary_repr(a, width) will raise if width is too small.

  • Using NPY_CHAR in PyArray_DescrFromType() will raise, use
    NPY_STRING NPY_UNICODE, or NPY_VSTRING instead.

    (gh-25794)

Compatibility notes

loadtxt and genfromtxt default encoding changed

loadtxt and genfromtxt now both default to encoding=None which may
mainly modify how converters work. These will now be passed str
rather than bytes. Pass the encoding explicitly to always get the new
or old behavior. For genfromtxt the change also means that returned
values will now be unicode strings rather than bytes.

(gh-25158)

f2py compatibility notes
  • f2py will no longer accept ambiguous -m and .pyf CLI
    combinations. When more than one .pyf file is passed, an error is
    raised. When both -m and a .pyf is passed, a warning is emitted
    and the -m provided name is ignored.

    (gh-25181)

  • The f2py.compile() helper has been removed because it leaked
    memory, has been marked as experimental for several years now, and
    was implemented as a thin subprocess.run wrapper. It was also one
    of the test bottlenecks. See
    gh-25122 for the full
    rationale. It also used several np.distutils features which are
    too fragile to be ported to work with meson.

  • Users are urged to replace calls to f2py.compile with calls to
    subprocess.run("python", "-m", "numpy.f2py",... instead, and to
    use environment variables to interact with meson. Native
    files
    are also an
    option.

    (gh-25193)

Minor changes in behavior of sorting functions

Due to algorithmic changes and use of SIMD code, sorting functions with
methods that aren't stable may return slightly different results in
2.0.0 compared to 1.26.x. This includes the default method of
numpy.argsort and numpy.argpartition.

Removed ambiguity when broadcasting in np.solve

The broadcasting rules for np.solve(a, b) were ambiguous when b had
1 fewer dimensions than a. This has been resolved in a
backward-incompatible way and is now compliant with the Array API. The
old behaviour can be reconstructed by using
np.solve(a, b[..., None])[..., 0].

(gh-25914)

Modified representation for Polynomial

The representation method for
numpy.polynomial.polynomial.Polynomial was updated to
include the domain in the representation. The plain text and latex
representations are now consistent. For example the output of
str(np.polynomial.Polynomial([1, 1], domain=[.1, .2])) used to be
1.0 + 1.0 x, but now is 1.0 + 1.0 (-3.0000000000000004 + 20.0 x).

(gh-21760)

C API changes

  • The PyArray_CGT, PyArray_CLT, PyArray_CGE, PyArray_CLE,
    PyArray_CEQ, PyArray_CNE macros have been removed.

  • PyArray_MIN and PyArray_MAX have been moved from
    ndarraytypes.h to npy_math.h.

    (gh-24258)

  • A C API for working with numpy.dtypes.StringDType
    arrays has been exposed. This includes functions for acquiring and
    releasing mutexes which lock access to the string data, as well as
    packing and unpacking UTF-8 bytestreams from array entries.

  • NPY_NTYPES has been renamed to NPY_NTYPES_LEGACY as it does not
    include new NumPy built-in DTypes. In particular the new string
    DType will likely not work correctly with code that handles legacy
    DTypes.

    (gh-25347)

  • The C-API now only exports the static inline function versions of
    the array accessors (previously this depended on using "deprecated
    API"). While we discourage it, the struct fields can still be used
    directly.

    (gh-25789)

  • NumPy now defines PyArray_Pack to set an individual memory address.
    Unlike PyArray_SETITEM this function is equivalent to setting an
    individual array item and does not require a NumPy array input.

    (gh-25954)

  • The ->f slot has been removed from PyArray_Descr. If you use this slot,
    replace accessing it with PyDataType_GetArrFuncs (see its documentation
    and the numpy-2-migration-guide). In some cases using other functions
    like PyArray_GETITEM may be an alternatives.

  • PyArray_GETITEM and PyArray_SETITEM now require the import of
    the NumPy API table to be used and are no longer defined in
    ndarraytypes.h.

    (gh-25812)

  • Due to runtime dependencies, the definition for functionality
    accessing the dtype flags was moved from numpy/ndarraytypes.h and
    is only available after including numpy/ndarrayobject.h as it
    requires import_array(). This includes PyDataType_FLAGCHK,
    PyDataType_REFCHK and NPY_BEGIN_THREADS_DESCR.

  • The dtype flags on PyArray_Descr must now be accessed through the
    PyDataType_FLAGS inline function to be compatible with both 1.x
    and 2.x. This function is defined in npy_2_compat.h to allow
    backporting. Most or all users should use PyDataType_FLAGCHK which
    is available on 1.x and does not require backporting. Cython users
    should use Cython 3. Otherwise access will go through Python unless
    they use PyDataType_FLAGCHK instead.

    (gh-25816)

Datetime functionality exposed in the C API and Cython bindings

The functions NpyDatetime_ConvertDatetime64ToDatetimeStruct,
NpyDatetime_ConvertDatetimeStructToDatetime64,
NpyDatetime_ConvertPyDateTimeToDatetimeStruct,
NpyDatetime_GetDatetimeISO8601StrLen,
NpyDatetime_MakeISO8601Datetime, and
NpyDatetime_ParseISO8601Datetime have been added to the C API to
facilitate converting between strings, Python datetimes, and NumPy
datetimes in external libraries.

(gh-21199)

Const correctness for the generalized ufunc C API

The NumPy C API's functions for constructing generalized ufuncs
(PyUFunc_FromFuncAndData, PyUFunc_FromFuncAndDataAndSignature,
PyUFunc_FromFuncAndDataAndSignatureAndIdentity) take types and
data arguments that are not modified by NumPy's internals. Like the
name and doc arguments, third-party Python extension modules are
likely to supply these arguments from static constants. The types and
data arguments are now const-correct: they are declared as
const char *types and void *const *data, respectively. C code should
not be affected, but C++ code may be.

(gh-23847)

Larger NPY_MAXDIMS and NPY_MAXARGS, NPY_RAVEL_AXIS introduced

NPY_MAXDIMS is now 64, you may want to review its use. This is usually
used in a stack allocation, where the increase should be safe. However,
we do encourage generally to remove any use of NPY_MAXDIMS and
NPY_MAXARGS to eventually allow removing the constraint completely.
For the conversion helper and C-API functions mirroring Python ones such as
take, NPY_MAXDIMS was used to mean axis=None. Such usage must be replaced
with NPY_RAVEL_AXIS. See also migration_maxdims.

(gh-25149)

NPY_MAXARGS not constant and PyArrayMultiIterObject size change

Since NPY_MAXARGS was increased, it is now a runtime constant and not
compile-time constant anymore. We expect almost no users to notice this.
But if used for stack allocations it now must be replaced with a custom
constant using NPY_MAXARGS as an additional runtime check.

The sizeof(PyArrayMultiIterObject) no longer includes the full size of
the object. We expect nobody to notice this change. It was necessary to
avoid issues with Cython.

(gh-25271)

Required changes for custom legacy user dtypes

In order to improve our DTypes it is unfortunately necessary to break
the ABI, which requires some changes for dtypes registered with
PyArray_RegisterDataType. Please see the documentation of
PyArray_RegisterDataType for how to adapt your code and achieve
compatibility with both 1.x and 2.x.

(gh-25792)

New Public DType API

The C implementation of the NEP 42 DType API is now public. While the
DType API has shipped in NumPy for a few versions, it was only usable in
sessions with a special environment variable set. It is now possible to
write custom DTypes outside of NumPy using the new DType API and the
normal import_array() mechanism for importing the numpy C API.

See dtype-api for more details about the API. As always with a new feature,
please report any bugs you run into implementing or using a new DType. It is
likely that downstream C code that works with dtypes will need to be updated to
work correctly with new DTypes.

(gh-25754)

New C-API import functions

We have now added PyArray_ImportNumPyAPI and PyUFunc_ImportUFuncAPI
as static inline functions to import the NumPy C-API tables. The new
functions have two advantages over import_array and import_ufunc:

  • They check whether the import was already performed and are
    light-weight if not, allowing to add them judiciously (although this
    is not preferable in most cases).
  • The old mechanisms were macros rather than functions which included
    a return statement.

The PyArray_ImportNumPyAPI() function is included in npy_2_compat.h
for simpler backporting.

(gh-25866)

Structured dtype information access through functions

The dtype structures fields c_metadata, names, fields, and
subarray must now be accessed through new functions following the same
names, such as PyDataType_NAMES. Direct access of the fields is not
valid as they do not exist for all PyArray_Descr instances. The
metadata field is kept, but the macro version should also be
preferred.

(gh-25802)

Descriptor elsize and alignment access

Unless compiling only with NumPy 2 support, the elsize and aligment
fields must now be accessed via PyDataType_ELSIZE,
PyDataType_SET_ELSIZE, and PyDataType_ALIGNMENT. In cases where the
descriptor is attached to an array, we advise using PyArray_ITEMSIZE
as it exists on all NumPy versions. Please see
migration_c_descr for more information.

(gh-25943)

NumPy 2.0 C API removals

  • npy_interrupt.h and the corresponding macros like NPY_SIGINT_ON
    have been removed. We recommend querying PyErr_CheckSignals() or
    PyOS_InterruptOccurred() periodically (these do currently require
    holding the GIL though).

  • The noprefix.h header has been removed. Replace missing symbols
    with their prefixed counterparts (usually an added NPY_ or
    npy_).

    (gh-23919)

  • PyUFunc_GetPyVals, PyUFunc_handlefperr, and PyUFunc_checkfperr
    have been removed. If needed, a new backwards compatible function to
    raise floating point errors could be restored. Reason for removal:
    there are no known users and the functions would have made
    with np.errstate() fixes much more difficult).

    (gh-23922)

  • The numpy/old_defines.h which was part of the API deprecated since
    NumPy 1.7 has been removed. This removes macros of the form
    PyArray_CONSTANT. The
    replace_old_macros.sed
    script may be useful to convert them to the NPY_CONSTANT version.

    (gh-24011)

  • The legacy_inner_loop_selector member of the ufunc struct is
    removed to simplify improvements to the dispatching system. There
    are no known users overriding or directly accessing this member.

    (gh-24271)

  • NPY_INTPLTR has been removed to avoid confusion (see intp
    redefinition).

    (gh-24888)

  • The advanced indexing MapIter and related API has been removed.
    The (truly) public part of it was not well tested and had only one
    known user (Theano). Making it private will simplify improvements to
    speed up ufunc.at, make advanced indexing more maintainable, and
    was important for increasing the maximum number of dimensions of
    arrays to 64. Please let us know if this API is important to you so
    we can find a solution together.

    (gh-25138)

  • The NPY_MAX_ELSIZE macro has been removed, as it only ever
    reflected builtin numeric types and served no internal purpose.

    (gh-25149)

  • PyArray_REFCNT and NPY_REFCOUNT are removed. Use Py_REFCNT
    instead.

    (gh-25156)

  • PyArrayFlags_Type and PyArray_NewFlagsObject as well as
    PyArrayFlagsObject are private now. There is no known use-case;
    use the Python API if needed.

  • PyArray_MoveInto, PyArray_CastTo, PyArray_CastAnyTo are
    removed use PyArray_CopyInto and if absolutely needed
    PyArray_CopyAnyInto (the latter does a flat copy).

  • PyArray_FillObjectArray is removed, its only true use was for
    implementing np.empty. Create a new empty array or use
    PyArray_FillWithScalar() (decrefs existing objects).

  • PyArray_CompareUCS4 and PyArray_CompareString are removed. Use
    the standard C string comparison functions.

  • PyArray_ISPYTHON is removed as it is misleading, has no known
    use-cases, and is easy to replace.

  • PyArray_FieldNames is removed, as it is unclear what it would be
    useful for. It also has incorrect semantics in some possible
    use-cases.

  • PyArray_TypestrConvert is removed, since it seems a misnomer and
    unlikely to be used by anyone. If you know the size or are limited
    to few types, just use it explicitly, otherwise go via Python
    strings.

    (gh-25292)

  • PyDataType_GetDatetimeMetaData is removed, it did not actually do
    anything since at least NumPy 1.7.

    (gh-25802)

  • PyArray_GetCastFunc is removed. Note that custom legacy user
    dtypes can still provide a castfunc as their implementation, but any
    access to them is now removed. The reason for this is that NumPy
    never used these internally for many years. If you use simple
    numeric types, please just use C casts directly. In case you require
    an alternative, please let us know so we can create new API such as
    PyArray_CastBuffer() which could use old or new cast functions
    depending on the NumPy version.

    (gh-25161)

New Features

np.add was extended to work with unicode and bytes dtypes.

(gh-24858)

A new bitwise_count function

This new function counts the number of 1-bits in a number.
numpy.bitwise_count works on all the numpy integer types
and integer-like objects.

>>> a = np.array([2**i - 1 for i in range(16)])
>>> np.bitwise_count(a)
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15],
      dtype=uint8)

(gh-19355)

macOS Accelerate support, including the ILP64

Support for the updated Accelerate BLAS/LAPACK library, including ILP64
(64-bit integer) support, in macOS 13.3 has been added. This brings
arm64 support, and significant performance improvements of up to 10x for
commonly used linear algebra operations. When Accelerate is selected at
build time, or if no explicit BLAS library selection is done, the 13.3+
version will automatically be used if available.

(gh-24053)

Binary wheels are also available. On macOS >=14.0, users who install
NumPy from PyPI will get wheels built against Accelerate rather than
OpenBLAS.

(gh-25255)

Option to use weights for quantile and percentile functions

A weights keyword is now available for numpy.quantile, numpy.percentile,
numpy.nanquantile and numpy.nanpercentile. Only method="inverted_cdf"
supports weights.

(gh-24254)

Improved CPU optimization tracking

A new tracer mechanism is available which enables tracking of the
enabled targets for each optimized function (i.e., that uses
hardware-specific SIMD instructions) in the NumPy library. With this
enhancement, it becomes possible to precisely monitor the enabled CPU
dispatch targets for the dispatched functions.

A new function named opt_func_info has been added to the new namespace
numpy.lib.introspect, offering this tracing capability. This function allows
you to retrieve information about the enabled targets based on function names
and data type signatures.

(gh-24420)

A new Meson backend for f2py

f2py in compile mode (i.e. f2py -c) now accepts the
--backend meson option. This is the default option for Python >=3.12.
For older Python versions, f2py will still default to
--backend distutils.

To support this in realistic use-cases, in compile mode f2py takes a
--dep flag one or many times which maps to dependency() calls in the
meson backend, and does nothing in the distutils backend.

There are no changes for users of f2py only as a code generator, i.e.
without -c.

(gh-24532)

bind(c) support for f2py

Both functions and subroutines can be annotated with bind(c). f2py
will handle both the correct type mapping, and preserve the unique label
for other C interfaces.

Note: bind(c, name = 'routine_name_other_than_fortran_routine') is
not honored by the f2py bindings by design, since bind(c) with the
name is meant to guarantee only the same name in C and Fortran, not in
Python and Fortran.

(gh-24555)

A new strict option for several testing functions

The strict keyword is now available for numpy.testing.assert_allclose,
numpy.testing.assert_equal, and numpy.testing.assert_array_less. Setting
strict=True will disable the broadcasting behaviour for scalars and ensure
that input arrays have the same data type.

(gh-24680,
gh-24770,
gh-24775)

Add np.core.umath.find and np.core.umath.rfind UFuncs

Add two find and rfind UFuncs that operate on unicode or byte
strings and are used in np.char. They operate similar to str.find
and str.rfind.

(gh-24868)

diagonal and trace for numpy.linalg

numpy.linalg.diagonal and numpy.linalg.trace have been added, which are
array API standard-compatible variants of numpy.diagonal and numpy.trace.
They differ in the default axis selection which define 2-D sub-arrays.

(gh-24887)

New long and ulong dtypes

numpy.long and numpy.ulong have been added as NumPy integers mapping to
C's long and unsigned long. Prior to NumPy 1.24, numpy.long was an alias
to Python's int.

(gh-24922)

svdvals for numpy.linalg

numpy.linalg.svdvals has been added. It computes singular values for (a stack
of) matrices. Executing np.svdvals(x) is the same as calling np.svd(x, compute_uv=False, hermitian=False). This function is compatible with the array
API standard.

(gh-24940)

A new isdtype function

numpy.isdtype was added to provide a canonical way to classify NumPy's
dtypes in compliance with the array API standard.

(gh-25054)

A new astype function

numpy.astype was added to provide an array API standard-compatible
alternative to the numpy.ndarray.astype method.

(gh-25079)

Array API compatible functions' aliases

13 aliases for existing functions were added to improve compatibility
with the array API standard:

  • Trigonometry: acos, acosh, asin, asinh, atan, atanh,
    atan2.
  • Bitwise: bitwise_left_shift, bitwise_invert,
    bitwise_right_shift.
  • Misc: concat, permute_dims, pow.
  • In numpy.linalg: tensordot, matmul.

(gh-25086)

New unique_* functions

The numpy.unique_all, numpy.unique_counts, numpy.unique_inverse, and
numpy.unique_values functions have been added. They provide functionality of
numpy.unique with different sets of flags. They are array API
standard-compatible, and because the number of arrays they return does not
depend on the values of input arguments, they are easier to target for JIT
compilation.

(gh-25088)

Matrix transpose support for ndarrays

NumPy now offers support for calculating the matrix transpose of an
array (or stack of arrays). The matrix transpose is equivalent to
swapping the last two axes of an array. Both np.ndarray and
np.ma.MaskedArray now expose a .mT attribute, and there is a
matching new numpy.matrix_transpose function.

(gh-23762)

Array API compatible functions for numpy.linalg

Six new functions and two aliases were added to improve compatibility
with the Array API standard for `numpy.linalg`:

  • numpy.linalg.matrix_norm - Computes the matrix norm of
    a matrix (or a stack of matrices).

  • numpy.linalg.vector_norm - Computes the vector norm of
    a vector (or batch of vectors).

  • numpy.vecdot - Computes the (vector) dot product of
    two arrays.

  • numpy.linalg.vecdot - An alias for
    numpy.vecdot.

  • numpy.linalg.matrix_transpose - An alias for
    numpy.matrix_transpose.

    (gh-25155)

  • numpy.linalg.outer has been added. It computes the
    outer product of two vectors. It differs from
    numpy.outer by accepting one-dimensional arrays only.
    This function is compatible with the array API standard.

    (gh-25101)

  • numpy.linalg.cross has been added. It computes the
    cross product of two (arrays of) 3-dimensional vectors. It differs
    from numpy.cross by accepting three-dimensional
    vectors only. This function is compatible with the array API
    standard.

    (gh-25145)

A correction argument for var and std

A correction argument was added to numpy.var and numpy.std, which is an
array API standard compatible alternative to ddof. As both arguments serve a
similar purpose, only one of them can be provided at the same time.

(gh-25169)

ndarray.device and ndarray.to_device

An ndarray.device attribute and ndarray.to_device method were added
to numpy.ndarray for array API standard compatibility.

Additionally, device keyword-only arguments were added to:
numpy.asarray, numpy.arange, numpy.empty, numpy.empty_like,
numpy.eye, numpy.full, numpy.full_like, numpy.linspace, numpy.ones,
numpy.ones_like, numpy.zeros, and numpy.zeros_like.

For all these new arguments, only device="cpu" is supported.

(gh-25233)

StringDType has been added to NumPy

We have added a new variable-width UTF-8 encoded string data type, implementing
a "NumPy array of Python strings", including support for a user-provided
missing data sentinel. It is intended as a drop-in replacement for arrays of
Python strings and missing data sentinels using the object dtype. See
NEP 55 and the documentation
of stringdtype for more details.

(gh-25347)

New keywords for cholesky and pinv

The upper and rtol keywords were added to
numpy.linalg.cholesky and numpy.linalg.pinv,
respectively, to improve array API standard compatibility.

For numpy.linalg.pinv, if neither rcond nor rtol is
specified, the rcond's default is used. We plan to deprecate and
remove rcond in the future.

(gh-25388)

New keywords for sort, argsort and linalg.matrix_rank

New keyword parameters were added to improve array API standard
compatibility:

  • rtol was added to numpy.linalg.matrix_rank.
  • stable was added to numpy.sort and
    numpy.argsort.

(gh-25437)

New numpy.strings namespace for string ufuncs

NumPy now implements some string operations as ufuncs. The old np.char
namespace is still available, and where possible the string manipulation
functions in that namespace have been updated to use the new ufuncs,
substantially improving their performance.

Where possible, we suggest updating code to use functions in
np.strings instead of np.char. In the future we may deprecate
np.char in favor of np.strings.

(gh-25463)

numpy.fft support for different precisions and in-place calculations

The various FFT routines in numpy.fft now do their
calculations natively in float, double, or long double precision,
depending on the input precision, instead of always calculating in
double precision. Hence, the calculation will now be less precise for
single and more precise for long double precision. The data type of the
output array will now be adjusted accordingly.

Furthermore, all FFT routines have gained an out argument that can be
used for in-place calculations.

(gh-25536)

configtool and pkg-config support

A new numpy-config CLI script is available that can be queried for the
NumPy version and for compile flags needed to use the NumPy C API. This
will allow build systems to better support the use of NumPy as a
dependency. Also, a numpy.pc pkg-config file is now included with
Numpy. In order to find its location for use with PKG_CONFIG_PATH, use
numpy-config --pkgconfigdir.

(gh-25730)

Array API standard support in the main namespace

The main numpy namespace now supports the array API standard. See
array-api-standard-compatibility for
details.

(gh-25911)

Improvements

Strings are now supported by any, all, and the logical ufuncs.

(gh-25651)

Integer sequences as the shape argument for memmap

numpy.memmap can now be created with any integer sequence
as the shape argument, such as a list or numpy array of integers.
Previously, only the types of tuple and int could be used without
raising an error.

(gh-23729)

errstate is now faster and context safe

The numpy.errstate context manager/decorator is now faster
and safer. Previously, it was not context safe and had (rare) issues
with thread-safety.

(gh-23936)

AArch64 quicksort speed improved by using Highway's VQSort

The first introduction of the Google Highway library, using VQSort on
AArch64. Execution time is improved by up to 16x in some cases, see the
PR for benchmark results. Extensions to other platforms will be done in
the future.

(gh-24018)

Complex types - underlying C type changes
  • The underlying C types for all of NumPy's complex types have been
    changed to use C99 complex types.

  • While this change does not affect the memory layout of complex
    types, it changes the API to be used to directly retrieve or write
    the real or complex part of the complex number, since direct field
    access (as in c.real or c.imag) is no longer an option. You can
    now use utilities provided in numpy/npy_math.h to do these
    operations, like this:

    npy_cdouble c;
    npy_csetreal(&c, 1.0);
    npy_csetimag(&c, 0.0);
    printf("%d + %di\n", npy_creal(c), npy_cimag(c));
    
  • To ease cross-version compatibility, equivalent macros and a
    compatibility layer have been added which can be used by downstream
    packages to continue to support both NumPy 1.x and 2.x. See
    complex-numbers for more info.

  • numpy/npy_common.h now includes complex.h, which means that
    complex is now a reserved keyword.

(gh-24085)

iso_c_binding support and improved common blocks for f2py

Previously, users would have to define their own custom f2cmap file to
use type mappings defined by the Fortran2003 iso_c_binding intrinsic
module. These type maps are now natively supported by f2py

(gh-24555)

f2py now handles common blocks which have kind specifications from
modules. This further expands the usability of intrinsics like
iso_fortran_env and iso_c_binding.

(gh-25186)

Call str automatically on third argument to functions like assert_equal

The third argument to functions like
numpy.testing.assert_equal now has str called on it
automatically. This way it mimics the built-in assert statement, where
assert_equal(a, b, obj) works like assert a == b, obj.

(gh-24877)

Support for array-like atol/rtol in isclose, allclose

The keywords atol and rtol in numpy.isclose and
numpy.allclose now accept both scalars and arrays. An
array, if given, must broadcast to the shapes of the first two array
arguments.

(gh-24878)

Consistent failure messages in test functions

Previously, some numpy.testing assertions printed messages
that referred to the actual and desired results as x and y. Now,
these values are consistently referred to as ACTUAL and DESIRED.

(gh-24931)

n-D FFT transforms allow s[i] == -1

The numpy.fft.fftn, numpy.fft.ifftn,
numpy.fft.rfftn, numpy.fft.irfftn,
numpy.fft.fft2, numpy.fft.ifft2,
numpy.fft.rfft2 and numpy.fft.irfft2
functions now use the whole input array along the axis i if
s[i] == -1, in line with the array API standard.

(gh-25495)

Guard PyArrayScalar_VAL and PyUnicodeScalarObject for the limited API

PyUnicodeScalarObject holds a PyUnicodeObject, which is not
available when using Py_LIMITED_API. Add guards to hide it and
consequently also make the PyArrayScalar_VAL macro hidden.

(gh-25531)

Changes

  • np.gradient() now returns a tuple rather than a list making the
    return value immutable.

    (gh-23861)

  • Being fully context and thread-safe, np.errstate can only be
    entered once now.

  • np.setbufsize is now tied to np.errstate(): leaving an
    np.errstate context will also reset the bufsize.

    (gh-23936)

  • A new public np.lib.array_utils submodule has been introduced and
    it currently contains three functions: byte_bounds (moved from
    np.lib.utils), normalize_axis_tuple and normalize_axis_index.

    (gh-24540)

  • Introduce numpy.bool as the new canonical name for
    NumPy's boolean dtype, and make numpy.bool\_ an alias
    to it. Note that until NumPy 1.24, np.bool was an alias to
    Python's builtin bool. The new name helps with array API standard
    compatibility and is a more intuitive name.

    (gh-25080)

  • The dtype.flags value was previously stored as a signed integer.
    This means that the aligned dtype struct flag lead to negative flags
    being set (-128 rather than 128). This flag is now stored unsigned
    (positive). Code which checks flags manually may need to adapt. This
    may include code compiled with Cython 0.29.x.

    (gh-25816)

Representation of NumPy scalars changed

As per NEP 51, the scalar representation has been updated to include the type
information to avoid confusion with Python scalars.

Scalars are now printed as np.float64(3.0) rather than just 3.0.
This may disrupt workflows that store representations of numbers (e.g.,
to files) making it harder to read them. They should be stored as
explicit strings, for example by using str() or f"{scalar!s}". For
the time being, affected users can use
np.set_printoptions(legacy="1.25") to get the old behavior (with
possibly a few exceptions). Documentation of downstream projects may
require larger updates, if code snippets are tested. We are working on
tooling for
doctest-plus
to facilitate updates.

(gh-22449)

Truthiness of NumPy strings changed

NumPy strings previously were inconsistent about how they defined if the
string is True or False and the definition did not match the one
used by Python. Strings are now considered True when they are
non-empty and False when they are empty. This changes the following
distinct cases:

  • Casts from string to boolean were previously roughly equivalent to
    string_array.astype(np.int64).astype(bool), meaning that only
    valid integers could be cast. Now a string of "0" will be
    considered True since it is not empty. If you need the old
    behavior, you may use the above step (casting to integer first) or
    string_array == "0" (if the input is only ever 0 or 1). To get
    the new result on old NumPy versions use string_array != "".
  • np.nonzero(string_array) previously ignored whitespace so that a
    string only containing whitespace was considered False. Whitespace
    is now considered True.

This change does not affect np.loadtxt, np.fromstring, or
np.genfromtxt. The first two still use the integer definition, while
genfromtxt continues to match for "true" (ignoring case). However,
if np.bool_ is used as a converter the result will change.

The change does affect np.fromregex as it uses direct assignments.

(gh-23871)

A mean keyword was added to var and std function

Often when the standard deviation is needed the mean is also needed. The
same holds for the variance and the mean. Until now the mean is then
calculated twice, the change introduced here for the numpy.var and
numpy.std functions allows for passing in a precalculated mean as an keyword
argument. See the docstrings for details and an example illustrating the
speed-up.

(gh-24126)

Remove datetime64 deprecation warning when constructing with timezone

The numpy.datetime64 method now issues a UserWarning rather than a
DeprecationWarning whenever a timezone is included in the datetime string that
is provided.

(gh-24193)

Default integer dtype is now 64-bit on 64-bit Windows

The default NumPy integer is now 64-bit on all 64-bit systems as the
historic 32-bit default on Windows was a common source of issues. Most
users should not notice this. The main issues may occur with code
interfacing with libraries written in a compiled language like C. For
more information see migration_windows_int64.

(gh-24224)

Renamed numpy.core to numpy._core

Accessing numpy.core now emits a DeprecationWarning. In practice we
have found that most downstream usage of numpy.core was to access
functionality that is available in the main numpy namespace. If for
some reason you are using functionality in numpy.core that is not
available in the main numpy namespace, this means you are likely using
private NumPy internals. You can still access these internals via
numpy._core without a deprecation warning but we do not provide any
backward compatibility guarantees for NumPy internals. Please open an
issue if you think a mistake was made and something needs to be made
public.

(gh-24634)

The "relaxed strides" debug build option, which was previously enabled
through the NPY_RELAXED_STRIDES_DEBUG environment variable or the
-Drelaxed-strides-debug config-settings flag has been removed.

(gh-24717)

Redefinition of np.intp/np.uintp (almost never a change)

Due to the actual use of these types almost always matching the use of
size_t/Py_ssize_t this is now the definition in C. Previously, it
matched intptr_t and uintptr_t which would often have been subtly
incorrect. This has no effect on the vast majority of machines since the
size of these types only differ on extremely niche platforms.

However, it means that:

  • Pointers may not necessarily fit into an intp typed array anymore.
    The p and P character codes can still be used, however.
  • Creating intptr_t or uintptr_t typed arrays in C remains
    possible in a cross-platform way via PyArray_DescrFromType('p').
  • The new character codes nN were introduced.
  • It is now correct to use the Python C-API functions when parsing to
    npy_intp typed arguments.

(gh-24888)

numpy.fft.helper made private

numpy.fft.helper was renamed to numpy.fft._helper to indicate that
it is a private submodule. All public functions exported by it should be
accessed from numpy.fft.

(gh-24945)

numpy.linalg.linalg made private

numpy.linalg.linalg was renamed to numpy.linalg._linalg to indicate
that it is a private submodule. All public functions exported by it
should be accessed from numpy.linalg.

(gh-24946)

Out-of-bound axis not the same as axis=None

In some cases axis=32 or for concatenate any large value was the same
as axis=None. Except for concatenate this was deprecate. Any out of
bound axis value will now error, make sure to use axis=None.

(gh-25149)

New copy keyword meaning for array and asarray constructors

Now numpy.array and numpy.asarray support
three values for copy parameter:

  • None - A copy will only be made if it is necessary.
  • True - Always make a copy.
  • False - Never make a copy. If a copy is required a ValueError is
    raised.

The meaning of False changed as it now raises an exception if a copy
is needed.

(gh-25168)

The __array__ special method now takes a copy keyword argument.

NumPy will pass copy to the __array__ special method in situations
where it would be set to a non-default value (e.g. in a call to
np.asarray(some_object, copy=False)). Currently, if an unexpected
keyword argument error is raised after this, NumPy will print a warning
and re-try without the copy keyword argument. Implementations of
objects implementing the __array__ protocol should accept a copy
keyword argument with the same meaning as when passed to
numpy.array or numpy.asarray.

(gh-25168)

Cleanup of initialization of numpy.dtype with strings with commas

The interpretation of strings with commas is changed slightly, in that a
trailing comma will now always create a structured dtype. E.g., where
previously np.dtype("i") and np.dtype("i,") were treated as
identical, now np.dtype("i,") will create a structured dtype, with a
single field. This is analogous to np.dtype("i,i") creating a
structured dtype with two fields, and makes the behaviour consistent
with that expected of tuples.

At the same time, the use of single number surrounded by parenthesis to
indicate a sub-array shape, like in np.dtype("(2)i,"), is deprecated.
Instead; one should use np.dtype("(2,)i") or np.dtype("2i").
Eventually, using a number in parentheses will raise an exception, like
is the case for initializations without a comma, like
np.dtype("(2)i").

(gh-25434)

Change in how complex sign is calculated

Following the array API standard, the complex sign is now calculated as
z / |z| (instead of the rather less logical case where the sign of the
real part was taken, unless the real part was zero, in which case the
sign of the imaginary part was returned). Like for real numbers, zero is
returned if z==0.

(gh-25441)

Return types of functions that returned a list of arrays

Functions that returned a list of ndarrays have been changed to return a
tuple of ndarrays instead. Returning tuples consistently whenever a
sequence of arrays is returned makes it easier for JIT compilers like
Numba, as well as for static type checkers in some cases, to support
these functions. Changed functions are: numpy.atleast_1d, numpy.atleast_2d,
numpy.atleast_3d, numpy.broadcast_arrays, numpy.meshgrid,
numpy.ogrid, numpy.histogramdd.

np.unique return_inverse shape for multi-dimensional inputs

When multi-dimensional inputs are passed to np.unique with
return_inverse=True, the unique_inverse output is now shaped such
that the input can be reconstructed directly using
np.take(unique, unique_inverse) when axis=None, and
np.take_along_axis(unique, unique_inverse, axis=axis) otherwise.

(gh-25553,
gh-25570)

any and all return booleans for object arrays

The any and all functions and methods now return booleans also for
object arrays. Previously, they did a reduction which behaved like the
Python or and and operators which evaluates to one of the arguments.
You can use np.logical_or.reduce and np.logical_and.reduce to
achieve the previous behavior.

(gh-25712)

np.can_cast cannot be called on Python int, float, or complex

np.can_cast cannot be called with Python int, float, or complex
instances anymore. This is because NEP 50 means that the result of
can_cast must not depend on the value passed in. Unfortunately, for
Python scalars whether a cast should be considered "same_kind" or
"safe" may depend on the context and value so that this is currently
not implemented. In some cases, this means you may have to add a
specific path for: if type(obj) in (int, float, complex): ....

(gh-26393)

Checksums

MD5
fcda027f9735771088e607161c913094  numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
1c381a5af3e6b945c6937ab3c6e2de09  numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
6258de3c0599f8e3674e11898f2dd71c  numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl
aa4d28b404566dc9f5c34a31c6cd7b23  numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl
6b83ba81bdc750ef9924e3dc6f7c93be  numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3d129fe67d99e0aad451742abb963ffa  numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
24a060577965bd2a573ed87cbd207b4c  numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
b00832f558669aacf855c4f5e9cf31d1  numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl
cfe7420d294c583b90cfe07b730136dc  numpy-2.0.0-cp310-cp310-win32.whl
cff9da6b9fe5ad3b05dd3526dff00ac2  numpy-2.0.0-cp310-cp310-win_amd64.whl
f390e03564df5ea37a97ac10cf0cbb00  numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl
a006b081decba286a321de67a1abe246  numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl
6aea3e8589e33349b8170524af5a2e44  numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl
eea8146c5dc2a306333bfea1f01f7a37  numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl
e96c2af477c970c8ff50ecb5d1cf754f  numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d065256e02a1d410d0db2577bb8fd9a4  numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98c570b79459342c219590c5af38d527  numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
dc435751cb926f53a9fc457f35146527  numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl
aaa4b435d29022ceacb4e3dcbd43d11a  numpy-2.0.0-cp311-cp311-win32.whl
9ff8be4f581d86b2f181fe905491b19b  numpy-2.0.0-cp311-cp311-win_amd64.whl
1c9519c5e6a0c5a99715e51ac3b7c932  numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl
b0f26e8728523d716f5165953b35244f  numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl
029703d0ff0e96c603c91f611926ef17  numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl
2231ecbb380c70ddf462e9671d06612c  numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl
4153b50c1a3647ca58f1084fcaf3e4c6  numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
82cba3915234f8018fd754ffc45e95b0  numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
249047dd7255a5fcf5c45614ba211e10  numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl
f7581ebfe0c9d4ae4f3b6ea09c19eea7  numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl
8a0dbcd919d1d959f1846a00ebb05162  numpy-2.0.0-cp312-cp312-win32.whl
22aabdfd85ed34f02a7cdacff399c5d9  numpy-2.0.0-cp312-cp312-win_amd64.whl
1fce84122c393e05b69e2ec53ecd1137  numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
81e4c1152274d85813bf14814ad4d359  numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
5eab1a2b427b590d2bc9d8ecd330fc21  numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl
ab967929693baf2d2bfb00c53413ad2b  numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl
85d2971cd78800663766f46ba312d356  numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7e831fcf9cff5317429786a3bd123671  numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
03a6426ca86ad53567e3ef61bc766013  numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
b30af2d2b99468538f45e6769f9fee2b  numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl
cc9a8db8d131fb5a387e2c1342ab0065  numpy-2.0.0-cp39-cp39-win32.whl
9843951308fa31c5e36c4c6a0b090308  numpy-2.0.0-cp39-cp39-win_amd64.whl
5021eb5e225bff3e05a38a565daf8852  numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
99186fe49ac7931d3e92e8993c2faa92  numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
c39f0ab6e07d42708550899951b852b8  numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cbf151633948e90c93dd988777750961  numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl
a180aaba9982c6e15da6db62dab5eb4e  numpy-2.0.0.tar.gz
SHA256
04494f6ec467ccb5369d1808570ae55f6ed9b5809d7f035059000a37b8d7e86f  numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
2635dbd200c2d6faf2ef9a0d04f0ecc6b13b3cad54f7c67c61155138835515d2  numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
0a43f0974d501842866cc83471bdb0116ba0dffdbaac33ec05e6afed5b615238  numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl
8d83bb187fb647643bd56e1ae43f273c7f4dbcdf94550d7938cfc32566756514  numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl
79e843d186c8fb1b102bef3e2bc35ef81160ffef3194646a7fdd6a73c6b97196  numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6d7696c615765091cc5093f76fd1fa069870304beaccfd58b5dcc69e55ef49c1  numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4c76e3d4c56f145d41b7b6751255feefae92edbc9a61e1758a98204200f30fc  numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
acd3a644e4807e73b4e1867b769fbf1ce8c5d80e7caaef0d90dcdc640dfc9787  numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl
cee6cc0584f71adefe2c908856ccc98702baf95ff80092e4ca46061538a2ba98  numpy-2.0.0-cp310-cp310-win32.whl
ed08d2703b5972ec736451b818c2eb9da80d66c3e84aed1deeb0c345fefe461b  numpy-2.0.0-cp310-cp310-win_amd64.whl
ad0c86f3455fbd0de6c31a3056eb822fc939f81b1618f10ff3406971893b62a5  numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl
e7f387600d424f91576af20518334df3d97bc76a300a755f9a8d6e4f5cadd289  numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl
34f003cb88b1ba38cb9a9a4a3161c1604973d7f9d5552c38bc2f04f829536609  numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl
b6f6a8f45d0313db07d6d1d37bd0b112f887e1369758a5419c0370ba915b3871  numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl
5f64641b42b2429f56ee08b4f427a4d2daf916ec59686061de751a55aafa22e4  numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7039a136017eaa92c1848152827e1424701532ca8e8967fe480fe1569dae581  numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
46e161722e0f619749d1cd892167039015b2c2817296104487cd03ed4a955995  numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
0e50842b2295ba8414c8c1d9d957083d5dfe9e16828b37de883f51fc53c4016f  numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl
2ce46fd0b8a0c947ae047d222f7136fc4d55538741373107574271bc00e20e8f  numpy-2.0.0-cp311-cp311-win32.whl
fbd6acc766814ea6443628f4e6751d0da6593dae29c08c0b2606164db026970c  numpy-2.0.0-cp311-cp311-win_amd64.whl
354f373279768fa5a584bac997de6a6c9bc535c482592d7a813bb0c09be6c76f  numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl
4d2f62e55a4cd9c58c1d9a1c9edaedcd857a73cb6fda875bf79093f9d9086f85  numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl
1e72728e7501a450288fc8e1f9ebc73d90cfd4671ebbd631f3e7857c39bd16f2  numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl
84554fc53daa8f6abf8e8a66e076aff6ece62de68523d9f665f32d2fc50fd66e  numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl
c73aafd1afca80afecb22718f8700b40ac7cab927b8abab3c3e337d70e10e5a2  numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
49d9f7d256fbc804391a7f72d4a617302b1afac1112fac19b6c6cec63fe7fe8a  numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0ec84b9ba0654f3b962802edc91424331f423dcf5d5f926676e0150789cb3d95  numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl
feff59f27338135776f6d4e2ec7aeeac5d5f7a08a83e80869121ef8164b74af9  numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl
c5a59996dc61835133b56a32ebe4ef3740ea5bc19b3983ac60cc32be5a665d54  numpy-2.0.0-cp312-cp312-win32.whl
a356364941fb0593bb899a1076b92dfa2029f6f5b8ba88a14fd0984aaf76d0df  numpy-2.0.0-cp312-cp312-win_amd64.whl
e61155fae27570692ad1d327e81c6cf27d535a5d7ef97648a17d922224b216de  numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
4554eb96f0fd263041baf16cf0881b3f5dafae7a59b1049acb9540c4d57bc8cb  numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
903703372d46bce88b6920a0cd86c3ad82dae2dbef157b5fc01b70ea1cfc430f  numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl
3e8e01233d57639b2e30966c63d36fcea099d17c53bf424d77f088b0f4babd86  numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl
1cde1753efe513705a0c6d28f5884e22bdc30438bf0085c5c486cdaff40cd67a  numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
821eedb7165ead9eebdb569986968b541f9908979c2da8a4967ecac4439bae3d  numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9a1712c015831da583b21c5bfe15e8684137097969c6d22e8316ba66b5baabe4  numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
9c27f0946a3536403efb0e1c28def1ae6730a72cd0d5878db38824855e3afc44  numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl
63b92c512d9dbcc37f9d81b123dec99fdb318ba38c8059afc78086fe73820275  numpy-2.0.0-cp39-cp39-win32.whl
3f6bed7f840d44c08ebdb73b1825282b801799e325bcbdfa6bc5c370e5aecc65  numpy-2.0.0-cp39-cp39-win_amd64.whl
9416a5c2e92ace094e9f0082c5fd473502c91651fb896bc17690d6fc475128d6  numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
17067d097ed036636fa79f6a869ac26df7db1ba22039d962422506640314933a  numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
38ecb5b0582cd125f67a629072fed6f83562d9dd04d7e03256c9829bdec027ad  numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cef04d068f5fb0518a77857953193b6bb94809a806bd0a14983a8f12ada060c9  numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl
cf5d1c9e6837f8af9f92b6bd3e86d513cdc11f60fd62185cc49ec7d1aba34864  numpy-2.0.0.tar.gz

v1.26.4

Compare Source

NumPy 1.26.4 Release Notes

NumPy 1.26.4 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.3 release. The Python versions supported by
this release are 3.9-3.12. This is the last planned release in the
1.26.x series.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Elliott Sales de Andrade
  • Lucas Colley +
  • Mark Ryan +
  • Matti Picus
  • Nathan Goldbaum
  • Ola x Nilsson +
  • Pieter Eendebak
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg
  • Stefan van der Walt
  • Stefano Rivera

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​25323: BUG: Restore missing asstr import
  • #​25523: MAINT: prepare 1.26.x for further development
  • #​25539: BUG: numpy.array_api: fix linalg.cholesky upper decomp...
  • #​25584: CI: Bump azure pipeline timeout to 120 minutes
  • #​25585: MAINT, BLD: Fix unused inline functions warnings on clang
  • #​25599: BLD: include fix for MinGW platform detection
  • #​25618: TST: Fix test_numeric on riscv64
  • #​25619: BLD: fix building for windows ARM64
  • #​25620: MAINT: add newaxis to __all__ in numpy.array_api
  • #​25630: BUG: Use large file fallocate on 32 bit linux platforms
  • #​25643: TST: Fix test_warning_calls on Python 3.12
  • #​25645: TST: Bump pytz to 2023.3.post1
  • #​25658: BUG: Fix AVX512 build flags on Intel Classic Compiler
  • #​25670: BLD: fix potential issue with escape sequences in __config__.py
  • #​25718: CI: pin cygwin python to 3.9.16-1 and fix typing tests [skip...
  • #​25720: MAINT: Bump cibuildwheel to v2.16.4
  • #​25748: BLD: unvendor meson-python on 1.26.x and upgrade to meson-python...
  • #​25755: MAINT: Include header defining backtrace
  • #​25756: BUG: Fix np.quantile([Fraction(2,1)], 0.5) (#​24711)

Checksums

MD5
90f33cdd8934cd07192d6ede114d8d4d  numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
63ac60767f6724490e587f6010bd6839  numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
ad4e82b225aaaf5898ea9798b50978d8  numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d428e3da2df4fa359313348302cf003a  numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
89937c3bb596193f8ca9eae2ff84181e  numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
de4f9da0a4e6dfd4cec39c7ad5139803  numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
2c1f73fd9b3acf4b9b0c23e985cdd38f  numpy-1.26.4-cp310-cp310-win32.whl
920ad1f50e478b1a877fe7b7a46cc520  numpy-1.26.4-cp310-cp310-win_amd64.whl
719d1ff12db38903dcfd6749078fb11d  numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
eb601e80194d2e1c00d8daedd8dc68c4  numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
71a7ab11996fa370dc28e28731bd5c32  numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eb0cdd03e1ee2eb45c57c7340c98cf48  numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9d4ae1b0b27a625400f81ed1846a5667  numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
1b6771350d2f496157430437a895ba4b  numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
1e4a18612ee4d0e54e0833574ebc6d25  numpy-1.26.4-cp311-cp311-win32.whl
5fd325dd8704023c1110835d7a1b095a  numpy-1.26.4-cp311-cp311-win_amd64.whl
d95ce582923d24dbddbc108aa5fd2128  numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
6f16f3d70e0d95ce2b032167c546cc95  numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
5369536d4c45fbe384147ff23185b48a  numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1ceb224096686831ad731e472b65e96a  numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cd8d3c00bbc89f9bc07e2df762f9e2ae  numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
5bd81ce840bb2e42befe01efb0402b79  numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
2cc3b0757228078395da3efa3dc99f23  numpy-1.26.4-cp312-cp312-win32.whl
305155bd5ae879344c58968879584ed1  numpy-1.26.4-cp312-cp312-win_amd64.whl
ec2310f67215743e9c5d16b6c9fb87b6  numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
406aea6081c1affbebdb6ad56b5deaf4  numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
fee12f0a3cbac7bbf1a1c2d82d3b02a9  numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baf4b7143c7b9ce170e62b33380fb573  numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
376ff29f90b7840ae19ecd59ad1ddf53  numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
86785b3a7cd156c08c2ebc26f7816fb3  numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
ab8a9ab69f16b7005f238cda76bc0bac  numpy-1.26.4-cp39-cp39-win32.whl
fafa4453e820c7ff40907e5dc79d8199  numpy-1.26.4-cp39-cp39-win_amd64.whl
7f13e2f07bd3e4a439ade0e4d27905c6  numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
928954b41c1cd0e856f1a31d41722661  numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
57bbd5c0b3848d804c416cbcab4a0ae8  numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
19550cbe7bedd96a928da9d4ad69509d  numpy-1.26.4.tar.gz
SHA256
9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0  numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a  numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4  numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f  numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a  numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2  numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07  numpy-1.26.4-cp310-cp310-win32.whl
b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5  numpy-1.26.4-cp310-cp310-win_amd64.whl
4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71  numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef  numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e  numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5  numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a  numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a  numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20  numpy-1.26.4-cp311-cp311-win32.whl
cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2  numpy-1.26.4-cp311-cp311-win_amd64.whl
b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218  numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b  numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b  numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed  numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a  numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0  numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110  numpy-1.26.4-cp312-cp312-win32.whl
08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818  numpy-1.26.4-cp312-cp312-win_amd64.whl
7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c  numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be  numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764  numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3  numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd  numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c  numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6  numpy-1.26.4-cp39-cp39-win32.whl
3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea  numpy-1.26.4-cp39-cp39-win_amd64.whl
afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30  numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c  numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0  numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010  numpy-1.26.4.tar.gz

v1.26.3

Compare Source

NumPy 1.26.3 Release Notes

NumPy 1.26.3 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.2 release. The most notable changes are the
f2py bug fixes. The Python versions supported by this release are
3.9-3.12.

Compatibility

f2py will no longer accept ambiguous -m and .pyf CLI combinations.
When more than one .pyf file is passed, an error is raised. When both
-m and a .pyf is passed, a warning is emitted and the -m provided
name is ignored.

Improvements

f2py now handles common blocks which have kind specifications from
modules. This further expands the usability of intrinsics like
iso_fortran_env and iso_c_binding.

Contributors

A total of 18 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • @​Illviljan
  • Alexander Grund
  • Andrea Bianchi +
  • Charles Harris
  • Daniel Vanzo
  • Johann Rohwer +
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Raghuveer Devulapalli
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg
  • Stefano Rivera +
  • Thomas A Caswell
  • matoro

Pull requests merged

A total of 42 pull requests were merged for this release.

  • #​25130: MAINT: prepare 1.26.x for further development
  • #​25188: TYP: add None to __getitem__ in numpy.array_api
  • #​25189: BLD,BUG: quadmath required where available [f2py]
  • #​25190: BUG: alpha doesn't use REAL(10)
  • #​25191: BUG: Fix FP overflow error in division when the divisor is scalar
  • #​25192: MAINT: Pin scipy-openblas version.
  • #​25201: BUG: Fix f2py to enable use of string optional inout argument
  • #​25202: BUG: Fix -fsanitize=alignment issue in numpy/_core/src/multiarray/arraytypes.c.src
  • #​25203: TST: Explicitly pass NumPy path to cython during tests (also...
  • #​25204: BUG: fix issues with newaxis and linalg.solve in numpy.array_api
  • #​25205: BUG: Disallow shadowed modulenames
  • #​25217: BUG: Handle common blocks with kind specifications from modules
  • #​25218: BUG: Fix moving compiled executable to root with f2py -c on Windows
  • #​25219: BUG: Fix single to half-precision conversion on PPC64/VSX3
  • #​25227: TST: f2py: fix issue in test skip condition
  • #​25240: Revert "MAINT: Pin scipy-openblas version."
  • #​25249: MAINT: do not use long type
  • #​25377: TST: PyPy needs another gc.collect on latest versions
  • #​25378: CI: Install Lapack runtime on Cygwin.
  • #​25379: MAINT: Bump conda-incubator/setup-miniconda from 2.2.0 to 3.0.1
  • #​25380: BLD: update vendored Meson for AIX shared library fix
  • #​25419: MAINT: Init base in cpu_avx512_kn
  • #​25420: BUG: Fix failing test_features on SapphireRapids
  • #​25422: BUG: Fix non-contiguous memory load when ARM/Neon is enabled
  • #​25428: MAINT,BUG: Never import distutils above 3.12 [f2py]
  • #​25452: MAINT: make the import-time check for old Accelerate more specific
  • #​25458: BUG: fix macOS version checks for Accelerate support
  • #​25465: MAINT: Bump actions/setup-node and larsoner/circleci-artifacts-redirector-action
  • #​25466: BUG: avoid seg fault from OOB access in RandomState.set_state()
  • #​25467: BUG: Fix two errors related to not checking for failed allocations
  • #​25468: BUG: Fix regression with f2py wrappers when modules and subroutines...
  • #​25475: BUG: Fix build issues on SPR
  • #​25478: BLD: fix uninitialized variable warnings from simd/neon/memory.h
  • #​25480: BUG: Handle iso_c_type mappings more consistently
  • #​25481: BUG: Fix module name bug in signature files [urgent] [f2py]
  • #​25482: BUG: Handle .pyf.src and fix SciPy [urgent]
  • #​25483: DOC: f2py rewrite with meson details
  • #​25485: BUG: Add external library handling for meson [f2py]
  • #​25486: MAINT: Run f2py's meson backend with the same python that ran...
  • #​25489: MAINT: Update numpy/f2py/_backends from main.
  • #​25490: MAINT: Easy updates of f2py/*.py from main.
  • #​25491: MAINT: Update crackfortran.py and f2py2e.py from main

Checksums

MD5
7660db27715df261948e7f0f13634f16  numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
98d5b98c822de4bed0cf1b0b8f367192  numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
b71cd0710cec5460292a97a02fa349cd  numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0f98a05c92598f849b1be2595f4a52a8  numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b866c6aea8070c0753b776d2b521e875  numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
cfdde5868e469fb27655ea73b0b9593b  numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
2655440d61671b5e32b049d30397c58f  numpy-1.26.3-cp310-cp310-win32.whl
7718a5d33344784ca7821f3bdd467550  numpy-1.26.3-cp310-cp310-win_amd64.whl
28e4b2ed9192c392f792d88b3c246d1c  numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
fb1ae72749463e2c82f0127699728364  numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
304dec822b508a1d495917610e7562bf  numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0d8b073dfd55946a60ba8ed4369f6  numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c99962375c599501820899c8ccab6960  numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
47ed42d067ce4863bbf1f40da61ba7d1  numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
3ab3757255feb54ca3793fb9db226586  numpy-1.26.3-cp311-cp311-win32.whl
c33f2a4518bae535645357a08a93be1a  numpy-1.26.3-cp311-cp311-win_amd64.whl
bea43600aaff3a4d9978611ccfa44198  numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
c678d909ebe737fdabf215d8622ce2a3  numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
9f21f1875c92425cec1060564b3abb1c  numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44a1998965d45ec136078ee09d880f2  numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9274f5c51fa4f3c8fac5efa3d78acd63  numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
07c9f8f86f45077febc46c87ebc0b644  numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
a4857b2f7b6a23bca41178bd344bb28a  numpy-1.26.3-cp312-cp312-win32.whl
495d9534961d7b10f16fec4515a3d72b  numpy-1.26.3-cp312-cp312-win_amd64.whl
6494f2d94fd1f184923a33e634692b5e  numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
515a7314a0ff6aaba8d53a7a1aaa73ab  numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
c856adc6a6a78773c43e9c738d662ed5  numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
09848456158a01feff28f88c6106aef1  numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
adec00ea2bc98580a436f82e188c0e2f  numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
718bd35dd0431a6434bb30bf8d91d77d  numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
e813aa59cb807efb4a8fee52a6dd41ba  numpy-1.26.3-cp39-cp39-win32.whl
08e1b0973d0ae5976b38563eaec1253f  numpy-1.26.3-cp39-cp39-win_amd64.whl
e8887a14750161709636e9fb87df4f36  numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0bdb19040525451553fb5758b65caf4c  numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b931c14d06cc37d85d63ed1ddd88e875  numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
1c915dc6c36dd4c674d9379e9470ff8b  numpy-1.26.3.tar.gz
SHA256
806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf  numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd  numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6  numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b  numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178  numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485  numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3  numpy-1.26.3-cp310-cp310-win32.whl
9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce  numpy-1.26.3-cp310-cp310-win_amd64.whl
b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374  numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6  numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2  numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda  numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e  numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00  numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b  numpy-1.26.3-cp311-cp311-win32.whl
39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4  numpy-1.26.3-cp311-cp311-win_amd64.whl
a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13  numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e  numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3  numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419  numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166  numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36  numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511  numpy-1.26.3-cp312-cp312-win32.whl
da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b  numpy-1.26.3-cp312-cp312-win_amd64.whl
1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f  numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f  numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b  numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137  numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58  numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb  numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03  numpy-1.26.3-cp39-cp39-win32.whl
867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2  numpy-1.26.3-cp39-cp39-win_amd64.whl
3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e  numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0  numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5  numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4  numpy-1.26.3.tar.gz

v1.26.2

Compare Source

NumPy 1.26.2 Release Notes

NumPy 1.26.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.1 release. The 1.26.release series is the last
planned minor release series before NumPy 2.0. The Python versions
supported by this release are 3.9-3.12.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​stefan6419846
  • @​thalassemia +
  • Andrew Nelson
  • Charles Bousseau +
  • Charles Harris
  • Marcel Bargull +
  • Mark Mentovai +
  • Matti Picus
  • Nathan Goldbaum
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg
  • William Ayd +

Pull requests merged

A total of 25 pull requests were merged for this release.

  • #​24814: MAINT: align test_dispatcher s390x targets with _umath_tests_mtargets
  • #​24929: MAINT: prepare 1.26.x for further development
  • #​24955: ENH: Add Cython enumeration for NPY_FR_GENERIC
  • #​24962: REL: Remove Python upper version from the release branch
  • #​24971: BLD: Use the correct Python interpreter when running tempita.py
  • #​24972: MAINT: Remove unhelpful error replacements from import_array()
  • #​24977: BLD: use classic linker on macOS, the new one in XCode 15 has...
  • #​25003: BLD: musllinux_aarch64 [wheel build]
  • #​25043: MAINT: Update mailmap
  • #​25049: MAINT: Update meson build infrastructure.
  • #​25071: MAINT: Split up .github/workflows to match main
  • #​25083: BUG: Backport fix build on ppc64 when the baseline set to Power9...
  • #​25093: BLD: Fix features.h detection for Meson builds [1.26.x Backport]
  • #​25095: BUG: Avoid intp conversion regression in Cython 3 (backport)
  • #​25107: CI: remove obsolete jobs, and move macOS and conda Azure jobs...
  • #​25108: CI: Add linux_qemu action and remove travis testing.
  • #​25112: MAINT: Update .spin/cmds.py from main.
  • #​25113: DOC: Visually divide main license and bundled licenses in wheels
  • #​25115: MAINT: Add missing noexcept to shuffle helpers
  • #​25116: DOC: Fix license identifier for OpenBLAS
  • #​25117: BLD: improve detection of Netlib libblas/libcblas/liblapack
  • #​25118: MAINT: Make bitfield integers unsigned
  • #​25119: BUG: Make n a long int for np.random.multinomial
  • #​25120: BLD: change default of the allow-noblas option to true.
  • #​25121: BUG: ensure passing np.dtype to itself doesn't crash

Checksums

MD5
1a5dc6b5b3bf11ad40a59eedb3b69fa1  numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
4b741c6dfe4e6e22e34e9c5c788d4f04  numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
2953687fb26e1dd8a2d1bb7109551fcd  numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea9127a3a03f27fd101c62425c661d8d  numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a6be7c6c1cc3e1ff73f64052fe30677  numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
4f45d3f69f54fd1638609fde34c33a5c  numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
f22f5ea26c86eb126ff502fff75d6c21  numpy-1.26.2-cp310-cp310-win32.whl
49871452488e1a55d15ab54c6f3e546e  numpy-1.26.2-cp310-cp310-win_amd64.whl
676740bf60fb1c8f5a6b31e00b9a4e9b  numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
7170545dcc2a38a1c2386a6081043b64  numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
feae1190c73d811e2e7ebcad4baf6edf  numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
03131896abade61b77e0f6e53abb988a  numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f160632f128a3fd46787aa02d8731fbb  numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
014250db593d589b5533ef7127839c46  numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
fb437346dac24d0cb23f5314db043c8b  numpy-1.26.2-cp311-cp311-win32.whl
7359adc233874898ea768cd4aec28bb3  numpy-1.26.2-cp311-cp311-win_amd64.whl
207a678bea75227428e7fb84d4dc457a  numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
302ff6cc047a408cdf21981bd7b26056  numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
7526faaea58c76aed395c7128dd6e14d  numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
28d3b1943d3a8ad4bbb2ae9da0a77cb9  numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d91f5b2bb2c931e41ae7c80ec7509a31  numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
b2504d4239419f012c08fa1eab12f940  numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
57944ba30adc07f33e83a9b45f5c625a  numpy-1.26.2-cp312-cp312-win32.whl
fe38cd95bbee405ce0cf51c8753a2676  numpy-1.26.2-cp312-cp312-win_amd64.whl
28e1bc3efaf89cf6f0a2b616c0e16401  numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
9932ccff54855f12ee24f60528279bf1  numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
b52c1e987074dad100ad234122a397b9  numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1d1bd7e0d2a89ce795a9566a38ed9bb5  numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01d2abfe8e9b35415efb791ac6c5865e  numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
5a6d6ac287ebd93a221e59590329e202  numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
4e4e4d8cf661a8d2838ee700fabae87e  numpy-1.26.2-cp39-cp39-win32.whl
b8e52ecac110471502686abbdf774b78  numpy-1.26.2-cp39-cp39-win_amd64.whl
aed2d2914be293f60fedda360b64abf8  numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
6bd88e0f33933445d0e18c1a850f60e0  numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
010aeb2a50af0af1f7ef56f76f8cf463  numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
8f6446a32e47953a03f8fe8533e21e98  numpy-1.26.2.tar.gz
SHA256
3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f  numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440  numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75  numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00  numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe  numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523  numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9  numpy-1.26.2-cp310-cp310-win32.whl
26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919  numpy-1.26.2-cp310-cp310-win_amd64.whl
b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841  numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1  numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a  numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b  numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7  numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8  numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186  numpy-1.26.2-cp311-cp311-win32.whl
2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d  numpy-1.26.2-cp311-cp311-win_amd64.whl
a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0  numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75  numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7  numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6  numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6  numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec  numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167  numpy-1.26.2-cp312-cp312-win32.whl
b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e  numpy-1.26.2-cp312-cp312-win_amd64.whl
4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef  numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2  numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3  numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818  numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210  numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36  numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80  numpy-1.26.2-cp39-cp39-win32.whl
2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060  numpy-1.26.2-cp39-cp39-win_amd64.whl
1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79  numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d  numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841  numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea  numpy-1.26.2.tar.gz

v1.26.1

Compare Source

NumPy 1.26.1 Release Notes

NumPy 1.26.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.26.0 release. In addition, it adds new
functionality for detecting BLAS and LAPACK when building from source.
Highlights are:

  • Improved detection of BLAS and LAPACK libraries for meson builds
  • Pickle compatibility with the upcoming NumPy 2.0.

The 1.26.release series is the last planned minor release series before
NumPy 2.0. The Python versions supported by this release are 3.9-3.12.

Build system changes

Improved BLAS/LAPACK detection and control

Auto-detection for a number of BLAS and LAPACK is now implemented for
Meson. By default, the build system will try to detect MKL, Accelerate
(on macOS >=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK.
Support for MKL was significantly improved, and support for FlexiBLAS
was added.

New command-line flags are available to further control the selection of
the BLAS and LAPACK libraries to build against.

To select a specific library, use the config-settings interface via
pip or pypa/build. E.g., to select libblas/liblapack, use:

$ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
$ # OR
$ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack

This works not only for the libraries named above, but for any library
that Meson is able to detect with the given name through pkg-config or
CMake.

Besides -Dblas and -Dlapack, a number of other new flags are
available to control BLAS/LAPACK selection and behavior:

  • -Dblas-order and -Dlapack-order: a list of library names to
    search for in order, overriding the default search order.
  • -Duse-ilp64: if set to true, use ILP64 (64-bit integer) BLAS and
    LAPACK. Note that with this release, ILP64 support has been extended
    to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported
    in previous releases.
  • -Dallow-noblas: if set to true, allow NumPy to build with its
    internal (very slow) fallback routines instead of linking against an
    external BLAS/LAPACK library. The default for this flag may be
    changed to ``true`` in a future 1.26.x release, however for
    1.26.1 we'd prefer to keep it as ``false`` because if failures
    to detect an installed library are happening, we'd like a bug
    report for that, so we can quickly assess whether the new
    auto-detection machinery needs further improvements.
  • -Dmkl-threading: to select the threading layer for MKL. There are
    four options: seq, iomp, gomp and tbb. The default is
    auto, which selects from those four as appropriate given the
    version of MKL selected.
  • -Dblas-symbol-suffix: manually select the symbol suffix to use for
    the library - should only be needed for linking against libraries
    built in a non-standard way.

New features

numpy._core submodule stubs

numpy._core submodule stubs were added to provide compatibility with
pickled arrays created using NumPy 2.0 when running Numpy 1.26.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Anton Prosekin +
  • Charles Harris
  • Chongyun Lee +
  • Ivan A. Melnikov +
  • Jake Lishman +
  • Mahder Gebremedhin +
  • Mateusz Sokół
  • Matti Picus
  • Munira Alduraibi +
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel

Pull requests merged

A total of 20 pull requests were merged for this release.

  • #​24742: MAINT: Update cibuildwheel version
  • #​24748: MAINT: fix version string in wheels built with setup.py
  • #​24771: BLD, BUG: Fix build failure for host flags e.g. -march=native...
  • #​24773: DOC: Updated the f2py docs to remove a note on -fimplicit-none
  • #​24776: BUG: Fix SIMD f32 trunc test on s390x when baseline is none
  • #​24785: BLD: add libquadmath to licences and other tweaks (#​24753)
  • #​24786: MAINT: Activate use-compute-credits for Cirrus.
  • #​24803: BLD: updated vendored-meson/meson for mips64 fix
  • #​24804: MAINT: fix licence path win
  • #​24813: BUG: Fix order of Windows OS detection macros.
  • #​24831: BUG, SIMD: use scalar cmul on bad Apple clang x86_64 (#​24828)
  • #​24840: BUG: Fix DATA statements for f2py
  • #​24870: API: Add NumpyUnpickler for backporting
  • #​24872: MAINT: Xfail test failing on PyPy.
  • #​24879: BLD: fix math func feature checks, fix FreeBSD build, add CI...
  • #​24899: ENH: meson: implement BLAS/LAPACK auto-detection and many CI...
  • #​24902: DOC: add a 1.26.1 release notes section for BLAS/LAPACK build...
  • #​24906: MAINT: Backport numpy._core stubs. Remove NumpyUnpickler
  • #​24911: MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2
  • #​24912: BUG: loongarch doesn't use REAL(10)

Checksums

MD5
bda38de1a047dd9fdddae16c0d9fb358  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
196d2e39047da64ab28e177760c95461  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
9d25010a7bf50e624d2fed742790afbd  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b22fa3d030807f0708007d9c0659f65  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea626b8b930acb4b32302a9e95714f5  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
3c40ef068f50d2ac2913c5b9fa1233fa  numpy-1.26.1-cp310-cp310-win32.whl
315c251d2f284af25761a37ce6dd4d10  numpy-1.26.1-cp310-cp310-win_amd64.whl
ebdd5046937df50e9f54a6d38c5775dd  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
682f9beebe8547f205d6cdc8ff96a984  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
e86da9b6040ea88b3835c4d8f8578658  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ebcb6cf7f64454215e29d8a89829c8e1  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8c89e13dc9a63712104e2fb06fb63a6  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
339795930404988dbc664ff4cc72b399  numpy-1.26.1-cp311-cp311-win32.whl
4ef5e1bdd7726c19615843f5ac72e618  numpy-1.26.1-cp311-cp311-win_amd64.whl
3aad6bc72db50e9cc88aa5813e8f35bd  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
fd62f65ae7798dbda9a3f7af7aa5c8db  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
104d939e080f1baf0a56aed1de0e79e3  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44b56c96097f910bbec1420abcf3db5  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1dce230368ae5fc47dd0fe8de8ff771d  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
d93338e7d60e1d294ca326450e99806b  numpy-1.26.1-cp312-cp312-win32.whl
a1832f46521335c1ee4c56dbf12e600b  numpy-1.26.1-cp312-cp312-win_amd64.whl
946fbb0b6caca9258985495532d3f9ab  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
78c2ab13d395d67d90bcd6583a6f61a8  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
0a9d80d8b646abf4ffe51fff3e075d10  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0229ba8145d4f58500873b540a55d60e  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9179fc57c03260374c86e18867c24463  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
246a3103fdbe5d891d7a8aee28875a26  numpy-1.26.1-cp39-cp39-win32.whl
4589dcb7f754fade6ea3946416bee638  numpy-1.26.1-cp39-cp39-win_amd64.whl
3af340d5487a6c045f00fe5eb889957c  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
28aece4f1ceb92ec463aa353d4a91c8b  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bbd0461a1e31017b05509e9971b3478e  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
2d770f4c281d405b690c4bcb3dbe99e2  numpy-1.26.1.tar.gz
SHA256
82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297  numpy-1.26.1-cp310-cp310-win32.whl
d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab  numpy-1.26.1-cp310-cp310-win_amd64.whl
cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b  numpy-1.26.1-cp311-cp311-win32.whl
3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53  numpy-1.26.1-cp311-cp311-win_amd64.whl
1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66  numpy-1.26.1-cp312-cp312-win32.whl
9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7  numpy-1.26.1-cp312-cp312-win_amd64.whl
bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104  numpy-1.26.1-cp39-cp39-win32.whl
59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2  numpy-1.26.1-cp39-cp39-win_amd64.whl
06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe  numpy-1.26.1.tar.gz

v1.26.0

Compare Source

NumPy 1.26.0 Release Notes

The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle
with the addition of Python 3.12.0 support. Python 3.12 dropped
distutils, consequently supporting it required finding a replacement for
the setup.py/distutils based build system NumPy was using. We have
chosen to use the Meson build system instead, and this is the first
NumPy release supporting it. This is also the first release that
supports Cython 3.0 in addition to retaining 0.29.X compatibility.
Supporting those two upgrades was a large project, over 100 files have
been touched in this release. The changelog doesn't capture the full
extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan
van der Walt, and Matti Picus who did much of the work in the main
development branch.

The highlights of this release are:

  • Python 3.12.0 support.
  • Cython 3.0.0 compatibility.
  • Use of the Meson build system
  • Updated SIMD support
  • f2py fixes, meson and bind(x) support
  • Support for the updated Accelerate BLAS/LAPACK library

The Python versions supported in this release are 3.9-3.12.

New Features

Array API v2022.12 support in numpy.array_api

numpy.array_api now full supports the
v2022.12 version of the array API standard. Note that this does not
yet include the optional fft extension in the standard.

(gh-23789)

Support for the updated Accelerate BLAS/LAPACK library

Support for the updated Accelerate BLAS/LAPACK library, including ILP64
(64-bit integer) support, in macOS 13.3 has been added. This brings
arm64 support, and significant performance improvements of up to 10x for
commonly used linear algebra operations. When Accelerate is selected at
build time, the 13.3+ version will automatically be used if available.

(gh-24053)

meson backend for f2py

f2py in compile mode (i.e. f2py -c) now accepts the
--backend meson option. This is the default option for Python 3.12
on-wards. Older versions will still default to --backend distutils.

To support this in realistic use-cases, in compile mode f2py takes a
--dep flag one or many times which maps to dependency() calls in the
meson backend, and does nothing in the distutils backend.

There are no changes for users of f2py only as a code generator, i.e.
without -c.

(gh-24532)

bind(c) support for f2py

Both functions and subroutines can be annotated with bind(c). f2py
will handle both the correct type mapping, and preserve the unique label
for other C interfaces.

Note: bind(c, name = 'routine_name_other_than_fortran_routine') is
not honored by the f2py bindings by design, since bind(c) with the
name is meant to guarantee only the same name in C and Fortran,
not in Python and Fortran.

(gh-24555)

Improvements

iso_c_binding support for f2py

Previously, users would have to define their own custom f2cmap file to
use type mappings defined by the Fortran2003 iso_c_binding intrinsic
module. These type maps are now natively supported by f2py

(gh-24555)

Build system changes

In this release, NumPy has switched to Meson as the build system and
meson-python as the build backend. Installing NumPy or building a wheel
can be done with standard tools like pip and pypa/build. The
following are supported:

  • Regular installs: pip install numpy or (in a cloned repo)
    pip install .
  • Building a wheel: python -m build (preferred), or pip wheel .
  • Editable installs: pip install -e . --no-build-isolation
  • Development builds through the custom CLI implemented with
    spin: spin build.

All the regular pip and pypa/build flags (e.g.,
--no-build-isolation) should work as expected.

NumPy-specific build customization

Many of the NumPy-specific ways of customizing builds have changed. The
NPY_* environment variables which control BLAS/LAPACK, SIMD,
threading, and other such options are no longer supported, nor is a
site.cfg file to select BLAS and LAPACK. Instead, there are
command-line flags that can be passed to the build via pip/build's
config-settings interface. These flags are all listed in the
meson_options.txt file in the root of the repo. Detailed documented
will be available before the final 1.26.0 release; for now please see
the SciPy "building from source" docs
since most build customization works in an almost identical way in SciPy as it
does in NumPy.

Build dependencies

While the runtime dependencies of NumPy have not changed, the build
dependencies have. Because we temporarily vendor Meson and meson-python,
there are several new dependencies - please see the [build-system]
section of pyproject.toml for details.

Troubleshooting

This build system change is quite large. In case of unexpected issues,
it is still possible to use a setup.py-based build as a temporary
workaround (on Python 3.9-3.11, not 3.12), by copying
pyproject.toml.setuppy to pyproject.toml. However, please open an
issue with details on the NumPy issue tracker. We aim to phase out
setup.py builds as soon as possible, and therefore would like to see
all potential blockers surfaced early on in the 1.26.0 release cycle.

Contributors

A total of 20 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • Albert Steppi +
  • Bas van Beek
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • Filipe Laíns +
  • Jake Vanderplas
  • Liang Yan +
  • Marten van Kerkwijk
  • Matti Picus
  • Melissa Weber Mendonça
  • Namami Shanker
  • Nathan Goldbaum
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg
  • Stefan van der Walt
  • Tyler Reddy
  • Warren Weckesser

Pull requests merged

A total of 59 pull requests were merged for this release.

  • #​24305: MAINT: Prepare 1.26.x branch for development
  • #​24308: MAINT: Massive update of files from main for numpy 1.26
  • #​24322: CI: fix wheel builds on the 1.26.x branch
  • #​24326: BLD: update openblas to newer version
  • #​24327: TYP: Trim down the _NestedSequence.__getitem__ signature
  • #​24328: BUG: fix choose refcount leak
  • #​24337: TST: fix running the test suite in builds without BLAS/LAPACK
  • #​24338: BUG: random: Fix generation of nan by dirichlet.
  • #​24340: MAINT: Dependabot updates from main
  • #​24342: MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1
  • #​24353: MAINT: Update extbuild.py from main.
  • #​24356: TST: fix distutils tests for deprecations in recent setuptools...
  • #​24375: MAINT: Update cibuildwheel to version 2.15.0
  • #​24381: MAINT: Fix codespaces setup.sh script
  • #​24403: ENH: Vendor meson for multi-target build support
  • #​24404: BLD: vendor meson-python to make the Windows builds with SIMD...
  • #​24405: BLD, SIMD: The meson CPU dispatcher implementation
  • #​24406: MAINT: Remove versioneer
  • #​24409: REL: Prepare for the NumPy 1.26.0b1 release.
  • #​24453: MAINT: Pin upper version of sphinx.
  • #​24455: ENH: Add prefix to _ALIGN Macro
  • #​24456: BUG: cleanup warnings
  • #​24460: MAINT: Upgrade to spin 0.5
  • #​24495: BUG: asv dev has been removed, use asv run.
  • #​24496: BUG: Fix meson build failure due to unchanged inplace auto-generated...
  • #​24521: BUG: fix issue with git-version script, needs a shebang to run
  • #​24522: BUG: Use a default assignment for git_hash
  • #​24524: BUG: fix NPY_cast_info error handling in choose
  • #​24526: BUG: Fix common block handling in f2py
  • #​24541: CI,TYP: Bump mypy to 1.4.1
  • #​24542: BUG: Fix assumed length f2py regression
  • #​24544: MAINT: Harmonize fortranobject
  • #​24545: TYP: add kind argument to numpy.isin type specification
  • #​24561: BUG: fix comparisons between masked and unmasked structured arrays
  • #​24590: CI: Exclude import libraries from list of DLLs on Cygwin.
  • #​24591: BLD: fix _umath_linalg dependencies
  • #​24594: MAINT: Stop testing on ppc64le.
  • #​24602: BLD: meson-cpu: fix SIMD support on platforms with no features
  • #​24606: BUG: Change Cython binding directive to "False".
  • #​24613: ENH: Adopt new macOS Accelerate BLAS/LAPACK Interfaces, including...
  • #​24614: DOC: Update building docs to use Meson
  • #​24615: TYP: Add the missing casting keyword to np.clip
  • #​24616: TST: convert cython test from setup.py to meson
  • #​24617: MAINT: Fixup fromnumeric.pyi
  • #​24622: BUG, ENH: Fix iso_c_binding type maps and fix bind(c)...
  • #​24629: TYP: Allow binary_repr to accept any object implementing...
  • #​24630: TYP: Explicitly declare dtype and generic hashable
  • #​24637: ENH: Refactor the typing "reveal" tests using typing.assert_type
  • #​24638: MAINT: Bump actions/checkout from 3.6.0 to 4.0.0
  • #​24647: ENH: meson backend for f2py
  • #​24648: MAINT: Refactor partial load Workaround for Clang
  • #​24653: REL: Prepare for the NumPy 1.26.0rc1 release.
  • #​24659: BLD: allow specifying the long double format to avoid the runtime...
  • #​24665: BLD: fix bug in random.mtrand extension, don't link libnpyrandom
  • #​24675: BLD: build wheels for 32-bit Python on Windows, using MSVC
  • #​24700: BLD: fix issue with compiler selection during cross compilation
  • #​24701: BUG: Fix data stmt handling for complex values in f2py
  • #​24707: TYP: Add annotations for the py3.12 buffer protocol
  • #​24718: DOC: fix a few doc build issues on 1.26.x and update spin docs...

Checksums

MD5
052d84a2aaad4d5a455b64f5ff3f160b  numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl
874567083be194080e97bea39ea7befd  numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl
1a5fa023e05e050b95549d355890fbb6  numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2af03fbadd96360b26b993975709d072  numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
32717dd51a915e9aee4dcca72acb00d0  numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl
3f101e51b3b5f8c3f01256da645a1962  numpy-1.26.0-cp310-cp310-win32.whl
d523a40f0a5f5ba94f09679adbabf825  numpy-1.26.0-cp310-cp310-win_amd64.whl
6115698fdf5fb8cf895540a57d12bfb9  numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl
207603ee822d8af4542f239b8c0a7a67  numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl
0cc5f95c4aebab0ca4f9f66463981016  numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a4654b46bc10738825f37a1797e1eba5  numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3b037dc746499f2a19bb58b55fdd0bfb  numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl
7bfb0c44e95f765e7fc5a7a86968a56c  numpy-1.26.0-cp311-cp311-win32.whl
3355b510410cb20bacfb3c87632a731a  numpy-1.26.0-cp311-cp311-win_amd64.whl
9624a97f1df9f64054409d274c1502f3  numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl
53429b1349542c38b2f3822c7f2904d5  numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl
66a21bf4d8a6372cc3c4c89a67b96279  numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cb9abc312090046563eae619c0b68210  numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
49e3498e0e0ec5c1f6314fb86d7f006e  numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl
f4a31765889478341597a7140044db85  numpy-1.26.0-cp312-cp312-win32.whl
e7d7ded11f89baf760e5ba69249606e4  numpy-1.26.0-cp312-cp312-win_amd64.whl
19698f330ae322c4813eed6e790a04d5  numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl
a3628f551d851fbcde6551adb8fcfe2b  numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl
b34af2ddf43b28207ec7e2c837cbe35f  numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3d888129c86357ccfb779d9f0c1256f5  numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e49d00c779df59a786d9f41e0d73c520  numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl
69f6aa8a0f3919797cb28fab7069a578  numpy-1.26.0-cp39-cp39-win32.whl
8233224840dcdda49b08da1d5e91a730  numpy-1.26.0-cp39-cp39-win_amd64.whl
c11b4d1181b825407b71a1ac8ec04a10  numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
1515773d4f569d44c6a757cb5a636cb2  numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60dc766d863d8ab561b494a7a759d562  numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl
69bd28f07afbeed2bb6ecd467afcd469  numpy-1.26.0.tar.gz
SHA256
f8db2f125746e44dce707dd44d4f4efeea8d7e2b43aace3f8d1f235cfa2733dd  numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl
0621f7daf973d34d18b4e4bafb210bbaf1ef5e0100b5fa750bd9cde84c7ac292  numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl
51be5f8c349fdd1a5568e72713a21f518e7d6707bcf8503b528b88d33b57dc68  numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
767254ad364991ccfc4d81b8152912e53e103ec192d1bb4ea6b1f5a7117040be  numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
436c8e9a4bdeeee84e3e59614d38c3dbd3235838a877af8c211cfcac8a80b8d3  numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl
c2e698cb0c6dda9372ea98a0344245ee65bdc1c9dd939cceed6bb91256837896  numpy-1.26.0-cp310-cp310-win32.whl
09aaee96c2cbdea95de76ecb8a586cb687d281c881f5f17bfc0fb7f5890f6b91  numpy-1.26.0-cp310-cp310-win_amd64.whl
637c58b468a69869258b8ae26f4a4c6ff8abffd4a8334c830ffb63e0feefe99a  numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl
306545e234503a24fe9ae95ebf84d25cba1fdc27db971aa2d9f1ab6bba19a9dd  numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl
8c6adc33561bd1d46f81131d5352348350fc23df4d742bb246cdfca606ea1208  numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e062aa24638bb5018b7841977c360d2f5917268d125c833a686b7cbabbec496c  numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
546b7dd7e22f3c6861463bebb000646fa730e55df5ee4a0224408b5694cc6148  numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl
c0b45c8b65b79337dee5134d038346d30e109e9e2e9d43464a2970e5c0e93229  numpy-1.26.0-cp311-cp311-win32.whl
eae430ecf5794cb7ae7fa3808740b015aa80747e5266153128ef055975a72b99  numpy-1.26.0-cp311-cp311-win_amd64.whl
166b36197e9debc4e384e9c652ba60c0bacc216d0fc89e78f973a9760b503388  numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl
f042f66d0b4ae6d48e70e28d487376204d3cbf43b84c03bac57e28dac6151581  numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl
e5e18e5b14a7560d8acf1c596688f4dfd19b4f2945b245a71e5af4ddb7422feb  numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f6bad22a791226d0a5c7c27a80a20e11cfe09ad5ef9084d4d3fc4a299cca505  numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4acc65dd65da28060e206c8f27a573455ed724e6179941edb19f97e58161bb69  numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl
bb0d9a1aaf5f1cb7967320e80690a1d7ff69f1d47ebc5a9bea013e3a21faec95  numpy-1.26.0-cp312-cp312-win32.whl
ee84ca3c58fe48b8ddafdeb1db87388dce2c3c3f701bf447b05e4cfcc3679112  numpy-1.26.0-cp312-cp312-win_amd64.whl
4a873a8180479bc829313e8d9798d5234dfacfc2e8a7ac188418189bb8eafbd2  numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl
914b28d3215e0c721dc75db3ad6d62f51f630cb0c277e6b3bcb39519bed10bd8  numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl
c78a22e95182fb2e7874712433eaa610478a3caf86f28c621708d35fa4fd6e7f  numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
86f737708b366c36b76e953c46ba5827d8c27b7a8c9d0f471810728e5a2fe57c  numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b44e6a09afc12952a7d2a58ca0a2429ee0d49a4f89d83a0a11052da696440e49  numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl
5671338034b820c8d58c81ad1dafc0ed5a00771a82fccc71d6438df00302094b  numpy-1.26.0-cp39-cp39-win32.whl
020cdbee66ed46b671429c7265cf00d8ac91c046901c55684954c3958525dab2  numpy-1.26.0-cp39-cp39-win_amd64.whl
0792824ce2f7ea0c82ed2e4fecc29bb86bee0567a080dacaf2e0a01fe7654369  numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
7d484292eaeb3e84a51432a94f53578689ffdea3f90e10c8b203a99be5af57d8  numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
186ba67fad3c60dbe8a3abff3b67a91351100f2661c8e2a80364ae6279720299  numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl
f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf  numpy-1.26.0.tar.gz

v1.25.2

Compare Source

NumPy 1.25.2 Release Notes

NumPy 1.25.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.25.1 release. This is the last planned release in
the 1.25.x series, the next release will be 1.26.0, which will use the
meson build system and support Python 3.12. The Python versions
supported by this release are 3.9-3.11.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aaron Meurer
  • Andrew Nelson
  • Charles Harris
  • Kevin Sheppard
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Ralf Gommers
  • Randy Eckenrode +
  • Sam James +
  • Sebastian Berg
  • Tyler Reddy
  • dependabot[bot]

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​24148: MAINT: prepare 1.25.x for further development
  • #​24174: ENH: Improve clang-cl compliance
  • #​24179: MAINT: Upgrade various build dependencies.
  • #​24182: BLD: use -ftrapping-math with Clang on macOS
  • #​24183: BUG: properly handle negative indexes in ufunc_at fast path
  • #​24184: BUG: PyObject_IsTrue and PyObject_Not error handling in setflags
  • #​24185: BUG: histogram small range robust
  • #​24186: MAINT: Update meson.build files from main branch
  • #​24234: MAINT: exclude min, max and round from np.__all__
  • #​24241: MAINT: Dependabot updates
  • #​24242: BUG: Fix the signature for np.array_api.take
  • #​24243: BLD: update OpenBLAS to an intermeidate commit
  • #​24244: BUG: Fix reference count leak in str(scalar).
  • #​24245: BUG: fix invalid function pointer conversion error
  • #​24255: BUG: Factor out slow getenv call used for memory policy warning
  • #​24292: CI: correct URL in cirrus.star
  • #​24293: BUG: Fix C types in scalartypes
  • #​24294: BUG: do not modify the input to ufunc_at
  • #​24295: BUG: Further fixes to indexing loop and added tests

Checksums

MD5
33518ccb4da8ee11f1dee4b9fef1e468  numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
b5cb0c3b33ef6d93ec2888f25b065636  numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
ae027dd38bd73f09c07220b2f516f148  numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88cf69dc3c0d293492c4c7e75dccf3d8  numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e4e3ad02375ba71ae2cd05ccd97aba4  numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
f52bb644682deb26c35ddec77198b65c  numpy-1.25.2-cp310-cp310-win32.whl
4944cf36652be7560a6bcd0d5d56e8ea  numpy-1.25.2-cp310-cp310-win_amd64.whl
5a56e639defebb7b871c8c5613960ca3  numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
3988b96944e7218e629255214f2598bd  numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
302d65015ddd908a862fb3761a2a0363  numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e54a2e23272d1c5e5b278bd7e304c948  numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
961d390e8ccaf11b1b0d6200d2c8b1c0  numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
e113865b90f97079d344100c41226fbe  numpy-1.25.2-cp311-cp311-win32.whl
834a147aa1adaec97655018b882232bd  numpy-1.25.2-cp311-cp311-win_amd64.whl
fb55f93a8033bde854c8a2b994045686  numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
d96e754217d29bf045e082b695667e62  numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
beab540edebecbb257e482dd9e498b44  numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d608c9e09cd8feba48567586cfefc0  numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe1fc32c8bb005ca04b8f10ebdcff6dd  numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
41df58a9935c8ed869c92307c95f02eb  numpy-1.25.2-cp39-cp39-win32.whl
a4371272c64493beb8b04ac46c4c1521  numpy-1.25.2-cp39-cp39-win_amd64.whl
bbe051cbd5f8661dd054277f0b0f0c3d  numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
3f68e6b4af6922989dc0133e37db34ee  numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fc89421b79e8800240999d3a1d06a4d2  numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
cee1996a80032d47bdf1d9d17249c34e  numpy-1.25.2.tar.gz
SHA256
db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3  numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f  numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187  numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357  numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9  numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044  numpy-1.25.2-cp310-cp310-win32.whl
834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545  numpy-1.25.2-cp310-cp310-win_amd64.whl
c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418  numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f  numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2  numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf  numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364  numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d  numpy-1.25.2-cp311-cp311-win32.whl
5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4  numpy-1.25.2-cp311-cp311-win_amd64.whl
b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3  numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926  numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca  numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295  numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f  numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01  numpy-1.25.2-cp39-cp39-win32.whl
76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380  numpy-1.25.2-cp39-cp39-win_amd64.whl
1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55  numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901  numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf  numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760  numpy-1.25.2.tar.gz

v1.25.1

Compare Source

NumPy 1.25.1 Release Notes

NumPy 1.25.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.25.0 release. The Python versions supported by
this release are 3.9-3.11.

Contributors

A total of 10 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • Hood Chatham
  • Nathan Goldbaum
  • Rohit Goswami
  • Sebastian Berg
  • Tim Paine +
  • dependabot[bot]
  • matoro +

Pull requests merged

A total of 14 pull requests were merged for this release.

  • #​23968: MAINT: prepare 1.25.x for further development
  • #​24036: BLD: Port long double identification to C for meson
  • #​24037: BUG: Fix reduction return NULL to be goto fail
  • #​24038: BUG: Avoid undefined behavior in array.astype()
  • #​24039: BUG: Ensure __array_ufunc__ works without any kwargs passed
  • #​24117: MAINT: Pin urllib3 to avoid anaconda-client bug.
  • #​24118: TST: Pin pydantic<2 in Pyodide workflow
  • #​24119: MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1
  • #​24120: MAINT: Bump actions/checkout from 3.5.2 to 3.5.3
  • #​24122: BUG: Multiply or Divides using SIMD without a full vector can...
  • #​24127: MAINT: testing for IS_MUSL closes #​24074
  • #​24128: BUG: Only replace dtype temporarily if dimensions changed
  • #​24129: MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0
  • #​24134: BUG: Fix private procedures in f2py modules

Checksums

MD5
d09d98643db31e892fad11b8c2b7af22  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d5b8d3b0424e2af41018f35a087c4500  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
1007893b1a8bfd97d445a63d29d33642  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6a62d7a6cee310b41dc872aa7f3d7e8b  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e81f6264aecfa2269c5d29d10c362cbc  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
ab8ecd125ca86eac0b3ada67ab66dad6  numpy-1.25.1-cp310-cp310-win32.whl
5466bebeaafcc3d6e1b98858d77ff945  numpy-1.25.1-cp310-cp310-win_amd64.whl
f31b059256ae09b7b83df63f52d8371e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
099f74d654888869704469c321af845d  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
20d04dccd2bfca5cfd88780d1dc9a3f8  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
61dfd7c00638e83a7af59b86615ee9d2  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4eb459c3d9479c4da2fdf20e4c4085d0  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
5e84e797866c68ba65fa89a4bf4ba8ce  numpy-1.25.1-cp311-cp311-win32.whl
87bb1633b2e8029dbfa1e59f7ab22625  numpy-1.25.1-cp311-cp311-win_amd64.whl
3fcf2eb5970d848a26abdff1b10228e7  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
d71e1cbe18fe05944219e5a5be1796bf  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
5b457e10834c991bca84aae7eaa49f34  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5cbb4c2f2892fafdf6f34fcb37c9e743  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7d9d1ae23cf5420652088bfe8e048d89  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
7e5bed491b85f0d7c718d6809f9b3ed2  numpy-1.25.1-cp39-cp39-win32.whl
838e97b751bebadf47e2196b2c88ffa2  numpy-1.25.1-cp39-cp39-win_amd64.whl
9ba95d8d6004d9659d7728fe93f67be9  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
fbccb20254a2dc85bdec549a03b8eb56  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
95e36689e6dd078caf11e7e2a2d5f5f1  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
768d0ebf15e2242f4c7ca7565bb5dd3e  numpy-1.25.1.tar.gz
SHA256
77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503  numpy-1.25.1-cp310-cp310-win32.whl
c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57  numpy-1.25.1-cp310-cp310-win_amd64.whl
6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb  numpy-1.25.1-cp311-cp311-win32.whl
c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171  numpy-1.25.1-cp311-cp311-win_amd64.whl
3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c  numpy-1.25.1-cp39-cp39-win32.whl
1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631  numpy-1.25.1-cp39-cp39-win_amd64.whl
35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf  numpy-1.25.1.tar.gz

v1.25.0

Compare Source

NumPy 1.25.0 Release Notes

The NumPy 1.25.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There has also been work to prepare for the
future NumPy 2.0.0 release, resulting in a large number of new and
expired deprecation. Highlights are:

  • Support for MUSL, there are now MUSL wheels.
  • Support the Fujitsu C/C++ compiler.
  • Object arrays are now supported in einsum
  • Support for inplace matrix multiplication (@=).

We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is
needed because distutils has been dropped by Python 3.12 and we will be
switching to using meson for future builds. The next mainline release
will be NumPy 2.0.0. We plan that the 2.0 series will still support
downstream projects built against earlier versions of NumPy.

The Python versions supported in this release are 3.9-3.11.

Deprecations

  • np.core.MachAr is deprecated. It is private API. In names defined
    in np.core should generally be considered private.

    (gh-22638)

  • np.finfo(None) is deprecated.

    (gh-23011)

  • np.round_ is deprecated. Use np.round instead.

    (gh-23302)

  • np.product is deprecated. Use np.prod instead.

    (gh-23314)

  • np.cumproduct is deprecated. Use np.cumprod instead.

    (gh-23314)

  • np.sometrue is deprecated. Use np.any instead.

    (gh-23314)

  • np.alltrue is deprecated. Use np.all instead.

    (gh-23314)

  • Only ndim-0 arrays are treated as scalars. NumPy used to treat all
    arrays of size 1 (e.g., np.array([3.14])) as scalars. In the
    future, this will be limited to arrays of ndim 0 (e.g.,
    np.array(3.14)). The following expressions will report a
    deprecation warning:

    a = np.array([3.14])
    float(a)  # better: a[0] to get the numpy.float or a.item()
    
    b = np.array([[3.14]])
    c = numpy.random.rand(10)
    c[0] = b  # better: c[0] = b[0, 0]
    

    (gh-10615)

  • numpy.find_common_type is now deprecated and its use
    should be replaced with either numpy.result_type or
    numpy.promote_types. Most users leave the second
    scalar_types argument to find_common_type as [] in which case
    np.result_type and np.promote_types are both faster and more
    robust. When not using scalar_types the main difference is that
    the replacement intentionally converts non-native byte-order to
    native byte order. Further, find_common_type returns object
    dtype rather than failing promotion. This leads to differences when
    the inputs are not all numeric. Importantly, this also happens for
    e.g. timedelta/datetime for which NumPy promotion rules are
    currently sometimes surprising.

    When the scalar_types argument is not [] things are more
    complicated. In most cases, using np.result_type and passing the
    Python values 0, 0.0, or 0j has the same result as using
    int, float, or complex in scalar_types.

    When scalar_types is constructed, np.result_type is the correct
    replacement and it may be passed scalar values like
    np.float32(0.0). Passing values other than 0, may lead to
    value-inspecting behavior (which np.find_common_type never used
    and NEP 50 may change in the future). The main possible change in
    behavior in this case, is when the array types are signed integers
    and scalar types are unsigned.

    If you are unsure about how to replace a use of scalar_types or
    when non-numeric dtypes are likely, please do not hesitate to open a
    NumPy issue to ask for help.

    (gh-22539)

Expired deprecations

  • np.core.machar and np.finfo.machar have been removed.

    (gh-22638)

  • +arr will now raise an error when the dtype is not numeric (and
    positive is undefined).

    (gh-22998)

  • A sequence must now be passed into the stacking family of functions
    (stack, vstack, hstack, dstack and column_stack).

    (gh-23019)

  • np.clip now defaults to same-kind casting. Falling back to unsafe
    casting was deprecated in NumPy 1.17.

    (gh-23403)

  • np.clip will now propagate np.nan values passed as min or
    max. Previously, a scalar NaN was usually ignored. This was
    deprecated in NumPy 1.17.

    (gh-23403)

  • The np.dual submodule has been removed.

    (gh-23480)

  • NumPy now always ignores sequence behavior for an array-like
    (defining one of the array protocols). (Deprecation started NumPy
    1.20)

    (gh-23660)

  • The niche FutureWarning when casting to a subarray dtype in
    astype or the array creation functions such as asarray is now
    finalized. The behavior is now always the same as if the subarray
    dtype was wrapped into a single field (which was the workaround,
    previously). (FutureWarning since NumPy 1.20)

    (gh-23666)

  • == and != warnings have been finalized. The == and !=
    operators on arrays now always:

    • raise errors that occur during comparisons such as when the
      arrays have incompatible shapes
      (np.array([1, 2]) == np.array([1, 2, 3])).

    • return an array of all True or all False when values are
      fundamentally not comparable (e.g. have different dtypes). An
      example is np.array(["a"]) == np.array([1]).

      This mimics the Python behavior of returning False and True
      when comparing incompatible types like "a" == 1 and
      "a" != 1. For a long time these gave DeprecationWarning or
      FutureWarning.

    (gh-22707)

  • Nose support has been removed. NumPy switched to using pytest in
    2018 and nose has been unmaintained for many years. We have kept
    NumPy's nose support to avoid breaking downstream projects who
    might have been using it and not yet switched to pytest or some
    other testing framework. With the arrival of Python 3.12, unpatched
    nose will raise an error. It is time to move on.

    Decorators removed:

    • raises
    • slow
    • setastest
    • skipif
    • knownfailif
    • deprecated
    • parametrize
    • _needs_refcount

    These are not to be confused with pytest versions with similar
    names, e.g., pytest.mark.slow, pytest.mark.skipif,
    pytest.mark.parametrize.

    Functions removed:

    • Tester
    • import_nose
    • run_module_suite

    (gh-23041)

  • The numpy.testing.utils shim has been removed. Importing from the
    numpy.testing.utils shim has been deprecated since 2019, the shim
    has now been removed. All imports should be made directly from
    numpy.testing.

    (gh-23060)

  • The environment variable to disable dispatching has been removed.
    Support for the NUMPY_EXPERIMENTAL_ARRAY_FUNCTION environment
    variable has been removed. This variable disabled dispatching with
    __array_function__.

    (gh-23376)

  • Support for y= as an alias of out= has been removed. The fix,
    isposinf and isneginf functions allowed using y= as a
    (deprecated) alias for out=. This is no longer supported.

    (gh-23376)

Compatibility notes

  • The busday_count method now correctly handles cases where the
    begindates is later in time than the enddates. Previously, the
    enddates was included, even though the documentation states it is
    always excluded.

    (gh-23229)

  • When comparing datetimes and timedelta using np.equal or
    np.not_equal numpy previously allowed the comparison with
    casting="unsafe". This operation now fails. Forcing the output
    dtype using the dtype kwarg can make the operation succeed, but we
    do not recommend it.

    (gh-22707)

  • When loading data from a file handle using np.load, if the handle
    is at the end of file, as can happen when reading multiple arrays by
    calling np.load repeatedly, numpy previously raised ValueError
    if allow_pickle=False, and OSError if allow_pickle=True. Now
    it raises EOFError instead, in both cases.

    (gh-23105)

np.pad with mode=wrap pads with strict multiples of original data

Code based on earlier version of pad that uses mode="wrap" will
return different results when the padding size is larger than initial
array.

np.pad with mode=wrap now always fills the space with strict
multiples of original data even if the padding size is larger than the
initial array.

(gh-22575)

Cython long_t and ulong_t removed

long_t and ulong_t were aliases for longlong_t and ulonglong_t
and confusing (a remainder from of Python 2). This change may lead to
the errors:

'long_t' is not a type identifier
'ulong_t' is not a type identifier

We recommend use of bit-sized types such as cnp.int64_t or the use of
cnp.intp_t which is 32 bits on 32 bit systems and 64 bits on 64 bit
systems (this is most compatible with indexing). If C long is desired,
use plain long or npy_long. cnp.int_t is also long (NumPy's
default integer). However, long is 32 bit on 64 bit windows and we may
wish to adjust this even in NumPy. (Please do not hesitate to contact
NumPy developers if you are curious about this.)

(gh-22637)

Changed error message and type for bad axes argument to ufunc

The error message and type when a wrong axes value is passed to
ufunc(..., axes=[...]) has changed. The message is now more
indicative of the problem, and if the value is mismatched an
AxisError will be raised. A TypeError will still be raised for
invalidinput types.

(gh-22675)

Array-likes that define __array_ufunc__ can now override ufuncs if used as where

If the where keyword argument of a numpy.ufunc{.interpreted-text
role="class"} is a subclass of numpy.ndarray{.interpreted-text
role="class"} or is a duck type that defines
numpy.class.__array_ufunc__{.interpreted-text role="func"} it can
override the behavior of the ufunc using the same mechanism as the input
and output arguments. Note that for this to work properly, the
where.__array_ufunc__ implementation will have to unwrap the where
argument to pass it into the default implementation of the ufunc or,
for numpy.ndarray{.interpreted-text role="class"} subclasses before
using super().__array_ufunc__.

(gh-23240)

Compiling against the NumPy C API is now backwards compatible by default

NumPy now defaults to exposing a backwards compatible subset of the
C-API. This makes the use of oldest-supported-numpy unnecessary.
Libraries can override the default minimal version to be compatible with
using:

#define NPY_TARGET_VERSION NPY_1_22_API_VERSION

before including NumPy or by passing the equivalent -D option to the
compiler. The NumPy 1.25 default is NPY_1_19_API_VERSION. Because the
NumPy 1.19 C API was identical to the NumPy 1.16 one resulting programs
will be compatible with NumPy 1.16 (from a C-API perspective). This
default will be increased in future non-bugfix releases. You can still
compile against an older NumPy version and run on a newer one.

For more details please see
for-downstream-package-authors{.interpreted-text role="ref"}.

(gh-23528)

New Features

np.einsum now accepts arrays with object dtype

The code path will call python operators on object dtype arrays, much
like np.dot and np.matmul.

(gh-18053)

Add support for inplace matrix multiplication

It is now possible to perform inplace matrix multiplication via the @=
operator.

>>> import numpy as np

>>> a = np.arange(6).reshape(3, 2)
>>> print(a)
[[0 1]
 [2 3]
 [4 5]]

>>> b = np.ones((2, 2), dtype=int)
>>> a @&#8203;= b
>>> print(a)
[[1 1]
 [5 5]
 [9 9]]

(gh-21120)

Added NPY_ENABLE_CPU_FEATURES environment variable

Users may now choose to enable only a subset of the built CPU features
at runtime by specifying the NPY_ENABLE_CPU_FEATURES
environment variable. Note that these specified features must be outside
the baseline, since those are always assumed. Errors will be raised if
attempting to enable a feature that is either not supported by your CPU,
or that NumPy was not built with.

(gh-22137)

NumPy now has an np.exceptions namespace

NumPy now has a dedicated namespace making most exceptions and warnings
available. All of these remain available in the main namespace, although
some may be moved slowly in the future. The main reason for this is to
increase discoverability and add future exceptions.

(gh-22644)

np.linalg functions return NamedTuples

np.linalg functions that return tuples now return namedtuples. These
functions are eig(), eigh(), qr(), slogdet(), and svd(). The
return type is unchanged in instances where these functions return
non-tuples with certain keyword arguments (like
svd(compute_uv=False)).

(gh-22786)

String functions in np.char are compatible with NEP 42 custom dtypes

Custom dtypes that represent unicode strings or byte strings can now be
passed to the string functions in np.char.

(gh-22863)

String dtype instances can be created from the string abstract dtype classes

It is now possible to create a string dtype instance with a size without
using the string name of the dtype. For example,
type(np.dtype('U'))(8) will create a dtype that is equivalent to
np.dtype('U8'). This feature is most useful when writing generic code
dealing with string dtype classes.

(gh-22963)

Fujitsu C/C++ compiler is now supported

Support for Fujitsu compiler has been added. To build with Fujitsu
compiler, run:

python setup.py build -c fujitsu

SSL2 is now supported

Support for SSL2 has been added. SSL2 is a library that provides
OpenBLAS compatible GEMM functions. To enable SSL2, it need to edit
site.cfg and build with Fujitsu compiler. See site.cfg.example.

(gh-22982)

Improvements

NDArrayOperatorsMixin specifies that it has no __slots__

The NDArrayOperatorsMixin class now specifies that it contains no
__slots__, ensuring that subclasses can now make use of this feature
in Python.

(gh-23113)

Fix power of complex zero

np.power now returns a different result for 0^{non-zero} for complex
numbers. Note that the value is only defined when the real part of the
exponent is larger than zero. Previously, NaN was returned unless the
imaginary part was strictly zero. The return value is either 0+0j or
0-0j.

(gh-18535)

New DTypePromotionError

NumPy now has a new DTypePromotionError which is used when two dtypes
cannot be promoted to a common one, for example:

np.result_type("M8[s]", np.complex128)

raises this new exception.

(gh-22707)

np.show_config uses information from Meson

Build and system information now contains information from Meson.
np.show_config now has a new optional parameter mode to
help customize the output.

(gh-22769)

Fix np.ma.diff not preserving the mask when called with arguments prepend/append.

Calling np.ma.diff with arguments prepend and/or append now returns a
MaskedArray with the input mask preserved.

Previously, a MaskedArray without the mask was returned.

(gh-22776)

Corrected error handling for NumPy C-API in Cython

Many NumPy C functions defined for use in Cython were lacking the
correct error indicator like except -1 or except *. These have now
been added.

(gh-22997)

Ability to directly spawn random number generators

numpy.random.Generator.spawn now allows to directly spawn new independent
child generators via the numpy.random.SeedSequence.spawn mechanism.
numpy.random.BitGenerator.spawn does the same for the underlying bit
generator.

Additionally, numpy.random.BitGenerator.seed_seq now gives
direct access to the seed sequence used for initializing the bit
generator. This allows for example:

seed = 0x2e09b90939db40c400f8f22dae617151
rng = np.random.default_rng(seed)
child_rng1, child_rng2 = rng.spawn(2)

safely use rng, child_rng1, and child_rng2

Previously, this was hard to do without passing the SeedSequence
explicitly. Please see numpy.random.SeedSequence for more
information.

(gh-23195)

numpy.logspace now supports a non-scalar base argument

The base argument of numpy.logspace can now be array-like if it is
broadcastable against the start and stop arguments.

(gh-23275)

np.ma.dot() now supports for non-2d arrays

Previously np.ma.dot() only worked if a and b were both 2d. Now it
works for non-2d arrays as well as np.dot().

(gh-23322)

Explicitly show keys of .npz file in repr

NpzFile shows keys of loaded .npz file when printed.

>>> npzfile = np.load('arr.npz')
>>> npzfile
NpzFile 'arr.npz' with keys arr_0, arr_1, arr_2, arr_3, arr_4...

(gh-23357)

NumPy now exposes DType classes in np.dtypes

The new numpy.dtypes module now exposes DType classes and will contain
future dtype related functionality. Most users should have no need to
use these classes directly.

(gh-23358)

Drop dtype metadata before saving in .npy or .npz files

Currently, a *.npy file containing a table with a dtype with metadata cannot
be read back. Now, np.save and np.savez drop metadata before saving.

(gh-23371)

numpy.lib.recfunctions.structured_to_unstructured returns views in more cases

structured_to_unstructured now returns a view, if the stride between
the fields is constant. Prior, padding between the fields or a reversed
field would lead to a copy. This change only applies to ndarray,
memmap and recarray. For all other array subclasses, the behavior
remains unchanged.

(gh-23652)

Signed and unsigned integers always compare correctly

When uint64 and int64 are mixed in NumPy, NumPy typically promotes
both to float64. This behavior may be argued about but is confusing
for comparisons ==, <=, since the results returned can be incorrect
but the conversion is hidden since the result is a boolean. NumPy will
now return the correct results for these by avoiding the cast to float.

(gh-23713)

Performance improvements and changes

Faster np.argsort on AVX-512 enabled processors

32-bit and 64-bit quicksort algorithm for np.argsort gain up to 6x speed
up on processors that support AVX-512 instruction set.

Thanks to Intel corporation for sponsoring
this work.

(gh-23707)

Faster np.sort on AVX-512 enabled processors

Quicksort for 16-bit and 64-bit dtypes gain up to 15x and 9x speed up on
processors that support AVX-512 instruction set.

Thanks to Intel corporation for sponsoring
this work.

(gh-22315)

__array_function__ machinery is now much faster

The overhead of the majority of functions in NumPy is now smaller
especially when keyword arguments are used. This change significantly
speeds up many simple function calls.

(gh-23020)

ufunc.at can be much faster

Generic ufunc.at can be up to 9x faster. The conditions for this
speedup:

  • operands are aligned
  • no casting

If ufuncs with appropriate indexed loops on 1d arguments with the above
conditions, ufunc.at can be up to 60x faster (an additional 7x
speedup). Appropriate indexed loops have been added to add,
subtract, multiply, floor_divide, maximum, minimum, fmax,
and fmin.

The internal logic is similar to the logic used for regular ufuncs,
which also have fast paths.

Thanks to the D. E. Shaw group for sponsoring
this work.

(gh-23136)

Faster membership test on NpzFile

Membership test on NpzFile will no longer decompress the archive if it
is successful.

(gh-23661)

Changes

np.r_[] and np.c_[] with certain scalar values

In rare cases, using mainly np.r_ with scalars can lead to different
results. The main potential changes are highlighted by the following:

>>> np.r_[np.arange(5, dtype=np.uint8), -1].dtype
int16  # rather than the default integer (int64 or int32)
>>> np.r_[np.arange(5, dtype=np.int8), 255]
array([  0,   1,   2,   3,   4, 255], dtype=int16)

Where the second example returned:

array([ 0,  1,  2,  3,  4, -1], dtype=int8)

The first one is due to a signed integer scalar with an unsigned integer
array, while the second is due to 255 not fitting into int8 and
NumPy currently inspecting values to make this work. (Note that the
second example is expected to change in the future due to
NEP 50 <NEP50>{.interpreted-text role="ref"}; it will then raise an
error.)

(gh-22539)

Most NumPy functions are wrapped into a C-callable

To speed up the __array_function__ dispatching, most NumPy functions
are now wrapped into C-callables and are not proper Python functions or
C methods. They still look and feel the same as before (like a Python
function), and this should only improve performance and user experience
(cleaner tracebacks). However, please inform the NumPy developers if
this change confuses your program for some reason.

(gh-23020)

C++ standard library usage

NumPy builds now depend on the C++ standard library, because the
numpy.core._multiarray_umath extension is linked with the C++ linker.

(gh-23601)

Checksums

MD5
4657f046d9d9d62e4baeae9b2cc1b4ea  numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
f57f98fee3da2d98f752f755a880a508  numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
72b0ad52f96a41a7a82f511cb35c7ef1  numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a61227341b8903fa66ab0e0fdaa15430  numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bfccabfbd866c59545ce11ecdac60701  numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
22402904f194376b8d2de01481f04b03  numpy-1.25.0-cp310-cp310-win32.whl
e983b193f7d63568eac85d8bda8be62e  numpy-1.25.0-cp310-cp310-win_amd64.whl
5f6477db172f59a4fd7f591e1007e632  numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
6a85cca47af69e3d45b4efab9490af4d  numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ad1c0b4b406c9a2f1b42792502bc456b  numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
39e241f265611a9c1e89499054ead1c9  numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e36b37acf1acfbc185face67c67bfe09  numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
67862d7849b4f0f943760142f1628aed  numpy-1.25.0-cp311-cp311-win32.whl
6e8ed7865792246cac2213bad404f4da  numpy-1.25.0-cp311-cp311-win_amd64.whl
25e843425697364f50dd7288ff9d2ce1  numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
58641e53bcb1e13dfed1f5af1aff94bc  numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
ce15327793c39beecee8401356bc6c9b  numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
34b734a2c7698d59954c29fe7c0536f3  numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6652d9df23c84e54466b10f4a2a290be  numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
c228105e3c4c8887823d99e35eea9d2b  numpy-1.25.0-cp39-cp39-win32.whl
1322210ae6a874293d13c4bb3abf24ee  numpy-1.25.0-cp39-cp39-win_amd64.whl
dc36096628e65077c2a44c493606c668  numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
942b4276f8d563efb111921d5995834c  numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0fa0734a8ff952dd643e7b9826168099  numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
b236497153bc19b4a560ac485e4c2754  numpy-1.25.0.tar.gz
SHA256
8aa130c3042052d656751df5e81f6d61edff3e289b5994edcf77f54118a8d9f4  numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
9e3f2b96e3b63c978bc29daaa3700c028fe3f049ea3031b58aa33fe2a5809d24  numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
d6b267f349a99d3908b56645eebf340cb58f01bd1e773b4eea1a905b3f0e4208  numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4aedd08f15d3045a4e9c648f1e04daca2ab1044256959f1f95aafeeb3d794c16  numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6d183b5c58513f74225c376643234c369468e02947b47942eacbb23c1671f25d  numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
d76a84998c51b8b68b40448ddd02bd1081bb33abcdc28beee6cd284fe11036c6  numpy-1.25.0-cp310-cp310-win32.whl
c0dc071017bc00abb7d7201bac06fa80333c6314477b3d10b52b58fa6a6e38f6  numpy-1.25.0-cp310-cp310-win_amd64.whl
4c69fe5f05eea336b7a740e114dec995e2f927003c30702d896892403df6dbf0  numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
9c7211d7920b97aeca7b3773a6783492b5b93baba39e7c36054f6e749fc7490c  numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ecc68f11404930e9c7ecfc937aa423e1e50158317bf67ca91736a9864eae0232  numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e559c6afbca484072a98a51b6fa466aae785cfe89b69e8b856c3191bc8872a82  numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6c284907e37f5e04d2412950960894b143a648dea3f79290757eb878b91acbd1  numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
95367ccd88c07af21b379be1725b5322362bb83679d36691f124a16357390153  numpy-1.25.0-cp311-cp311-win32.whl
b76aa836a952059d70a2788a2d98cb2a533ccd46222558b6970348939e55fc24  numpy-1.25.0-cp311-cp311-win_amd64.whl
b792164e539d99d93e4e5e09ae10f8cbe5466de7d759fc155e075237e0c274e4  numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
7cd981ccc0afe49b9883f14761bb57c964df71124dcd155b0cba2b591f0d64b9  numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
5aa48bebfb41f93043a796128854b84407d4df730d3fb6e5dc36402f5cd594c0  numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5177310ac2e63d6603f659fadc1e7bab33dd5a8db4e0596df34214eeab0fee3b  numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0ac6edfb35d2a99aaf102b509c8e9319c499ebd4978df4971b94419a116d0790  numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
7412125b4f18aeddca2ecd7219ea2d2708f697943e6f624be41aa5f8a9852cc4  numpy-1.25.0-cp39-cp39-win32.whl
26815c6c8498dc49d81faa76d61078c4f9f0859ce7817919021b9eba72b425e3  numpy-1.25.0-cp39-cp39-win_amd64.whl
5b1b90860bf7d8a8c313b372d4f27343a54f415b20fb69dd601b7efe1029c91e  numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
85cdae87d8c136fd4da4dad1e48064d700f63e923d5af6c8c782ac0df8044542  numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc3fda2b36482891db1060f00f881c77f9423eead4c3579629940a3e12095fe8  numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
f1accae9a28dc3cda46a91de86acf69de0d1b5f4edd44a9b0c3ceb8036dfff19  numpy-1.25.0.tar.gz

v1.24.4

Compare Source

NumPy 1.24.4 Release Notes

NumPy 1.24.4 is a maintenance release that fixes a few bugs
discovered after the 1.24.3 release. It is the last planned
release in the 1.24.x cycle. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 4 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Sebastian Berg
  • Hongyang Peng +

Pull requests merged

A total of 6 pull requests were merged for this release.

  • #​23720: MAINT, BLD: Pin rtools to version 4.0 for Windows builds.
  • #​23739: BUG: fix the method for checking local files for 1.24.x
  • #​23760: MAINT: Copy rtools installation from install-rtools.
  • #​23761: BUG: Fix masked array ravel order for A (and somewhat K)
  • #​23890: TYP,DOC: Annotate and document the metadata parameter of...
  • #​23994: MAINT: Update rtools installation

Checksums

MD5
25049e3aee79dde29e7a498d3ad13379  numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
579b5c357c918feaef4af03af8afb721  numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
c873a14fa4f0210884db9c05e2904286  numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
110a13ac016286059f0658b52b3646c0  numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fa67218966c0aef4094867cad7703648  numpy-1.24.4-cp310-cp310-win32.whl
6ee768803d8ebac43ee0a04e628a69f9  numpy-1.24.4-cp310-cp310-win_amd64.whl
0c918c16b58cb7f6773ea7d76e0bdaff  numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
20506ae8003faf097c6b3a8915b4140e  numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
902df9d5963e89d88a1939d94207857f  numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2543611d802c141c8276e4868b4d9619  numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
37b23a4e4e148d61dd3a515ac5dbf7ec  numpy-1.24.4-cp311-cp311-win32.whl
25e9f6bee2b65ff2a87588e717f15165  numpy-1.24.4-cp311-cp311-win_amd64.whl
f39a0cc3655a482af7d300bcaff5978e  numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
9ed27941388fdb392e8969169f3fc600  numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
dee3f0c7482f1dc8bd1cd27b9b028a2c  numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0967af29df3caef9fb3520f14e071  numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8572a3a0973fa78355bcb5f737745b47  numpy-1.24.4-cp38-cp38-win32.whl
771c63f2ef0d31466bbb12362a532265  numpy-1.24.4-cp38-cp38-win_amd64.whl
5713d9dc3dff287fb72121fe1960c48d  numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
4e6718e3b655219a2a733b4fa242ca32  numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
31487f9a52ef81f8f88ec7fce8738dad  numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea597b30187e55eb16ee31631e66f60d  numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98adbf30c67154056474001c125f6188  numpy-1.24.4-cp39-cp39-win32.whl
49c444b0e572ef45f1d92c106a36004e  numpy-1.24.4-cp39-cp39-win_amd64.whl
cdddfdeac437b0f20b4e366f00b5c42e  numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
3778338c15628caa3abd61e6f7bd46ec  numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e16bd49d5295dc1b01ed50d76229fb54  numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
3f3995540a17854a29dc79f8eeecd832  numpy-1.24.4.tar.gz
SHA256
c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64  numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1  numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4  numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6  numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc  numpy-1.24.4-cp310-cp310-win32.whl
b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e  numpy-1.24.4-cp310-cp310-win_amd64.whl
f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810  numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254  numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7  numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5  numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d  numpy-1.24.4-cp311-cp311-win32.whl
b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694  numpy-1.24.4-cp311-cp311-win_amd64.whl
1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61  numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f  numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e  numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc  numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2  numpy-1.24.4-cp38-cp38-win32.whl
692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706  numpy-1.24.4-cp38-cp38-win_amd64.whl
2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400  numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f  numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9  numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d  numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835  numpy-1.24.4-cp39-cp39-win32.whl
befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8  numpy-1.24.4-cp39-cp39-win_amd64.whl
31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef  numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a  numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2  numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463  numpy-1.24.4.tar.gz

v1.24.3

Compare Source

NumPy 1.24.3 Release Notes

NumPy 1.24.3 is a maintenance release that fixes bugs and regressions
discovered after the 1.24.2 release. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 12 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aleksei Nikiforov +
  • Alexander Heger
  • Bas van Beek
  • Bob Eldering
  • Brock Mendel
  • Charles Harris
  • Kyle Sunden
  • Peter Hawkins
  • Rohit Goswami
  • Sebastian Berg
  • Warren Weckesser
  • dependabot[bot]

Pull requests merged

A total of 17 pull requests were merged for this release.

  • #​23206: BUG: fix for f2py string scalars (#​23194)
  • #​23207: BUG: datetime64/timedelta64 comparisons return NotImplemented
  • #​23208: MAINT: Pin matplotlib to version 3.6.3 for refguide checks
  • #​23221: DOC: Fix matplotlib error in documentation
  • #​23226: CI: Ensure submodules are initialized in gitpod.
  • #​23341: TYP: Replace duplicate reduce in ufunc type signature with reduceat.
  • #​23342: TYP: Remove duplicate CLIP/WRAP/RAISE in __init__.pyi.
  • #​23343: TYP: Mark d argument to fftfreq and rfftfreq as optional...
  • #​23344: TYP: Add type annotations for comparison operators to MaskedArray.
  • #​23345: TYP: Remove some stray type-check-only imports of msort
  • #​23370: BUG: Ensure like is only stripped for like= dispatched functions
  • #​23543: BUG: fix loading and storing big arrays on s390x
  • #​23544: MAINT: Bump larsoner/circleci-artifacts-redirector-action
  • #​23634: BUG: Ignore invalid and overflow warnings in masked setitem
  • #​23635: BUG: Fix masked array raveling when order="A" or order="K"
  • #​23636: MAINT: Update conftest for newer hypothesis versions
  • #​23637: BUG: Fix bug in parsing F77 style string arrays.

Checksums

MD5
93a3ce07e3773842c54d831f18e3eb8d  numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl
39691ff3d1612438dfcd3266c9765aab  numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl
a99234799a239e7e9c6fa15c212996df  numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3673aa638746851dd19d5199e1eb3a91  numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3c72962360bcd0938a6bddee6cdca766  numpy-1.24.3-cp310-cp310-win32.whl
a3329efa646012fa4ee06ce5e08eadaf  numpy-1.24.3-cp310-cp310-win_amd64.whl
5323fb0323d1ec10ee3c35a2fa79cbcd  numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
cfa001dcd07cdf6414ced433e88959d4  numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl
d75bbfb06ed00d04232dce0e865eb42c  numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fe18b810bcf284572467ce585dbc533b  numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e97699a4ef96a81e0916bdf15440abe0  numpy-1.24.3-cp311-cp311-win32.whl
e6de5b7d77dc43ed47f516eb10bbe8b6  numpy-1.24.3-cp311-cp311-win_amd64.whl
dd04ebf441a8913f4900b56e7a33a75e  numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl
e47ac5521b0bfc3effb040072d8a7902  numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl
7b7dae3309e7ca8a8859633a5d337431  numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8cc87b88163ed84e70c48fd0f5f8f20e  numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
350934bae971d0ebe231a59b640069db  numpy-1.24.3-cp38-cp38-win32.whl
c4708ef009bb5d427ea94a4fc4a10e12  numpy-1.24.3-cp38-cp38-win_amd64.whl
44b08a293a4e12d62c27b8f15ba5664e  numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl
3ae7ac30f86c720e42b2324a0ae1adf5  numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl
065464a8d918c670c7863d1e72e3e6dd  numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1f163b9ea417c253e84480aa8d99dee6  numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c86e648389e333e062bea11c749b9a32  numpy-1.24.3-cp39-cp39-win32.whl
bfe332e577c604d6d62a57381e6aa0a6  numpy-1.24.3-cp39-cp39-win_amd64.whl
374695eeef5aca32a5b7f2f518dd3ba1  numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
6abd9dba54405182e6e7bb32dbe377bb  numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0848bd41c08dd5ebbc5a7f0788678e0e  numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl
89e5e2e78407032290ae6acf6dcaea46  numpy-1.24.3.tar.gz
SHA256
3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570  numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl
202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7  numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl
8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463  numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6  numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b  numpy-1.24.3-cp310-cp310-win32.whl
ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7  numpy-1.24.3-cp310-cp310-win_amd64.whl
9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3  numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf  numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl
76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385  numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950  numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096  numpy-1.24.3-cp311-cp311-win32.whl
5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80  numpy-1.24.3-cp311-cp311-win_amd64.whl
7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078  numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl
ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c  numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl
ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c  numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f  numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4  numpy-1.24.3-cp38-cp38-win32.whl
56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289  numpy-1.24.3-cp38-cp38-win_amd64.whl
4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4  numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl
0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187  numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl
ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02  numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4  numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c  numpy-1.24.3-cp39-cp39-win32.whl
d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17  numpy-1.24.3-cp39-cp39-win_amd64.whl
352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0  numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812  numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4  numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl
ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155  numpy-1.24.3.tar.gz

v1.24.2

Compare Source

NumPy 1.24.2 Release Notes

NumPy 1.24.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.24.1 release. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 14 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Khem Raj +
  • Mark Harfouche
  • Matti Picus
  • Panagiotis Zestanakis +
  • Peter Hawkins
  • Pradipta Ghosh
  • Ross Barnowski
  • Sayed Adel
  • Sebastian Berg
  • Syam Gadde +
  • dmbelov +
  • pkubaj +

Pull requests merged

A total of 17 pull requests were merged for this release.

  • #​22965: MAINT: Update python 3.11-dev to 3.11.
  • #​22966: DOC: Remove dangling deprecation warning
  • #​22967: ENH: Detect CPU features on FreeBSD/powerpc64*
  • #​22968: BUG: np.loadtxt cannot load text file with quoted fields separated...
  • #​22969: TST: Add fixture to avoid issue with randomizing test order.
  • #​22970: BUG: Fix fill violating read-only flag. (#​22959)
  • #​22971: MAINT: Add additional information to missing scalar AttributeError
  • #​22972: MAINT: Move export for scipy arm64 helper into main module
  • #​22976: BUG, SIMD: Fix spurious invalid exception for sin/cos on arm64/clang
  • #​22989: BUG: Ensure correct loop order in sin, cos, and arctan2
  • #​23030: DOC: Add version added information for the strict parameter in...
  • #​23031: BUG: use _Alignof rather than offsetof() on most compilers
  • #​23147: BUG: Fix for npyv__trunc_s32_f32 (VXE)
  • #​23148: BUG: Fix integer / float scalar promotion
  • #​23149: BUG: Add missing <type_traits> header.
  • #​23150: TYP, MAINT: Add a missing explicit Any parameter to the npt.ArrayLike...
  • #​23161: BLD: remove redundant definition of npy_nextafter [wheel build]

Checksums

MD5
73fe0b507f56c0baf43171a76ad2003f  numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl
2dbbe6f8a14e14978d24de9fcc8b49fe  numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl
9ddadbf9cac2742318d8b292cb9ca579  numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
969f4f33baaff53dbbbaf1a146c43534  numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6df575dff02feac835d22debb15d190e  numpy-1.24.2-cp310-cp310-win32.whl
2f939228a8c33265f2a8a1fce349d6f1  numpy-1.24.2-cp310-cp310-win_amd64.whl
c093e61421be01ffff435387839949f1  numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl
03d71e3d9a086b56837c461fd7c9188b  numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl
c0dc33697d156e2b9a029095efeb1b10  numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
13b57957a1f40e13f8826d14b031a6fe  numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5afd966db0b59655618c1859d98d87f6  numpy-1.24.2-cp311-cp311-win32.whl
e0b850f9c20871cd65ecb35235688f4d  numpy-1.24.2-cp311-cp311-win_amd64.whl
9a30452135ab0387b8ea9007e94e9f81  numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl
bdd6eede4524a230574b37e1f631f2c0  numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl
4f930a9030d77d45a1cb6f374c91fb53  numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e77155c010f9dd63ea2815579a28c503  numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1a45f4373945eaeabeaa4020ce04e8fd  numpy-1.24.2-cp38-cp38-win32.whl
66e93d70fad16b4ccb4531e31aad36e3  numpy-1.24.2-cp38-cp38-win_amd64.whl
93a4984da83c6811367d3daf709ed25c  numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl
e0281b96c490ba00f1382eb3984b4e51  numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl
ce97d81e4ae6e10241d471492391b1be  numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c0ea440190705f98abeaa856e7da690  numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c25f7fbb185f1b8f7761bc22082d9939  numpy-1.24.2-cp39-cp39-win32.whl
7705c6b0bcf22b5e64cf248144b2f554  numpy-1.24.2-cp39-cp39-win_amd64.whl
07b6361e36e0093b580dc05799b1f03d  numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4c1466ae486b39d1a35aacb46256ec1e  numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4fea9d95e0489d06c3a24a87697d2fc0  numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl
c4212a8da1ecf17ece37e2afd0319806  numpy-1.24.2.tar.gz
SHA256
eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d  numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl
e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5  numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl
6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253  numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978  numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9  numpy-1.24.2-cp310-cp310-win32.whl
97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0  numpy-1.24.2-cp310-cp310-win_amd64.whl
7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a  numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl
4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0  numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl
4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281  numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910  numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95  numpy-1.24.2-cp311-cp311-win32.whl
557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04  numpy-1.24.2-cp311-cp311-win_amd64.whl
d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2  numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl
c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5  numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl
c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a  numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96  numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d  numpy-1.24.2-cp38-cp38-win32.whl
76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756  numpy-1.24.2-cp38-cp38-win_amd64.whl
4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a  numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl
adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f  numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl
889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb  numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780  numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468  numpy-1.24.2-cp39-cp39-win32.whl
a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5  numpy-1.24.2-cp39-cp39-win_amd64.whl
92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d  numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa  numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f  numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl
003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22  numpy-1.24.2.tar.gz

v1.24.1

Compare Source

NumPy 1.24.1 Release Notes

NumPy 1.24.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.24.0 release. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 12 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Ben Greiner +
  • Charles Harris
  • Clément Robert
  • Matteo Raso
  • Matti Picus
  • Melissa Weber Mendonça
  • Miles Cranmer
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg

Pull requests merged

A total of 18 pull requests were merged for this release.

  • #​22820: BLD: add workaround in setup.py for newer setuptools
  • #​22830: BLD: CIRRUS_TAG redux
  • #​22831: DOC: fix a couple typos in 1.23 notes
  • #​22832: BUG: Fix refcounting errors found using pytest-leaks
  • #​22834: BUG, SIMD: Fix invalid value encountered in several ufuncs
  • #​22837: TST: ignore more np.distutils.log imports
  • #​22839: BUG: Do not use getdata() in np.ma.masked_invalid
  • #​22847: BUG: Ensure correct behavior for rows ending in delimiter in...
  • #​22848: BUG, SIMD: Fix the bitmask of the boolean comparison
  • #​22857: BLD: Help raspian arm + clang 13 about __builtin_mul_overflow
  • #​22858: API: Ensure a full mask is returned for masked_invalid
  • #​22866: BUG: Polynomials now copy properly (#​22669)
  • #​22867: BUG, SIMD: Fix memory overlap in ufunc comparison loops
  • #​22868: BUG: Fortify string casts against floating point warnings
  • #​22875: TST: Ignore nan-warnings in randomized out tests
  • #​22883: MAINT: restore npymath implementations needed for freebsd
  • #​22884: BUG: Fix integer overflow in in1d for mixed integer dtypes #​22877
  • #​22887: BUG: Use whole file for encoding checks with charset_normalizer.

Checksums

MD5
9e543db90493d6a00939bd54c2012085  numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
4ebd7af622bf617b4876087e500d7586  numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
0c0a3012b438bb455a6c2fadfb1be76a  numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0bddb527345449df624d3cb9aa0e1b75  numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b246beb773689d97307f7b4c2970f061  numpy-1.24.1-cp310-cp310-win32.whl
1f3823999fce821a28dee10ac6fdd721  numpy-1.24.1-cp310-cp310-win_amd64.whl
8eedcacd6b096a568e4cb393d43b3ae5  numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
50bddb05acd54b4396100a70522496dd  numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
2a76bd9da8a78b44eb816bd70fa3aee3  numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9e86658a414272f9749bde39344f9b76  numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
915dfb89054e1631574a22a9b53a2b25  numpy-1.24.1-cp311-cp311-win32.whl
ab7caa2c6c20e1fab977e1a94dede976  numpy-1.24.1-cp311-cp311-win_amd64.whl
8246de961f813f5aad89bca3d12f81e7  numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
58366b1a559baa0547ce976e416ed76d  numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
a96f29bf106a64f82b9ba412635727d1  numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c32a43bdb85121614ab3e99929e33c7  numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b20949ed21683ad7c9cbdf9ebb2439  numpy-1.24.1-cp38-cp38-win32.whl
9e9f1577f874286a8bdff8dc5551eb9f  numpy-1.24.1-cp38-cp38-win_amd64.whl
4383c1137f0287df67c364fbdba2bc72  numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
987f22c49b2be084b5d72f88f347d31e  numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
848ad020bba075ed8f19072c64dcd153  numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
864b159e644848bc25f881907dbcf062  numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
db339ec0b2693cac2d7cf9ca75c334b1  numpy-1.24.1-cp39-cp39-win32.whl
fec91d4c85066ad8a93816d71b627701  numpy-1.24.1-cp39-cp39-win_amd64.whl
619af9cd4f33b668822ae2350f446a15  numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
46f19b4b147f8836c2bd34262fabfffa  numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e85b245c57a10891b3025579bf0cf298  numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
dd3aaeeada8e95cc2edf9a3a4aa8b5af  numpy-1.24.1.tar.gz
SHA256
179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7  numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9  numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7  numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398  numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2  numpy-1.24.1-cp310-cp310-win32.whl
b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2  numpy-1.24.1-cp310-cp310-win_amd64.whl
7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8  numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032  numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1  numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9  numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36  numpy-1.24.1-cp311-cp311-win32.whl
de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51  numpy-1.24.1-cp311-cp311-win_amd64.whl
b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407  numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954  numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36  numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7  numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1  numpy-1.24.1-cp38-cp38-win32.whl
6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c  numpy-1.24.1-cp38-cp38-win_amd64.whl
28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6  numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7  numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700  numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf  numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f  numpy-1.24.1-cp39-cp39-win32.whl
ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e  numpy-1.24.1-cp39-cp39-win_amd64.whl
ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d  numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086  numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566  numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2  numpy-1.24.1.tar.gz

v1.24.0

Compare Source

NumPy 1.24 Release Notes

The NumPy 1.24.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There are also a large number of new and
expired deprecations due to changes in promotion and cleanups. This
might be called a deprecation release. Highlights are

  • Many new deprecations, check them out.
  • Many expired deprecations,
  • New F2PY features and fixes.
  • New "dtype" and "casting" keywords for stacking functions.

See below for the details,

This release supports Python versions 3.8-3.11.

Deprecations

Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose

The numpy.fastCopyAndTranspose function has been deprecated. Use the
corresponding copy and transpose methods directly:

arr.T.copy()

The underlying C function PyArray_CopyAndTranspose has also been
deprecated from the NumPy C-API.

(gh-22313)

Conversion of out-of-bound Python integers

Attempting a conversion from a Python integer to a NumPy value will now
always check whether the result can be represented by NumPy. This means
the following examples will fail in the future and give a
DeprecationWarning now:

np.uint8(-1)
np.array([3000], dtype=np.int8)

Many of these did succeed before. Such code was mainly useful for
unsigned integers with negative values such as np.uint8(-1) giving
np.iinfo(np.uint8).max.

Note that conversion between NumPy integers is unaffected, so that
np.array(-1).astype(np.uint8) continues to work and use C integer
overflow logic. For negative values, it will also work to view the
array: np.array(-1, dtype=np.int8).view(np.uint8). In some cases,
using np.iinfo(np.uint8).max or val % 2**8 may also work well.

In rare cases input data may mix both negative values and very large
unsigned values (i.e. -1 and 2**63). There it is unfortunately
necessary to use % on the Python value or use signed or unsigned
conversion depending on whether negative values are expected.

(gh-22385)

Deprecate msort

The numpy.msort function is deprecated. Use np.sort(a, axis=0)
instead.

(gh-22456)

np.str0 and similar are now deprecated

The scalar type aliases ending in a 0 bit size: np.object0, np.str0,
np.bytes0, np.void0, np.int0, np.uint0 as well as np.bool8 are
now deprecated and will eventually be removed.

(gh-22607)

Expired deprecations

  • The normed keyword argument has been removed from
    [np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and
    [np.histogramdd]{.title-ref}. Use density instead. If normed was
    passed by position, density is now used.

    (gh-21645)

  • Ragged array creation will now always raise a ValueError unless
    dtype=object is passed. This includes very deeply nested
    sequences.

    (gh-22004)

  • Support for Visual Studio 2015 and earlier has been removed.

  • Support for the Windows Interix POSIX interop layer has been
    removed.

    (gh-22139)

  • Support for Cygwin < 3.3 has been removed.

    (gh-22159)

  • The mini() method of np.ma.MaskedArray has been removed. Use
    either np.ma.MaskedArray.min() or np.ma.minimum.reduce().

  • The single-argument form of np.ma.minimum and np.ma.maximum has
    been removed. Use np.ma.minimum.reduce() or
    np.ma.maximum.reduce() instead.

    (gh-22228)

  • Passing dtype instances other than the canonical (mainly native
    byte-order) ones to dtype= or signature= in ufuncs will now
    raise a TypeError. We recommend passing the strings "int8" or
    scalar types np.int8 since the byte-order, datetime/timedelta
    unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.)

    (gh-22540)

  • The dtype= argument to comparison ufuncs is now applied correctly.
    That means that only bool and object are valid values and
    dtype=object is enforced.

    (gh-22541)

  • The deprecation for the aliases np.object, np.bool, np.float,
    np.complex, np.str, and np.int is expired (introduces NumPy
    1.20). Some of these will now give a FutureWarning in addition to
    raising an error since they will be mapped to the NumPy scalars in
    the future.

    (gh-22607)

Compatibility notes

array.fill(scalar) may behave slightly different

numpy.ndarray.fill may in some cases behave slightly different now due
to the fact that the logic is aligned with item assignment:

arr = np.array([1])  # with any dtype/value
arr.fill(scalar)

is now identical to:

arr[0] = scalar

Previously casting may have produced slightly different answers when
using values that could not be represented in the target dtype or when
the target had object dtype.

(gh-20924)

Subarray to object cast now copies

Casting a dtype that includes a subarray to an object will now ensure a
copy of the subarray. Previously an unsafe view was returned:

arr = np.ones(3, dtype=[("f", "i", 3)])
subarray_fields = arr.astype(object)[0]
subarray = subarray_fields[0]  # "f" field

np.may_share_memory(subarray, arr)

Is now always false. While previously it was true for the specific cast.

(gh-21925)

Returned arrays respect uniqueness of dtype kwarg objects

When the dtype keyword argument is used with
:pynp.array(){.interpreted-text role="func"} or
:pyasarray(){.interpreted-text role="func"}, the dtype of the returned
array now always exactly matches the dtype provided by the caller.

In some cases this change means that a view rather than the input
array is returned. The following is an example for this on 64bit Linux
where long and longlong are the same precision but different
dtypes:

>>> arr = np.array([1, 2, 3], dtype="long")
>>> new_dtype = np.dtype("longlong")
>>> new = np.asarray(arr, dtype=new_dtype)
>>> new.dtype is new_dtype
True
>>> new is arr
False

Before the change, the dtype did not match because new is arr was
True.

(gh-21995)

DLPack export raises BufferError

When an array buffer cannot be exported via DLPack a BufferError is
now always raised where previously TypeError or RuntimeError was
raised. This allows falling back to the buffer protocol or
__array_interface__ when DLPack was tried first.

(gh-22542)

NumPy builds are no longer tested on GCC-6

Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available
on Ubuntu 20.04, so builds using that compiler are no longer tested. We
still test builds using GCC-7 and GCC-8.

(gh-22598)

New Features

New attribute symbol added to polynomial classes

The polynomial classes in the numpy.polynomial package have a new
symbol attribute which is used to represent the indeterminate of the
polynomial. This can be used to change the value of the variable when
printing:

>>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y")
>>> print(P_y)
1.0 + 0.0·y¹ - 1.0·y²

Note that the polynomial classes only support 1D polynomials, so
operations that involve polynomials with different symbols are
disallowed when the result would be multivariate:

>>> P = np.polynomial.Polynomial([1, -1])  # default symbol is "x"
>>> P_z = np.polynomial.Polynomial([1, 1], symbol="z")
>>> P * P_z
Traceback (most recent call last)
   ...
ValueError: Polynomial symbols differ

The symbol can be any valid Python identifier. The default is
symbol=x, consistent with existing behavior.

(gh-16154)

F2PY support for Fortran character strings

F2PY now supports wrapping Fortran functions with:

  • character (e.g. character x)
  • character array (e.g. character, dimension(n) :: x)
  • character string (e.g. character(len=10) x)
  • and character string array (e.g.
    character(len=10), dimension(n, m) :: x)

arguments, including passing Python unicode strings as Fortran character
string arguments.

(gh-19388)

New function np.show_runtime

A new function numpy.show_runtime has been added to display the
runtime information of the machine in addition to numpy.show_config
which displays the build-related information.

(gh-21468)

strict option for testing.assert_array_equal

The strict option is now available for testing.assert_array_equal.
Setting strict=True will disable the broadcasting behaviour for
scalars and ensure that input arrays have the same data type.

(gh-21595)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and
return a single NaN. Setting equal_nan=False will restore pre-1.21
behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

casting and dtype keyword arguments for numpy.stack

The casting and dtype keyword arguments are now available for
numpy.stack. To use them, write
np.stack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.vstack

The casting and dtype keyword arguments are now available for
numpy.vstack. To use them, write
np.vstack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.hstack

The casting and dtype keyword arguments are now available for
numpy.hstack. To use them, write
np.hstack(..., dtype=None, casting='same_kind').

(gh-21627)

The bit generator underlying the singleton RandomState can be changed

The singleton RandomState instance exposed in the numpy.random
module is initialized at startup with the MT19937 bit generator. The
new function set_bit_generator allows the default bit generator to be
replaced with a user-provided bit generator. This function has been
introduced to provide a method allowing seamless integration of a
high-quality, modern bit generator in new code with existing code that
makes use of the singleton-provided random variate generating functions.
The companion function get_bit_generator returns the current bit
generator being used by the singleton RandomState. This is provided to
simplify restoring the original source of randomness if required.

The preferred method to generate reproducible random numbers is to use a
modern bit generator in an instance of Generator. The function
default_rng simplifies instantiation:

>>> rg = np.random.default_rng(3728973198)
>>> rg.random()

The same bit generator can then be shared with the singleton instance so
that calling functions in the random module will use the same bit
generator:

>>> orig_bit_gen = np.random.get_bit_generator()
>>> np.random.set_bit_generator(rg.bit_generator)
>>> np.random.normal()

The swap is permanent (until reversed) and so any call to functions in
the random module will use the new bit generator. The original can be
restored if required for code to run correctly:

>>> np.random.set_bit_generator(orig_bit_gen)

(gh-21976)

np.void now has a dtype argument

NumPy now allows constructing structured void scalars directly by
passing the dtype argument to np.void.

(gh-22316)

Improvements

F2PY Improvements
  • The generated extension modules don't use the deprecated NumPy-C
    API anymore
  • Improved f2py generated exception messages
  • Numerous bug and flake8 warning fixes
  • various CPP macros that one can use within C-expressions of
    signature files are prefixed with f2py_. For example, one should
    use f2py_len(x) instead of len(x)
  • A new construct character(f2py_len=...) is introduced to support
    returning assumed length character strings (e.g. character(len=*))
    from wrapper functions

A hook to support rewriting f2py internal data structures after
reading all its input files is introduced. This is required, for
instance, for BC of SciPy support where character arguments are treated
as character strings arguments in C expressions.

(gh-19388)

IBM zSystems Vector Extension Facility (SIMD)

Added support for SIMD extensions of zSystem (z13, z14, z15), through
the universal intrinsics interface. This support leads to performance
improvements for all SIMD kernels implemented using the universal
intrinsics, including the following operations: rint, floor, trunc,
ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal,
not_equal, greater, greater_equal, less, less_equal, maximum, minimum,
fmax, fmin, argmax, argmin, add, subtract, multiply, divide.

(gh-20913)

NumPy now gives floating point errors in casts

In most cases, NumPy previously did not give floating point warnings or
errors when these happened during casts. For examples, casts like:

np.array([2e300]).astype(np.float32)  # overflow for float32
np.array([np.inf]).astype(np.int64)

Should now generally give floating point warnings. These warnings should
warn that floating point overflow occurred. For errors when converting
floating point values to integers users should expect invalid value
warnings.

Users can modify the behavior of these warnings using np.errstate.

Note that for float to int casts, the exact warnings that are given may
be platform dependent. For example:

arr = np.full(100, value=1000, dtype=np.float64)
arr.astype(np.int8)

May give a result equivalent to (the intermediate cast means no warning
is given):

arr.astype(np.int64).astype(np.int8)

May return an undefined result, with a warning set:

RuntimeWarning: invalid value encountered in cast

The precise behavior is subject to the C99 standard and its
implementation in both software and hardware.

(gh-21437)

F2PY supports the value attribute

The Fortran standard requires that variables declared with the value
attribute must be passed by value instead of reference. F2PY now
supports this use pattern correctly. So
integer, intent(in), value :: x in Fortran codes will have correct
wrappers generated.

(gh-21807)

Added pickle support for third-party BitGenerators

The pickle format for bit generators was extended to allow each bit
generator to supply its own constructor when during pickling. Previous
versions of NumPy only supported unpickling Generator instances
created with one of the core set of bit generators supplied with NumPy.
Attempting to unpickle a Generator that used a third-party bit
generators would fail since the constructor used during the unpickling
was only aware of the bit generators included in NumPy.

(gh-22014)

arange() now explicitly fails with dtype=str

Previously, the np.arange(n, dtype=str) function worked for n=1 and
n=2, but would raise a non-specific exception message for other values
of n. Now, it raises a [TypeError]{.title-ref} informing that arange
does not support string dtypes:

>>> np.arange(2, dtype=str)
Traceback (most recent call last)
   ...
TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>.

(gh-22055)

numpy.typing protocols are now runtime checkable

The protocols used in numpy.typing.ArrayLike and
numpy.typing.DTypeLike are now properly marked as runtime checkable,
making them easier to use for runtime type checkers.

(gh-22357)

Performance improvements and changes

Faster version of np.isin and np.in1d for integer arrays

np.in1d (used by np.isin) can now switch to a faster algorithm (up
to >10x faster) when it is passed two integer arrays. This is often
automatically used, but you can use kind="sort" or kind="table" to
force the old or new method, respectively.

(gh-12065)

Faster comparison operators

The comparison functions (numpy.equal, numpy.not_equal,
numpy.less, numpy.less_equal, numpy.greater and
numpy.greater_equal) are now much faster as they are now vectorized
with universal intrinsics. For a CPU with SIMD extension AVX512BW, the
performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and
boolean data types, respectively (with N=50000).

(gh-21483)

Changes

Better reporting of integer division overflow

Integer division overflow of scalars and arrays used to provide a
RuntimeWarning and the return value was undefined leading to crashes
at rare occasions:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)

Integer division overflow now returns the input dtype's minimum value
and raise the following RuntimeWarning:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: overflow encountered in floor_divide
array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648,
       -2147483648, -2147483648, -2147483648, -2147483648, -2147483648],
      dtype=int32)

(gh-21506)

masked_invalid now modifies the mask in-place

When used with copy=False, numpy.ma.masked_invalid now modifies the
input masked array in-place. This makes it behave identically to
masked_where and better matches the documentation.

(gh-22046)

nditer/NpyIter allows all allocating all operands

The NumPy iterator available through np.nditer in Python and as
NpyIter in C now supports allocating all arrays. The iterator shape
defaults to () in this case. The operands dtype must be provided,
since a "common dtype" cannot be inferred from the other inputs.

(gh-22457)

Checksums

MD5
d60311246bd71b177258ce06e2a4ec57  numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
02022b335938af55cb83bbaebdbff8e1  numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
02b35d6612369fcc614c6223aaec0119  numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b8ad389a9619db3e1f8243fc0cfe63d  numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ff4acbb7b1258ccbd528c151eb0fe84  numpy-1.24.0-cp310-cp310-win32.whl
d194c96601222db97b0af54fce1cfb1d  numpy-1.24.0-cp310-cp310-win_amd64.whl
5fe4eb551a9312e37492da9f5bfb8545  numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
a8e836a768f73e9f509b11c3873c7e09  numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
10404d6d1a5a9624f85018f61110b2be  numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cfdb0cb844f1db9be2cde998be54d65f  numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
73bc66ad3ae8656ba18d64db98feb5e1  numpy-1.24.0-cp311-cp311-win32.whl
4bbc30a53009c48d364d4dc2c612af95  numpy-1.24.0-cp311-cp311-win_amd64.whl
94ce5f6a09605a9675a0d464b1ec6597  numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
e5e42b69a209eda7e6895dda39ea8610  numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
36eb6143d1e2aac3c618275edf636983  numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
712c3718e8b53ff04c626cc4c78492aa  numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0a1a48a8e458bd4ce581169484c17e4f  numpy-1.24.0-cp38-cp38-win32.whl
c8ab7e4b919548663568a5b5a8b5eab4  numpy-1.24.0-cp38-cp38-win_amd64.whl
1783a5d769566111d93c474c79892c01  numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
c9e77130674372c73f8209d58396624d  numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
14c0f2f52f20f13a81bba7df27f30145  numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c106393b46fa0302dbac49b14a4dfed4  numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c83e6d6946f32820f166c3f1ff010ab6  numpy-1.24.0-cp39-cp39-win32.whl
acd5a4737d1094d5f40afa584dbd6d79  numpy-1.24.0-cp39-cp39-win_amd64.whl
26e32f942c9fd62f64fd9bf6df95b5b1  numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4f027df0cc313ca626b106849999de13  numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ac58db9a90d0bec95bc7850b9e462f34  numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
1ca41c84ad9a116402a025d21e35bc64  numpy-1.24.0.tar.gz
SHA256
6e73a1f4f5b74a42abb55bc2b3d869f1b38cbc8776da5f8b66bf110284f7a437  numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
9387c7d6d50e8f8c31e7bfc034241e9c6f4b3eb5db8d118d6487047b922f82af  numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
7ad6a024a32ee61d18f5b402cd02e9c0e22c0fb9dc23751991b3a16d209d972e  numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
73cf2c5b5a07450f20a0c8e04d9955491970177dce8df8d6903bf253e53268e0  numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cec79ff3984b2d1d103183fc4a3361f5b55bbb66cb395cbf5a920a4bb1fd588d  numpy-1.24.0-cp310-cp310-win32.whl
4f5e78b8b710cd7cd1a8145994cfffc6ddd5911669a437777d8cedfce6c83a98  numpy-1.24.0-cp310-cp310-win_amd64.whl
4445f472b246cad6514cc09fbb5ecb7aab09ca2acc3c16f29f8dca6c468af501  numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
ec3e5e8172a0a6a4f3c2e7423d4a8434c41349141b04744b11a90e017a95bad5  numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
f9168790149f917ad8e3cf5047b353fefef753bd50b07c547da0bdf30bc15d91  numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ada6c1e9608ceadaf7020e1deea508b73ace85560a16f51bef26aecb93626a72  numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f3c4a9a9f92734a4728ddbd331e0124eabbc968a0359a506e8e74a9b0d2d419b  numpy-1.24.0-cp311-cp311-win32.whl
90075ef2c6ac6397d0035bcd8b298b26e481a7035f7a3f382c047eb9c3414db0  numpy-1.24.0-cp311-cp311-win_amd64.whl
0885d9a7666cafe5f9876c57bfee34226e2b2847bfb94c9505e18d81011e5401  numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
e63d2157f9fc98cc178870db83b0e0c85acdadd598b134b00ebec9e0db57a01f  numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
cf8960f72997e56781eb1c2ea256a70124f92a543b384f89e5fb3503a308b1d3  numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2f8e0df2ecc1928ef7256f18e309c9d6229b08b5be859163f5caa59c93d53646  numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe44e925c68fb5e8db1334bf30ac1a1b6b963b932a19cf41d2e899cf02f36aab  numpy-1.24.0-cp38-cp38-win32.whl
d7f223554aba7280e6057727333ed357b71b7da7422d02ff5e91b857888c25d1  numpy-1.24.0-cp38-cp38-win_amd64.whl
ab11f6a7602cf8ea4c093e091938207de3068c5693a0520168ecf4395750f7ea  numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
12bba5561d8118981f2f1ff069ecae200c05d7b6c78a5cdac0911f74bc71cbd1  numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
9af91f794d2d3007d91d749ebc955302889261db514eb24caef30e03e8ec1e41  numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b1ddfac6a82d4f3c8e99436c90b9c2c68c0bb14658d1684cdd00f05fab241f5  numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ac4fe68f1a5a18136acebd4eff91aab8bed00d1ef2fdb34b5d9192297ffbbdfc  numpy-1.24.0-cp39-cp39-win32.whl
667b5b1f6a352419e340f6475ef9930348ae5cb7fca15f2cc3afcb530823715e  numpy-1.24.0-cp39-cp39-win_amd64.whl
4d01f7832fa319a36fd75ba10ea4027c9338ede875792f7bf617f4b45056fc3a  numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
dbb0490f0a880700a6cc4d000384baf19c1f4df59fff158d9482d4dbbca2b239  numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0104d8adaa3a4cc60c2777cab5196593bf8a7f416eda133be1f3803dd0838886  numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
c4ab7c9711fe6b235e86487ca74c1b092a6dd59a3cb45b63241ea0a148501853  numpy-1.24.0.tar.gz

v1.23.5

Compare Source

NumPy 1.23.5 Release Notes

NumPy 1.23.5 is a maintenance release that fixes bugs discovered after
the 1.23.4 release and keeps the build infrastructure current. The
Python versions supported for this release are 3.8-3.11.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • @​DWesl
  • Aayush Agrawal +
  • Adam Knapp +
  • Charles Harris
  • Navpreet Singh +
  • Sebastian Berg
  • Tania Allard

Pull requests merged

A total of 10 pull requests were merged for this release.

  • #​22489: TST, MAINT: Replace most setup with setup_method (also teardown)
  • #​22490: MAINT, CI: Switch to cygwin/cygwin-install-action@v2
  • #​22494: TST: Make test_partial_iteration_cleanup robust but require leak...
  • #​22592: MAINT: Ensure graceful handling of large header sizes
  • #​22593: TYP: Spelling alignment for array flag literal
  • #​22594: BUG: Fix bounds checking for random.logseries
  • #​22595: DEV: Update GH actions and Dockerfile for Gitpod
  • #​22596: CI: Only fetch in actions/checkout
  • #​22597: BUG: Decrement ref count in gentype_reduce if allocated memory...
  • #​22625: BUG: Histogramdd breaks on big arrays in Windows

Checksums

MD5
8a412b79d975199cefadb465279fd569  numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
1b56e8e6a0516c78473657abf0710538  numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
c787f4763c9a5876e86a17f1651ba458  numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
db07645022e56747ba3f00c2d742232e  numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c63a6fb7cc16a13aabc82ec57ac6bb4d  numpy-1.23.5-cp310-cp310-win32.whl
3fea9247e1d812600015641941fa273f  numpy-1.23.5-cp310-cp310-win_amd64.whl
4222cfb36e5ac9aec348c81b075e2c05  numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
6c7102f185b310ac70a62c13d46f04e6  numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
6b7319f66bf7ac01b49e2a32470baf28  numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3c60928ddb1f55163801f06ac2229eb0  numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6936b6bcfd6474acc7a8c162a9393b3c  numpy-1.23.5-cp311-cp311-win32.whl
6c9af68b7b56c12c913678cafbdc44d6  numpy-1.23.5-cp311-cp311-win_amd64.whl
699daeac883260d3f182ae4bbbd9bbd2  numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
6c233a36339de0652139e78ef91504d4  numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
57d5439556ab5078c91bdeffd9c0036e  numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8045b59187f2e0ccd4294851adbbb8a  numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7f38f7e560e4bf41490372ab84aa7a38  numpy-1.23.5-cp38-cp38-win32.whl
76095726ba459d7f761b44acf2e56bd1  numpy-1.23.5-cp38-cp38-win_amd64.whl
174befd584bc1b03ed87c8f0d149a58e  numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
9cbac793d77278f5d27a7979b64f6b5b  numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
6e417b087044e90562183b33f3049b09  numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54fa63341eaa6da346d824399e8237f6  numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc14d62a158e99c57f925c86551e45f0  numpy-1.23.5-cp39-cp39-win32.whl
bad36b81e7e84bd7a028affa0659d235  numpy-1.23.5-cp39-cp39-win_amd64.whl
b4d17d6b79a8354a2834047669651963  numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
89f6dc4a4ff63fca6af1223111cd888d  numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
633d574a35b8592bab502ef569b0731e  numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
8b2692a511a3795f3af8af2cd7566a15  numpy-1.23.5.tar.gz
SHA256
9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63  numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d  numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43  numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1  numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280  numpy-1.23.5-cp310-cp310-win32.whl
dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6  numpy-1.23.5-cp310-cp310-win_amd64.whl
ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96  numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa  numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2  numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387  numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0  numpy-1.23.5-cp311-cp311-win32.whl
0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d  numpy-1.23.5-cp311-cp311-win_amd64.whl
f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a  numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9  numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398  numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb  numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07  numpy-1.23.5-cp38-cp38-win32.whl
ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e  numpy-1.23.5-cp38-cp38-win_amd64.whl
8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f  numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de  numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d  numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719  numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481  numpy-1.23.5-cp39-cp39-win32.whl
09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df  numpy-1.23.5-cp39-cp39-win_amd64.whl
abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8  numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135  numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d  numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a  numpy-1.23.5.tar.gz

v1.23.4

Compare Source

NumPy 1.23.4 Release Notes

NumPy 1.23.4 is a maintenance release that fixes bugs discovered after
the 1.23.3 release and keeps the build infrastructure current. The main
improvements are fixes for some annotation corner cases, a fix for a
long time nested_iters memory leak, and a fix of complex vector dot
for very large arrays. The Python versions supported for this release
are 3.8-3.11.

Note that the mypy version needs to be 0.981+ if you test using Python
3.10.7, otherwise the typing tests will fail.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Matthew Barber
  • Matti Picus
  • Ralf Gommers
  • Ross Barnowski
  • Sebastian Berg
  • Sicheng Zeng +

Pull requests merged

A total of 13 pull requests were merged for this release.

  • #​22368: BUG: Add __array_api_version__ to numpy.array_api namespace
  • #​22370: MAINT: update sde toolkit to 9.0, fix download link
  • #​22382: BLD: use macos-11 image on azure, macos-1015 is deprecated
  • #​22383: MAINT: random: remove get_info from "extending with Cython"...
  • #​22384: BUG: Fix complex vector dot with more than NPY_CBLAS_CHUNK elements
  • #​22387: REV: Loosen lookfor's import try/except again
  • #​22388: TYP,ENH: Mark numpy.typing protocols as runtime checkable
  • #​22389: TYP,MAINT: Change more overloads to play nice with pyright
  • #​22390: TST,TYP: Bump mypy to 0.981
  • #​22391: DOC: Update delimiter param description.
  • #​22392: BUG: Memory leaks in numpy.nested_iters
  • #​22413: REL: Prepare for the NumPy 1.23.4 release.
  • #​22424: TST: Fix failing aarch64 wheel builds.

Checksums

MD5
90a3d95982490cfeeef22c0f7cbd874f  numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
c3cae63394db6c82fd2cb5700fc5917d  numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
b3ff0878de205f56c38fd7dcab80081f  numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2b086ca2229209f2f996c2f9a38bf9c  numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
44cc8bb112ca737520cf986fff92dfb0  numpy-1.23.4-cp310-cp310-win32.whl
21c8e5fdfba2ff953e446189379cf0c9  numpy-1.23.4-cp310-cp310-win_amd64.whl
27445a9c85977cb8efa682a4b993347f  numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
11ef4b7dfdaa37604cb881f3ca4459db  numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
b3c77344274f91514f728a454fd471fa  numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
43aef7f984cd63d95c11fb74dd59ef0b  numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
637fe21b585228c9670d6e002bf8047f  numpy-1.23.4-cp311-cp311-win32.whl
f529edf9b849d6e3b8cdb5120ae5b81a  numpy-1.23.4-cp311-cp311-win_amd64.whl
76c61ce36317a7e509663829c6844fd9  numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
2133f6893eef41cd9331c7d0271044c4  numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
5ccb3aa6fb8cb9e20ec336e315d01dec  numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
da71f34a4df0b98e4d9e17906dd57b07  numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a318978f51fb80a17c2381e39194e906  numpy-1.23.4-cp38-cp38-win32.whl
eac810d6bc43830bf151ea55cd0ded93  numpy-1.23.4-cp38-cp38-win_amd64.whl
4cf0a6007abe42564c7380dbf92a26ce  numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
2e005bedf129ce8bafa6f550537f3740  numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
10aa210311fcd19a03f6c5495824a306  numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6301298a67999657a0878b64eeed09f2  numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
76144e575a3c3863ea22e03cdf022d8a  numpy-1.23.4-cp39-cp39-win32.whl
8291dd66ef5451b4db2da55c21535757  numpy-1.23.4-cp39-cp39-win_amd64.whl
7cc095b18690071828b5b620d5ec40e7  numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
63742f15e8bfa215c893136bbfc6444f  numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4ed382e55abc09c89a34db047692f6a6  numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
d9ffd2c189633486ec246e61d4b947a0  numpy-1.23.4.tar.gz
SHA256
95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2  numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f  numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71  numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3  numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd  numpy-1.23.4-cp310-cp310-win32.whl
d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329  numpy-1.23.4-cp310-cp310-win_amd64.whl
488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db  numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f  numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0  numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488  numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79  numpy-1.23.4-cp311-cp311-win32.whl
7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d  numpy-1.23.4-cp311-cp311-win_amd64.whl
7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5  numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6  numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f  numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68  numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dada341ebb79619fe00a291185bba370c9803b1e1d7051610e01ed809ef3a4ba  numpy-1.23.4-cp38-cp38-win32.whl
0fe563fc8ed9dc4474cbf70742673fc4391d70f4363f917599a7fa99f042d5a8  numpy-1.23.4-cp38-cp38-win_amd64.whl
c67b833dbccefe97cdd3f52798d430b9d3430396af7cdb2a0c32954c3ef73894  numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7  numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
12ac457b63ec8ded85d85c1e17d85efd3c2b0967ca39560b307a35a6703a4735  numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
95de7dc7dc47a312f6feddd3da2500826defdccbc41608d0031276a24181a2c0  numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef  numpy-1.23.4-cp39-cp39-win32.whl
f260da502d7441a45695199b4e7fd8ca87db659ba1c78f2bbf31f934fe76ae0e  numpy-1.23.4-cp39-cp39-win_amd64.whl
61be02e3bf810b60ab74e81d6d0d36246dbfb644a462458bb53b595791251911  numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
296d17aed51161dbad3c67ed6d164e51fcd18dbcd5dd4f9d0a9c6055dce30810  numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4d52914c88b4930dafb6c48ba5115a96cbab40f45740239d9f4159c4ba779962  numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
ed2cc92af0efad20198638c69bb0fc2870a58dabfba6eb722c933b48556c686c  numpy-1.23.4.tar.gz

v1.23.3

Compare Source

NumPy 1.23.3 Release Notes

NumPy 1.23.3 is a maintenance release that fixes bugs discovered after
the 1.23.2 release. There is no major theme for this release, the main
improvements are for some downstream builds and some annotation corner
cases. The Python versions supported for this release are 3.8-3.11.

Note that we will move to MacOS 11 for the NumPy 1.23.4 release, the
10.15 version currently used will no longer be supported by our build
infrastructure at that point.

Contributors

A total of 16 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aaron Meurer
  • Bas van Beek
  • Charles Harris
  • Ganesh Kathiresan
  • Gavin Zhang +
  • Iantra Solari+
  • Jyn Spring 琴春 +
  • Matti Picus
  • Rafael Cardoso Fernandes Sousa
  • Rafael Sousa +
  • Ralf Gommers
  • Rin Cat (鈴猫) +
  • Saransh Chopra +
  • Sayed Adel
  • Sebastian Berg
  • Serge Guelton

Pull requests merged

A total of 14 pull requests were merged for this release.

  • #​22136: BLD: Add Python 3.11 wheels to aarch64 build
  • #​22148: MAINT: Update setup.py for Python 3.11.
  • #​22155: CI: Test NumPy build against old versions of GCC(6, 7, 8)
  • #​22156: MAINT: support IBM i system
  • #​22195: BUG: Fix circleci build
  • #​22214: BUG: Expose heapsort algorithms in a shared header
  • #​22215: BUG: Support using libunwind for backtrack
  • #​22216: MAINT: fix an incorrect pointer type usage in f2py
  • #​22220: BUG: change overloads to play nice with pyright.
  • #​22221: TST,BUG: Use fork context to fix MacOS savez test
  • #​22222: TYP,BUG: Reduce argument validation in C-based __class_getitem__
  • #​22223: TST: ensure np.equal.reduce raises a TypeError
  • #​22224: BUG: Fix the implementation of numpy.array_api.vecdot
  • #​22230: BUG: Better report integer division overflow (backport)

Checksums

MD5
a60bf0b1d440bf18d87c49409036d05a  numpy-1.23.3-cp310-cp310-macosx_10_9_x86_64.whl
59b43423a692f5351c6a43b852b210d7  numpy-1.23.3-cp310-cp310-macosx_11_0_arm64.whl
f482a4be6954b1b606320f0ffc1995dd  numpy-1.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a82e2ecc4060a37dae5424e624eabfe3  numpy-1.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
84916178e5f4d073d0008754cba7f300  numpy-1.23.3-cp310-cp310-win32.whl
605da65b9b66dfce8b62d847cb3841f7  numpy-1.23.3-cp310-cp310-win_amd64.whl
57cf29f781be955a9cd0de8d07fbce56  numpy-1.23.3-cp311-cp311-macosx_10_9_x86_64.whl
f395dcf622dff0ba44777cbae0442189  numpy-1.23.3-cp311-cp311-macosx_11_0_arm64.whl
55d6a6439913ba84ad89268e0ad59fa0  numpy-1.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
202bc3a8617f479ebe60ca0dec29964b  numpy-1.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a42c3d058bcef47b26841bf9472a89bf  numpy-1.23.3-cp311-cp311-win32.whl
237dbd94e5529065c0c5cc4e47ceeb7e  numpy-1.23.3-cp311-cp311-win_amd64.whl
d0587d5b28d3fa7e0ec8fd3df76e4bd4  numpy-1.23.3-cp38-cp38-macosx_10_9_x86_64.whl
054234695ed3d955fb01f661db2c14fc  numpy-1.23.3-cp38-cp38-macosx_11_0_arm64.whl
4e75ac61e34f1bf23e7cbd6e2bfc7a32  numpy-1.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
29ccb3a732027ee1abe23a9562c32d0c  numpy-1.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
12817838edc1e1bea27df79f3a83da5d  numpy-1.23.3-cp38-cp38-win32.whl
ef430e830a9fea7d8db0218b901671f6  numpy-1.23.3-cp38-cp38-win_amd64.whl
b001f7e17df798f9b949bbe259924c77  numpy-1.23.3-cp39-cp39-macosx_10_9_x86_64.whl
bc1782f5d79187d63d14ed69a6a411e9  numpy-1.23.3-cp39-cp39-macosx_11_0_arm64.whl
f8fb0178bc34a198d5ce4e166076e1fc  numpy-1.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fb80d38c37aae1e4d416cd4de068ff0a  numpy-1.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
318d0a2a27b7e361295c0382a0ff4a94  numpy-1.23.3-cp39-cp39-win32.whl
880dc73de09fccda0650e9404fa83608  numpy-1.23.3-cp39-cp39-win_amd64.whl
3b5a51f78718a1a82d2750ec159f9acf  numpy-1.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
56a0c90a303979d5bf8fc57e86e57ccb  numpy-1.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5338d997a3178750834e742a257dfa4a  numpy-1.23.3-pp38-pypy38_pp73-win_amd64.whl
6efc60a3f6c1b74c849d53fbcc07807b  numpy-1.23.3.tar.gz
SHA256
c9f707b5bb73bf277d812ded9896f9512a43edff72712f31667d0a8c2f8e71ee  numpy-1.23.3-cp310-cp310-macosx_10_9_x86_64.whl
ffcf105ecdd9396e05a8e58e81faaaf34d3f9875f137c7372450baa5d77c9a54  numpy-1.23.3-cp310-cp310-macosx_11_0_arm64.whl
0ea3f98a0ffce3f8f57675eb9119f3f4edb81888b6874bc1953f91e0b1d4f440  numpy-1.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
004f0efcb2fe1c0bd6ae1fcfc69cc8b6bf2407e0f18be308612007a0762b4089  numpy-1.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98dcbc02e39b1658dc4b4508442a560fe3ca5ca0d989f0df062534e5ca3a5c1a  numpy-1.23.3-cp310-cp310-win32.whl
39a664e3d26ea854211867d20ebcc8023257c1800ae89773cbba9f9e97bae036  numpy-1.23.3-cp310-cp310-win_amd64.whl
1f27b5322ac4067e67c8f9378b41c746d8feac8bdd0e0ffede5324667b8a075c  numpy-1.23.3-cp311-cp311-macosx_10_9_x86_64.whl
2ad3ec9a748a8943e6eb4358201f7e1c12ede35f510b1a2221b70af4bb64295c  numpy-1.23.3-cp311-cp311-macosx_11_0_arm64.whl
bdc9febce3e68b697d931941b263c59e0c74e8f18861f4064c1f712562903411  numpy-1.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
301c00cf5e60e08e04d842fc47df641d4a181e651c7135c50dc2762ffe293dbd  numpy-1.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7cd1328e5bdf0dee621912f5833648e2daca72e3839ec1d6695e91089625f0b4  numpy-1.23.3-cp311-cp311-win32.whl
8355fc10fd33a5a70981a5b8a0de51d10af3688d7a9e4a34fcc8fa0d7467bb7f  numpy-1.23.3-cp311-cp311-win_amd64.whl
bc6e8da415f359b578b00bcfb1d08411c96e9a97f9e6c7adada554a0812a6cc6  numpy-1.23.3-cp38-cp38-macosx_10_9_x86_64.whl
22d43376ee0acd547f3149b9ec12eec2f0ca4a6ab2f61753c5b29bb3e795ac4d  numpy-1.23.3-cp38-cp38-macosx_11_0_arm64.whl
a64403f634e5ffdcd85e0b12c08f04b3080d3e840aef118721021f9b48fc1460  numpy-1.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
efd9d3abe5774404becdb0748178b48a218f1d8c44e0375475732211ea47c67e  numpy-1.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8c02ec3c4c4fcb718fdf89a6c6f709b14949408e8cf2a2be5bfa9c49548fd85  numpy-1.23.3-cp38-cp38-win32.whl
e868b0389c5ccfc092031a861d4e158ea164d8b7fdbb10e3b5689b4fc6498df6  numpy-1.23.3-cp38-cp38-win_amd64.whl
09f6b7bdffe57fc61d869a22f506049825d707b288039d30f26a0d0d8ea05164  numpy-1.23.3-cp39-cp39-macosx_10_9_x86_64.whl
8c79d7cf86d049d0c5089231a5bcd31edb03555bd93d81a16870aa98c6cfb79d  numpy-1.23.3-cp39-cp39-macosx_11_0_arm64.whl
e5d5420053bbb3dd64c30e58f9363d7a9c27444c3648e61460c1237f9ec3fa14  numpy-1.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d5422d6a1ea9b15577a9432e26608c73a78faf0b9039437b075cf322c92e98e7  numpy-1.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c1ba66c48b19cc9c2975c0d354f24058888cdc674bebadceb3cdc9ec403fb5d1  numpy-1.23.3-cp39-cp39-win32.whl
78a63d2df1d947bd9d1b11d35564c2f9e4b57898aae4626638056ec1a231c40c  numpy-1.23.3-cp39-cp39-win_amd64.whl
17c0e467ade9bda685d5ac7f5fa729d8d3e76b23195471adae2d6a6941bd2c18  numpy-1.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
91b8d6768a75247026e951dce3b2aac79dc7e78622fc148329135ba189813584  numpy-1.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
94c15ca4e52671a59219146ff584488907b1f9b3fc232622b47e2cf832e94fb8  numpy-1.23.3-pp38-pypy38_pp73-win_amd64.whl
51bf49c0cd1d52be0a240aa66f3458afc4b95d8993d2d04f0d91fa60c10af6cd  numpy-1.23.3.tar.gz

v1.23.2

Compare Source

NumPy 1.23.2 Release Notes

NumPy 1.23.2 is a maintenance release that fixes bugs discovered after
the 1.23.1 release. Notable features are:

  • Typing changes needed for Python 3.11
  • Wheels for Python 3.11.0rc1

The Python versions supported for this release are 3.8-3.11.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Alexander Grund +
  • Bas van Beek
  • Charles Harris
  • Jon Cusick +
  • Matti Picus
  • Michael Osthege +
  • Pal Barta +
  • Ross Barnowski
  • Sebastian Berg

Pull requests merged

A total of 15 pull requests were merged for this release.

  • #​22030: ENH: Add __array_ufunc__ typing support to the nin=1 ufuncs
  • #​22031: MAINT, TYP: Fix np.angle dtype-overloads
  • #​22032: MAINT: Do not let _GenericAlias wrap the underlying classes'...
  • #​22033: TYP,MAINT: Allow einsum subscripts to be passed via integer...
  • #​22034: MAINT,TYP: Add object-overloads for the np.generic rich comparisons
  • #​22035: MAINT,TYP: Allow the squeeze and transpose method to...
  • #​22036: BUG: Fix subarray to object cast ownership details
  • #​22037: BUG: Use Popen to silently invoke f77 -v
  • #​22038: BUG: Avoid errors on NULL during deepcopy
  • #​22039: DOC: Add versionchanged for converter callable behavior.
  • #​22057: MAINT: Quiet the anaconda uploads.
  • #​22078: ENH: reorder includes for testing on top of system installations...
  • #​22106: TST: fix test_linear_interpolation_formula_symmetric
  • #​22107: BUG: Fix skip condition for test_loss_of_precision[complex256]
  • #​22115: BLD: Build python3.11.0rc1 wheels.

Checksums

MD5
fe1e3480ea8c417c8f7b05f543c1448d  numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl
0ab14b1afd0a55a374ca69b3b39cab3c  numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl
df059e5405bfe75c0ac77b01abbdb237  numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4ed412c4c078e96edf11ca3b11eef76b  numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0caad53d9a5e3c5e8cd29f19a9f0c014  numpy-1.23.2-cp310-cp310-win32.whl
01e508b8b4f591daff128da1cfde8e1f  numpy-1.23.2-cp310-cp310-win_amd64.whl
8ecdb7e2a87255878b748550d91cfbe0  numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl
e3004aae46cec9e234f78eaf473272e0  numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl
ec23c73caf581867d5ca9255b802f144  numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b8389f528fe113247954248f0b78ce1  numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a54b136daa2fbb483909f08eecbfa3c5  numpy-1.23.2-cp311-cp311-win32.whl
ead32e141857c5ef33b1a6cd88aefc0f  numpy-1.23.2-cp311-cp311-win_amd64.whl
df1f18e52d0a2840d101fdc9c2c6af84  numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl
04c986880bb24fac2f44face75eab914  numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl
edeba58edb214390112810f7ead903a8  numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c26ea699d94d7f1009c976c66cc4def3  numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c246a78b09f8893d998d449dcab0fac3  numpy-1.23.2-cp38-cp38-win32.whl
b5c5a2f961402259e301c49b8b05de55  numpy-1.23.2-cp38-cp38-win_amd64.whl
d156dfae94d33eeff7fb9c6e5187e049  numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl
7f2ad7867c577eab925a31de76486765  numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl
76262a8e5d7a4d945446467467300a10  numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8ee105f4574d61a2d494418b55f63fcb  numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2b7c79cae66023f8e716150223201981  numpy-1.23.2-cp39-cp39-win32.whl
d7af57dd070ccb165f3893412eb602e3  numpy-1.23.2-cp39-cp39-win_amd64.whl
355a231dbd87a0f2125cc23eb8f97075  numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4ab13c35056f67981d03f9ceec41db42  numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3a6f1e1256ee9be10d8cdf6be578fe52  numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl
9bf2a361509797de14ceee607387fe0f  numpy-1.23.2.tar.gz
SHA256
e603ca1fb47b913942f3e660a15e55a9ebca906857edfea476ae5f0fe9b457d5  numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl
633679a472934b1c20a12ed0c9a6c9eb167fbb4cb89031939bfd03dd9dbc62b8  numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl
17e5226674f6ea79e14e3b91bfbc153fdf3ac13f5cc54ee7bc8fdbe820a32da0  numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdc02c0235b261925102b1bd586579b7158e9d0d07ecb61148a1799214a4afd5  numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df28dda02c9328e122661f399f7655cdcbcf22ea42daa3650a26bce08a187450  numpy-1.23.2-cp310-cp310-win32.whl
8ebf7e194b89bc66b78475bd3624d92980fca4e5bb86dda08d677d786fefc414  numpy-1.23.2-cp310-cp310-win_amd64.whl
dc76bca1ca98f4b122114435f83f1fcf3c0fe48e4e6f660e07996abf2f53903c  numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl
ecfdd68d334a6b97472ed032b5b37a30d8217c097acfff15e8452c710e775524  numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl
5593f67e66dea4e237f5af998d31a43e447786b2154ba1ad833676c788f37cde  numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ac987b35df8c2a2eab495ee206658117e9ce867acf3ccb376a19e83070e69418  numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d98addfd3c8728ee8b2c49126f3c44c703e2b005d4a95998e2167af176a9e722  numpy-1.23.2-cp311-cp311-win32.whl
8ecb818231afe5f0f568c81f12ce50f2b828ff2b27487520d85eb44c71313b9e  numpy-1.23.2-cp311-cp311-win_amd64.whl
909c56c4d4341ec8315291a105169d8aae732cfb4c250fbc375a1efb7a844f8f  numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl
8247f01c4721479e482cc2f9f7d973f3f47810cbc8c65e38fd1bbd3141cc9842  numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl
b8b97a8a87cadcd3f94659b4ef6ec056261fa1e1c3317f4193ac231d4df70215  numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bd5b7ccae24e3d8501ee5563e82febc1771e73bd268eef82a1e8d2b4d556ae66  numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9b83d48e464f393d46e8dd8171687394d39bc5abfe2978896b77dc2604e8635d  numpy-1.23.2-cp38-cp38-win32.whl
dec198619b7dbd6db58603cd256e092bcadef22a796f778bf87f8592b468441d  numpy-1.23.2-cp38-cp38-win_amd64.whl
4f41f5bf20d9a521f8cab3a34557cd77b6f205ab2116651f12959714494268b0  numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl
806cc25d5c43e240db709875e947076b2826f47c2c340a5a2f36da5bb10c58d6  numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl
8f9d84a24889ebb4c641a9b99e54adb8cab50972f0166a3abc14c3b93163f074  numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c403c81bb8ffb1c993d0165a11493fd4bf1353d258f6997b3ee288b0a48fce77  numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cf8c6aed12a935abf2e290860af8e77b26a042eb7f2582ff83dc7ed5f963340c  numpy-1.23.2-cp39-cp39-win32.whl
5e28cd64624dc2354a349152599e55308eb6ca95a13ce6a7d5679ebff2962913  numpy-1.23.2-cp39-cp39-win_amd64.whl
806970e69106556d1dd200e26647e9bee5e2b3f1814f9da104a943e8d548ca38  numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
2bd879d3ca4b6f39b7770829f73278b7c5e248c91d538aab1e506c628353e47f  numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
be6b350dfbc7f708d9d853663772a9310783ea58f6035eec649fb9c4371b5389  numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl
b78d00e48261fbbd04aa0d7427cf78d18401ee0abd89c7559bbf422e5b1c7d01  numpy-1.23.2.tar.gz

v1.23.1

Compare Source

NumPy 1.23.1 Release Notes

The NumPy 1.23.1 is a maintenance release that fixes bugs discovered
after the 1.23.0 release. Notable fixes are:

  • Fix searchsorted for float16 NaNs
  • Fix compilation on Apple M1
  • Fix KeyError in crackfortran operator support (Slycot)

The Python version supported for this release are 3.8-3.10.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Matthias Koeppe +
  • Pranab Das +
  • Rohit Goswami
  • Sebastian Berg
  • Serge Guelton
  • Srimukh Sripada +

Pull requests merged

A total of 8 pull requests were merged for this release.

  • #​21866: BUG: Fix discovered MachAr (still used within valgrind)
  • #​21867: BUG: Handle NaNs correctly for float16 during sorting
  • #​21868: BUG: Use keepdims during normalization in np.average and...
  • #​21869: DOC: mention changes to max_rows behaviour in np.loadtxt
  • #​21870: BUG: Reject non integer array-likes with size 1 in delete
  • #​21949: BLD: Make can_link_svml return False for 32bit builds on x86_64
  • #​21951: BUG: Reorder extern "C" to only apply to function declarations...
  • #​21952: BUG: Fix KeyError in crackfortran operator support

Checksums

MD5
79f0d8c114f282b834b49209d6955f98  numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl
42a89a88ef26b768e8933ce46b1cc2bd  numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl
1c1d68b3483eaf99b9a3583c8ac8bf47  numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9d3e9f7f9b3dce6cf15209e4f25f346e  numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a9afb7c34b48d08fc50427ae6516b42d  numpy-1.23.1-cp310-cp310-win32.whl
a0e02823883bdfcec49309e108f65e13  numpy-1.23.1-cp310-cp310-win_amd64.whl
f40cdf4ec7bb0cf31a90a4fa294323c2  numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl
80115a959f0fe30d6c401b2650a61c70  numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl
1cf199b3a93960c4f269853a56a8d8eb  numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
aa6f0f192312c79cd770c2c395e9982a  numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d07bee0ea3142a96cb5e4e16aca273ca  numpy-1.23.1-cp38-cp38-win32.whl
02d0734ae8ad5e18a40c6c6de18486a0  numpy-1.23.1-cp38-cp38-win_amd64.whl
e1ca14acd7d83bc74bdf6ab0bb4bd195  numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl
c9152c62b2f31e742e24bfdc97b28666  numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl
05b0b37c92f7a7e7c01afac0a5322b40  numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d9810bb71a0ef9837e87ea5c44fcab5e  numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4255577f857e838f7a94e3a614ddc5eb  numpy-1.23.1-cp39-cp39-win32.whl
787486e3cd87b98024ffe1c969c4db7a  numpy-1.23.1-cp39-cp39-win_amd64.whl
5c7b2d1471b1b9ec6ff1cb3fe1f8ac14  numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
40d5b2ff869707b0d97325ce44631135  numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
44ce1e07927cc09415df9898857792da  numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl
4f8636a9c1a77ca0fb923ba55378891f  numpy-1.23.1.tar.gz
SHA256
b15c3f1ed08df4980e02cc79ee058b788a3d0bef2fb3c9ca90bb8cbd5b8a3a04  numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl
9ce242162015b7e88092dccd0e854548c0926b75c7924a3495e02c6067aba1f5  numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl
e0d7447679ae9a7124385ccf0ea990bb85bb869cef217e2ea6c844b6a6855073  numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3119daed207e9410eaf57dcf9591fdc68045f60483d94956bee0bfdcba790953  numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3ab67966c8d45d55a2bdf40701536af6443763907086c0a6d1232688e27e5447  numpy-1.23.1-cp310-cp310-win32.whl
1865fdf51446839ca3fffaab172461f2b781163f6f395f1aed256b1ddc253622  numpy-1.23.1-cp310-cp310-win_amd64.whl
aeba539285dcf0a1ba755945865ec61240ede5432df41d6e29fab305f4384db2  numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl
7e8229f3687cdadba2c4faef39204feb51ef7c1a9b669247d49a24f3e2e1617c  numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl
68b69f52e6545af010b76516f5daaef6173e73353e3295c5cb9f96c35d755641  numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1408c3527a74a0209c781ac82bde2182b0f0bf54dea6e6a363fe0cc4488a7ce7  numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
47f10ab202fe4d8495ff484b5561c65dd59177949ca07975663f4494f7269e3e  numpy-1.23.1-cp38-cp38-win32.whl
37e5ebebb0eb54c5b4a9b04e6f3018e16b8ef257d26c8945925ba8105008e645  numpy-1.23.1-cp38-cp38-win_amd64.whl
173f28921b15d341afadf6c3898a34f20a0569e4ad5435297ba262ee8941e77b  numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl
876f60de09734fbcb4e27a97c9a286b51284df1326b1ac5f1bf0ad3678236b22  numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl
35590b9c33c0f1c9732b3231bb6a72d1e4f77872390c47d50a615686ae7ed3fd  numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a35c4e64dfca659fe4d0f1421fc0f05b8ed1ca8c46fb73d9e5a7f175f85696bb  numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c2f91f88230042a130ceb1b496932aa717dcbd665350beb821534c5c7e15881c  numpy-1.23.1-cp39-cp39-win32.whl
37ece2bd095e9781a7156852e43d18044fd0d742934833335599c583618181b9  numpy-1.23.1-cp39-cp39-win_amd64.whl
8002574a6b46ac3b5739a003b5233376aeac5163e5dcd43dd7ad062f3e186129  numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
5d732d17b8a9061540a10fda5bfeabca5785700ab5469a5e9b93aca5e2d3a5fb  numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
55df0f7483b822855af67e38fb3a526e787adf189383b4934305565d71c4b148  numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl
d748ef349bfef2e1194b59da37ed5a29c19ea8d7e6342019921ba2ba4fd8b624  numpy-1.23.1.tar.gz

v1.23.0

Compare Source

NumPy 1.23.0 Release Notes

The NumPy 1.23.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, clarify
the documentation, and expire old deprecations. The highlights are:

  • Implementation of loadtxt in C, greatly improving its performance.
  • Exposing DLPack at the Python level for easy data exchange.
  • Changes to the promotion and comparisons of structured dtypes.
  • Improvements to f2py.

See below for the details,

New functions

  • A masked array specialization of ndenumerate is now available as
    numpy.ma.ndenumerate. It provides an alternative to
    numpy.ndenumerate and skips masked values by default.

    (gh-20020)

  • numpy.from_dlpack has been added to allow easy exchange of data
    using the DLPack protocol. It accepts Python objects that implement
    the __dlpack__ and __dlpack_device__ methods and returns a
    ndarray object which is generally the view of the data of the input
    object.

    (gh-21145)

Deprecations

  • Setting __array_finalize__ to None is deprecated. It must now be
    a method and may wish to call super().__array_finalize__(obj)
    after checking for None or if the NumPy version is sufficiently
    new.

    (gh-20766)

  • Using axis=32 (axis=np.MAXDIMS) in many cases had the same
    meaning as axis=None. This is deprecated and axis=None must be
    used instead.

    (gh-20920)

  • The hook function PyDataMem_SetEventHook has been deprecated and
    the demonstration of its use in tool/allocation_tracking has been
    removed. The ability to track allocations is now built-in to python
    via tracemalloc.

    (gh-20394)

  • numpy.distutils has been deprecated, as a result of distutils
    itself being deprecated. It will not be present in NumPy for
    Python >= 3.12, and will be removed completely 2 years after the
    release of Python 3.12 For more details, see
    distutils-status-migration{.interpreted-text role="ref"}.

    (gh-20875)

  • numpy.loadtxt will now give a DeprecationWarning when an integer
    dtype is requested but the value is formatted as a floating point number.

    (gh-21663)

Expired deprecations

  • The NpzFile.iteritems() and NpzFile.iterkeys() methods have been
    removed as part of the continued removal of Python 2 compatibility.
    This concludes the deprecation from 1.15.

    (gh-16830)

  • The alen and asscalar functions have been removed.

    (gh-20414)

  • The UPDATEIFCOPY array flag has been removed together with the
    enum NPY_ARRAY_UPDATEIFCOPY. The associated (and deprecated)
    PyArray_XDECREF_ERR was also removed. These were all deprecated in
    1.14. They are replaced by WRITEBACKIFCOPY, that requires calling
    PyArray_ResoveWritebackIfCopy before the array is deallocated.

    (gh-20589)

  • Exceptions will be raised during array-like creation. When an object
    raised an exception during access of the special attributes
    __array__ or __array_interface__, this exception was usually
    ignored. This behaviour was deprecated in 1.21, and the exception
    will now be raised.

    (gh-20835)

  • Multidimensional indexing with non-tuple values is not allowed.
    Previously, code such as arr[ind] where ind = [[0, 1], [0, 1]]
    produced a FutureWarning and was interpreted as a multidimensional
    index (i.e., arr[tuple(ind)]). Now this example is treated like an
    array index over a single dimension (arr[array(ind)]).
    Multidimensional indexing with anything but a tuple was deprecated
    in NumPy 1.15.

    (gh-21029)

  • Changing to a dtype of different size in F-contiguous arrays is no
    longer permitted. Deprecated since Numpy 1.11.0. See below for an
    extended explanation of the effects of this change.

    (gh-20722)

New Features

crackfortran has support for operator and assignment overloading

crackfortran parser now understands operator and assignment
definitions in a module. They are added in the body list of the module
which contains a new key implementedby listing the names of the
subroutines or functions implementing the operator or assignment.

(gh-15006)

f2py supports reading access type attributes from derived type statements

As a result, one does not need to use public or private statements
to specify derived type access properties.

(gh-15844)

New parameter ndmin added to genfromtxt

This parameter behaves the same as ndmin from numpy.loadtxt.

(gh-20500)

np.loadtxt now supports quote character and single converter function

numpy.loadtxt now supports an additional quotechar keyword argument
which is not set by default. Using quotechar='"' will read quoted
fields as used by the Excel CSV dialect.

Further, it is now possible to pass a single callable rather than a
dictionary for the converters argument.

(gh-20580)

Changing to dtype of a different size now requires contiguity of only the last axis

Previously, viewing an array with a dtype of a different item size
required that the entire array be C-contiguous. This limitation would
unnecessarily force the user to make contiguous copies of non-contiguous
arrays before being able to change the dtype.

This change affects not only ndarray.view, but other construction
mechanisms, including the discouraged direct assignment to
ndarray.dtype.

This change expires the deprecation regarding the viewing of
F-contiguous arrays, described elsewhere in the release notes.

(gh-20722)

Deterministic output files for F2PY

For F77 inputs, f2py will generate modname-f2pywrappers.f
unconditionally, though these may be empty. For free-form inputs,
modname-f2pywrappers.f, modname-f2pywrappers2.f90 will both be
generated unconditionally, and may be empty. This allows writing generic
output rules in cmake or meson and other build systems. Older
behavior can be restored by passing --skip-empty-wrappers to f2py.
f2py-meson{.interpreted-text role="ref"} details usage.

(gh-21187)

keepdims parameter for average

The parameter keepdims was added to the functions numpy.average and
numpy.ma.average. The parameter has the same meaning as it does in
reduction functions such as numpy.sum or numpy.mean.

(gh-21485)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and
return a single NaN. Setting equal_nan=False will restore pre-1.21
behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

Compatibility notes

1D np.linalg.norm preserves float input types, even for scalar results

Previously, this would promote to float64 when the ord argument was
not one of the explicitly listed values, e.g. ord=3:

>>> f32 = np.float32([1, 2])
>>> np.linalg.norm(f32, 2).dtype
dtype('float32')
>>> np.linalg.norm(f32, 3)
dtype('float64')  # numpy 1.22
dtype('float32')  # numpy 1.23

This change affects only float32 and float16 vectors with ord
other than -Inf, 0, 1, 2, and Inf.

(gh-17709)

Changes to structured (void) dtype promotion and comparisons

In general, NumPy now defines correct, but slightly limited, promotion
for structured dtypes by promoting the subtypes of each field instead of
raising an exception:

>>> np.result_type(np.dtype("i,i"), np.dtype("i,d"))
dtype([('f0', '<i4'), ('f1', '<f8')])

For promotion matching field names, order, and titles are enforced,
however padding is ignored. Promotion involving structured dtypes now
always ensures native byte-order for all fields (which may change the
result of np.concatenate) and ensures that the result will be
"packed", i.e. all fields are ordered contiguously and padding is
removed. See
structured_dtype_comparison_and_promotion{.interpreted-text
role="ref"} for further details.

The repr of aligned structures will now never print the long form
including offsets and itemsize unless the structure includes padding
not guaranteed by align=True.

In alignment with the above changes to the promotion logic, the casting
safety has been updated:

  • "equiv" enforces matching names and titles. The itemsize is
    allowed to differ due to padding.
  • "safe" allows mismatching field names and titles
  • The cast safety is limited by the cast safety of each included
    field.
  • The order of fields is used to decide cast safety of each individual
    field. Previously, the field names were used and only unsafe casts
    were possible when names mismatched.

The main important change here is that name mismatches are now
considered "safe" casts.

(gh-19226)

NPY_RELAXED_STRIDES_CHECKING has been removed

NumPy cannot be compiled with NPY_RELAXED_STRIDES_CHECKING=0 anymore.
Relaxed strides have been the default for many years and the option was
initially introduced to allow a smoother transition.

(gh-20220)

np.loadtxt has recieved several changes

The row counting of numpy.loadtxt was fixed. loadtxt ignores fully
empty lines in the file, but counted them towards max_rows. When
max_rows is used and the file contains empty lines, these will now not
be counted. Previously, it was possible that the result contained fewer
than max_rows rows even though more data was available to be read. If
the old behaviour is required, itertools.islice may be used:

import itertools
lines = itertools.islice(open("file"), 0, max_rows)
result = np.loadtxt(lines, ...)

While generally much faster and improved, numpy.loadtxt may now fail
to converter certain strings to numbers that were previously
successfully read. The most important cases for this are:

  • Parsing floating point values such as 1.0 into integers is now
    deprecated.
  • Parsing hexadecimal floats such as 0x3p3 will fail
  • An _ was previously accepted as a thousands delimiter 100_000.
    This will now result in an error.

If you experience these limitations, they can all be worked around by
passing appropriate converters=. NumPy now supports passing a single
converter to be used for all columns to make this more convenient. For
example, converters=float.fromhex can read hexadecimal float numbers
and converters=int will be able to read 100_000.

Further, the error messages have been generally improved. However, this
means that error types may differ. In particularly, a ValueError is
now always raised when parsing of a single entry fails.

(gh-20580)

Improvements

ndarray.__array_finalize__ is now callable

This means subclasses can now use super().__array_finalize__(obj)
without worrying whether ndarray is their superclass or not. The
actual call remains a no-op.

(gh-20766)

Add support for VSX4/Power10

With VSX4/Power10 enablement, the new instructions available in Power
ISA 3.1 can be used to accelerate some NumPy operations, e.g.,
floor_divide, modulo, etc.

(gh-20821)

np.fromiter now accepts objects and subarrays

The numpy.fromiter function now supports object and subarray dtypes.
Please see he function documentation for examples.

(gh-20993)

Math C library feature detection now uses correct signatures

Compiling is preceded by a detection phase to determine whether the
underlying libc supports certain math operations. Previously this code
did not respect the proper signatures. Fixing this enables compilation
for the wasm-ld backend (compilation for web assembly) and reduces the
number of warnings.

(gh-21154)

np.kron now maintains subclass information

np.kron maintains subclass information now such as masked arrays while
computing the Kronecker product of the inputs

>>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
>>> np.kron(x,x)
masked_array(
  data=[[1, --, --, --],
        [--, 4, --, --],
        [--, --, 4, --],
        [--, --, --, 16]],
  mask=[[False,  True,  True,  True],
        [ True, False,  True,  True],
        [ True,  True, False,  True],
        [ True,  True,  True, False]],
  fill_value=999999)

⚠️ Warning, np.kron output now follows ufunc ordering (multiply) to determine
the output class type

>>> class myarr(np.ndarray):
>>>    __array_priority__ = -1
>>> a = np.ones([2, 2])
>>> ma = myarray(a.shape, a.dtype, a.data)
>>> type(np.kron(a, ma)) == np.ndarray
False # Before it was True
>>> type(np.kron(a, ma)) == myarr
True

(gh-21262)

Performance improvements and changes

Faster np.loadtxt

numpy.loadtxt is now generally much faster than previously as most of
it is now implemented in C.

(gh-20580)

Faster reduction operators

Reduction operations like numpy.sum, numpy.prod, numpy.add.reduce,
numpy.logical_and.reduce on contiguous integer-based arrays are now
much faster.

(gh-21001)

Faster np.where

numpy.where is now much faster than previously on unpredictable/random
input data.

(gh-21130)

Faster operations on NumPy scalars

Many operations on NumPy scalars are now significantly faster, although
rare operations (e.g. with 0-D arrays rather than scalars) may be slower
in some cases. However, even with these improvements users who want the
best performance for their scalars, may want to convert a known NumPy
scalar into a Python one using scalar.item().

(gh-21188)

Faster np.kron

numpy.kron is about 80% faster as the product is now computed using
broadcasting.

(gh-21354)

Checksums

MD5
21839aaeab3088e685d7c8d0e1856a23  numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl
e657684ea521c50de0197aabfb44e78d  numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl
219017660861fdec59b852630e3fef2a  numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
03c3df83b8327910482a7d24ebe9213b  numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b8f06ce4054acc147845a9643bd36082  numpy-1.23.0-cp310-cp310-win32.whl
877322db5a62634eef4e351db99a070d  numpy-1.23.0-cp310-cp310-win_amd64.whl
7bb54f95e74306eff733466b6343695f  numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl
5514a0030e5cf065e916950737d6d129  numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl
22d43465791814fe50e03ded430bd80c  numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
771a1f7e488327645bac5b54dd2f6286  numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
449bfa2d55aff3e722d2fc85a7549620  numpy-1.23.0-cp38-cp38-win32.whl
60c7d27cf92dadb6d206df6e65b1032f  numpy-1.23.0-cp38-cp38-win_amd64.whl
dc2a5c5d2223f7b45a45f7f760d0f2db  numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl
ba5729353c3521ed7ee72c796e77a546  numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl
06d5cd49de096482944dead2eb92d783  numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6ff50a994f6006349b5f1415e4da6f45  numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
49185f219512403ef23d43d6f2adbefd  numpy-1.23.0-cp39-cp39-win32.whl
ff126a84dcf91700f9ca13ff606d109f  numpy-1.23.0-cp39-cp39-win_amd64.whl
e1462428487dc599cdffb723dec642c4  numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
fef1d20265135737fbc0f91ca4441990  numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4f8142288202a32c682d01921d6c2c78  numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl
513e4241d06b8fae5732cd049cdf3b57  numpy-1.23.0.tar.gz
SHA256
58bfd40eb478f54ff7a5710dd61c8097e169bc36cc68333d00a9bcd8def53b38  numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl
196cd074c3f97c4121601790955f915187736f9cf458d3ee1f1b46aff2b1ade0  numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl
f1d88ef79e0a7fa631bb2c3dda1ea46b32b1fe614e10fedd611d3d5398447f2f  numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d54b3b828d618a19779a84c3ad952e96e2c2311b16384e973e671aa5be1f6187  numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2b2da66582f3a69c8ce25ed7921dcd8010d05e59ac8d89d126a299be60421171  numpy-1.23.0-cp310-cp310-win32.whl
97a76604d9b0e79f59baeca16593c711fddb44936e40310f78bfef79ee9a835f  numpy-1.23.0-cp310-cp310-win_amd64.whl
d8cc87bed09de55477dba9da370c1679bd534df9baa171dd01accbb09687dac3  numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl
f0f18804df7370571fb65db9b98bf1378172bd4e962482b857e612d1fec0f53e  numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl
ac86f407873b952679f5f9e6c0612687e51547af0e14ddea1eedfcb22466babd  numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ae8adff4172692ce56233db04b7ce5792186f179c415c37d539c25de7298d25d  numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe8b9683eb26d2c4d5db32cd29b38fdcf8381324ab48313b5b69088e0e355379  numpy-1.23.0-cp38-cp38-win32.whl
5043bcd71fcc458dfb8a0fc5509bbc979da0131b9d08e3d5f50fb0bbb36f169a  numpy-1.23.0-cp38-cp38-win_amd64.whl
1c29b44905af288b3919803aceb6ec7fec77406d8b08aaa2e8b9e63d0fe2f160  numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl
98e8e0d8d69ff4d3fa63e6c61e8cfe2d03c29b16b58dbef1f9baa175bbed7860  numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl
79a506cacf2be3a74ead5467aee97b81fca00c9c4c8b3ba16dbab488cd99ba10  numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
092f5e6025813e64ad6d1b52b519165d08c730d099c114a9247c9bb635a2a450  numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d6ca8dabe696c2785d0c8c9b0d8a9b6e5fdbe4f922bde70d57fa1a2848134f95  numpy-1.23.0-cp39-cp39-win32.whl
fc431493df245f3c627c0c05c2bd134535e7929dbe2e602b80e42bf52ff760bc  numpy-1.23.0-cp39-cp39-win_amd64.whl
f9c3fc2adf67762c9fe1849c859942d23f8d3e0bee7b5ed3d4a9c3eeb50a2f07  numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
d0d2094e8f4d760500394d77b383a1b06d3663e8892cdf5df3c592f55f3bff66  numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
94b170b4fa0168cd6be4becf37cb5b127bd12a795123984385b8cd4aca9857e5  numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl
bd3fa4fe2e38533d5336e1272fc4e765cabbbde144309ccee8675509d5cd7b05  numpy-1.23.0.tar.gz

v1.22.4

Compare Source

NumPy 1.22.4 Release Notes

NumPy 1.22.4 is a maintenance release that fixes bugs discovered after
the 1.22.3 release. In addition, the wheels for this release are built
using the recently released Cython 0.29.30, which should fix the
reported problems with
debugging.

The Python versions supported for this release are 3.8-3.10. Note that
the Mac wheels are now based on OS X 10.15 rather than 10.6 that was
used in previous NumPy release cycles.

Contributors

A total of 12 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Alexander Shadchin
  • Bas van Beek
  • Charles Harris
  • Hood Chatham
  • Jarrod Millman
  • John-Mark Gurney +
  • Junyan Ou +
  • Mariusz Felisiak +
  • Ross Barnowski
  • Sebastian Berg
  • Serge Guelton
  • Stefan van der Walt

Pull requests merged

A total of 22 pull requests were merged for this release.

  • #​21191: TYP, BUG: Fix np.lib.stride_tricks re-exported under the...
  • #​21192: TST: Bump mypy from 0.931 to 0.940
  • #​21243: MAINT: Explicitly re-export the types in numpy._typing
  • #​21245: MAINT: Specify sphinx, numpydoc versions for CI doc builds
  • #​21275: BUG: Fix typos
  • #​21277: ENH, BLD: Fix math feature detection for wasm
  • #​21350: MAINT: Fix failing simd and cygwin tests.
  • #​21438: MAINT: Fix failing Python 3.8 32-bit Windows test.
  • #​21444: BUG: add linux guard per #​21386
  • #​21445: BUG: Allow legacy dtypes to cast to datetime again
  • #​21446: BUG: Make mmap handling safer in frombuffer
  • #​21447: BUG: Stop using PyBytesObject.ob_shash deprecated in Python 3.11.
  • #​21448: ENH: Introduce numpy.core.setup_common.NPY_CXX_FLAGS
  • #​21472: BUG: Ensure compile errors are raised correclty
  • #​21473: BUG: Fix segmentation fault
  • #​21474: MAINT: Update doc requirements
  • #​21475: MAINT: Mark npy_memchr with no_sanitize("alignment") on clang
  • #​21512: DOC: Proposal - make the doc landing page cards more similar...
  • #​21525: MAINT: Update Cython version to 0.29.30.
  • #​21536: BUG: Fix GCC error during build configuration
  • #​21541: REL: Prepare for the NumPy 1.22.4 release.
  • #​21547: MAINT: Skip tests that fail on PyPy.

Checksums

MD5
a19351fd3dc0b3bbc733495ed18b8f24  numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
0730f9e196f70ad89f246bf95ccf05d5  numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
63c74e5395a2b31d8adc5b1aa0c62471  numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
f99778023770c12f896768c90f7712e5  numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
757d68b0cdb4e28ffce8574b6a2f3c5e  numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
50becf2e048e54dc5227dfe8378aae1e  numpy-1.22.4-cp310-cp310-win32.whl
79dfdc29a4730e44d6df33dbea5b35b0  numpy-1.22.4-cp310-cp310-win_amd64.whl
8fd8f04d71ead55c2773d1b46668ca67  numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
41a7c6240081010824cc0d5c02900fe6  numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
6bc066d3f61da3304c82d92f3f900a4f  numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
86d959605c66ccba11c6504f25fff0d7  numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ae0405894c065349a511e4575b919e2a  numpy-1.22.4-cp38-cp38-win32.whl
c9a731d08081396b7a1b66977734d2ac  numpy-1.22.4-cp38-cp38-win_amd64.whl
4d9b97d74799e5fc48860f0b4a3b255a  numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
c99fa7e04cb7cc23f1713f2023b4e489  numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
dda3815df12b8a99c6c3069f69997521  numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
9b7c5b39d5611d92b66eb545d44b25db  numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
90fc45eaf8b8c4fac3f3ebd105a5a856  numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9562153d4a83d773c20eb626cbd65cde  numpy-1.22.4-cp39-cp39-win32.whl
711b23acce54a18ce74fc80f48f48062  numpy-1.22.4-cp39-cp39-win_amd64.whl
ab803b24ea557452e828adba1b986af3  numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b3a41ea0b9bc20bd1691cf88f0b0d3  numpy-1.22.4.tar.gz
b44849506fbb54cdef9dbb435b2b1987  numpy-1.22.4.zip
SHA256
ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3  numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887  numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0  numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74  numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c  numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e  numpy-1.22.4-cp310-cp310-win32.whl
3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077  numpy-1.22.4-cp310-cp310-win_amd64.whl
59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1  numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72  numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6  numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0  numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba  numpy-1.22.4-cp38-cp38-win32.whl
e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76  numpy-1.22.4-cp38-cp38-win_amd64.whl
4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5  numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c  numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e  numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa  numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802  numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd  numpy-1.22.4-cp39-cp39-win32.whl
f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32  numpy-1.22.4-cp39-cp39-win_amd64.whl
0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207  numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4308198d0e41efaa108e57d69973398439c7299a9d551680cdd603cf6d20709  numpy-1.22.4.tar.gz
425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af  numpy-1.22.4.zip

Configuration

📅 Schedule: At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, click this checkbox.

This PR has been generated by Renovate Bot.

This PR contains the following updates: | Package | Type | Update | Change | |---|---|---|---| | [numpy](https://github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | dependencies | major | `1.22.3` -> `2.3.1` | --- ### Release Notes <details> <summary>numpy/numpy</summary> ### [`v2.3.1`](https://github.com/numpy/numpy/releases/v2.3.1) [Compare Source](https://github.com/numpy/numpy/compare/v2.3.0...v2.3.1) ### NumPy 2.3.1 Release Notes The NumPy 2.3.1 release is a patch release with several bug fixes, annotation improvements, and better support for OpenBSD. Highlights are: - Fix bug in `matmul` for non-contiguous out kwarg parameter - Fix for Accelerate runtime warnings on M4 hardware - Fix new in NumPy 2.3.0 `np.vectorize` casting errors - Improved support of cpu features for FreeBSD and OpenBSD This release supports Python versions 3.11-3.13, Python 3.14 will be supported when it is released. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Brad Smith + - Charles Harris - Developer-Ecosystem-Engineering - François Rozet - Joren Hammudoglu - Matti Picus - Mugundan Selvanayagam - Nathan Goldbaum - Sebastian Berg #### Pull requests merged A total of 12 pull requests were merged for this release. - [#&#8203;29140](https://github.com/numpy/numpy/pull/29140): MAINT: Prepare 2.3.x for further development - [#&#8203;29191](https://github.com/numpy/numpy/pull/29191): BUG: fix matmul with transposed out arg ([#&#8203;29179](https://github.com/numpy/numpy/issues/29179)) - [#&#8203;29192](https://github.com/numpy/numpy/pull/29192): TYP: Backport typing fixes and improvements. - [#&#8203;29205](https://github.com/numpy/numpy/pull/29205): BUG: Revert `np.vectorize` casting to legacy behavior ([#&#8203;29196](https://github.com/numpy/numpy/issues/29196)) - [#&#8203;29222](https://github.com/numpy/numpy/pull/29222): TYP: Backport typing fixes - [#&#8203;29233](https://github.com/numpy/numpy/pull/29233): BUG: avoid negating unsigned integers in resize implementation... - [#&#8203;29234](https://github.com/numpy/numpy/pull/29234): TST: Fix test that uses uninitialized memory ([#&#8203;29232](https://github.com/numpy/numpy/issues/29232)) - [#&#8203;29235](https://github.com/numpy/numpy/pull/29235): BUG: Address interaction between SME and FPSR ([#&#8203;29223](https://github.com/numpy/numpy/issues/29223)) - [#&#8203;29237](https://github.com/numpy/numpy/pull/29237): BUG: Enforce integer limitation in concatenate ([#&#8203;29231](https://github.com/numpy/numpy/issues/29231)) - [#&#8203;29238](https://github.com/numpy/numpy/pull/29238): CI: Add support for building NumPy with LLVM for Win-ARM64 - [#&#8203;29241](https://github.com/numpy/numpy/pull/29241): ENH: Detect CPU features on OpenBSD ARM and PowerPC64 - [#&#8203;29242](https://github.com/numpy/numpy/pull/29242): ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64. #### Checksums ##### MD5 c353ac75ea083594a6cb674b5f943d83 numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl fdb5454e372d399cf570868ea7e2b192 numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl dc0f17823bb1826519d6974c2b95fa90 numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl 7e3118fe383af697a8868ba191b9eac0 numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl 705aafad1250aa3e41502c5710a26ed5 numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl 003d6268344577b804205098e11cdaa0 numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl 7d0c0fd11c573c510a25dd7513e4ae0a numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl d99f993ef05966ead99df736df18b521 numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl 96933cac225fb8b60a9cc2c0efa14d36 numpy-2.3.1-cp311-cp311-win32.whl f777712419f3dd586ac294ddce84b274 numpy-2.3.1-cp311-cp311-win_amd64.whl 1fe2615669de5c271a48b99356fa3528 numpy-2.3.1-cp311-cp311-win_arm64.whl fccca48846d41d38966cc75395787f79 numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl fa389e78db43f3c2841ce127c1205422 numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl 2554944d786abd284db4a699d4edfe1e numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl 7fec491834803a8ffa3765ef3d03cea5 numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl 7c2d8b4412f12b9b02e98349fb5cd760 numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl 94dcc636a2f2478666d820e21fc91682 numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl 404128939d89d1ea26be105fb03b5028 numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl e89d8d460060e8315c3ba68b2b649db0 numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl a767bd10267ad6baef9655fb08db3fd3 numpy-2.3.1-cp312-cp312-win32.whl f753b957fcb7f06f043cf9c6114f294c numpy-2.3.1-cp312-cp312-win_amd64.whl 58ffa7c69587f9bf8f6025794fec7f63 numpy-2.3.1-cp312-cp312-win_arm64.whl 22a2a9a568dd0866b288ad8bd8bb3e90 numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl 5e1593fcc8bb3447e995622f2dca017b numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl 894d56072db9358e0096538710a1a8ce numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl 593cb311f5170cbcfcefb587cdcc70bb numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl 22935447e75acda4075c57b332c0236a numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl 5aa2040f947204e15e95ec87461a7e91 numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl 6516337f0347974fada21a23a818be64 numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl ec956eb37b874b1ec52d6ffccda6ef65 numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl 0aaed62cb1bae9c1b1a44d1a4eda2db7 numpy-2.3.1-cp313-cp313-win32.whl 57829996fc12f649547f0258443bbb20 numpy-2.3.1-cp313-cp313-win_amd64.whl a0d0dd68bbf0ab378142b2daff0a8e06 numpy-2.3.1-cp313-cp313-win_arm64.whl b22dc66970a8017e4d0ce83ef8c938af numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl 93c17afb38cf8fd876ca2bd9ea7e9612 numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl 283064dabb434f3dbc1a5e2514b9cb29 numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl 5b8c778033c98b4a0ce6e5bfc7625f05 numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl 2340bd78962f194bcdbee6531d954acc numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl 43a92ad37dc68d719bdeeeb65b3f4d2f numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl eb110c4aa0d73558187397ddfba179ad numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl 1f7f0076411ed4afa9c4553eb06564cb numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl 30f30dde6f806070b2164e48a632a350 numpy-2.3.1-cp313-cp313t-win32.whl 2375e2f2a5b75c5f5c908af6bb85d639 numpy-2.3.1-cp313-cp313t-win_amd64.whl b421530a87bb8e9e3d4dc34c75d5d953 numpy-2.3.1-cp313-cp313t-win_arm64.whl b1bc3cbf9cd407964b2bb25dfe86ca3d numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl 4c2e234eb4f346f362d6e6c620fa7a56 numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl 98ec3c19a365d0ae926113bb349e323b numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl e0c7bcd526cde46489d5a8f12e06cc77 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl 41f535aa1f1acaf3d8a32a462a4cd4c8 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl 2abf906a6688c98693045cbbc655d5b7 numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl 886559a4c541298b37245e389ce8bf10 numpy-2.3.1.tar.gz ##### SHA256 6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070 numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl 5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl 0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl 467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl 0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93 numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115 numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369 numpy-2.3.1-cp311-cp311-win32.whl d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff numpy-2.3.1-cp311-cp311-win_amd64.whl ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a numpy-2.3.1-cp311-cp311-win_arm64.whl 2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl 762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29 numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl 867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl 4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943 numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl 8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25 numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660 numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl 5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952 numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77 numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab numpy-2.3.1-cp312-cp312-win32.whl cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76 numpy-2.3.1-cp312-cp312-win_amd64.whl 7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30 numpy-2.3.1-cp312-cp312-win_arm64.whl 25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8 numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl 7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0 numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl 18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1 numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl 5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1 numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl 36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0 numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8 numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl 39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8 numpy-2.3.1-cp313-cp313-win32.whl 8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42 numpy-2.3.1-cp313-cp313-win_amd64.whl 0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e numpy-2.3.1-cp313-cp313-win_arm64.whl b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8 numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl 2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992 numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl 23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48 numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl 010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280 numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl 6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e numpy-2.3.1-cp313-cp313t-win32.whl 2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc numpy-2.3.1-cp313-cp313t-win_amd64.whl eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244 numpy-2.3.1-cp313-cp313t-win_arm64.whl ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3 numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl ebb8603d45bc86bbd5edb0d63e52c5fd9e7945d3a503b77e486bd88dde67a19b numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl 15aa4c392ac396e2ad3d0a2680c0f0dee420f9fed14eef09bdb9450ee6dcb7b7 numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl c6e0bf9d1a2f50d2b65a7cf56db37c095af17b59f6c132396f7c6d5dd76484df numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl eabd7e8740d494ce2b4ea0ff05afa1b7b291e978c0ae075487c51e8bd93c0c68 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl e610832418a2bc09d974cc9fecebfa51e9532d6190223bc5ef6a7402ebf3b5cb numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl 1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b numpy-2.3.1.tar.gz ### [`v2.3.0`](https://github.com/numpy/numpy/releases/v2.3.0) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.6...v2.3.0) ### NumPy 2.3.0 Release Notes The NumPy 2.3.0 release continues the work to improve free threaded Python support and annotations together with the usual set of bug fixes. It is unusual in the number of expired deprecations, code modernizations, and style cleanups. The latter may not be visible to users, but is important for code maintenance over the long term. Note that we have also upgraded from manylinux2014 to manylinux\_2\_28. Users running on a Mac having an M4 cpu might see various warnings about invalid values and such. The warnings are a known problem with Accelerate. They are annoying, but otherwise harmless. Apple promises to fix them. This release supports Python versions 3.11-3.13, Python 3.14 will be supported when it is released. #### Highlights - Interactive examples in the NumPy documentation. - Building NumPy with OpenMP Parallelization. - Preliminary support for Windows on ARM. - Improved support for free threaded Python. - Improved annotations. #### New functions ##### New function `numpy.strings.slice` The new function `numpy.strings.slice` was added, which implements fast native slicing of string arrays. It supports the full slicing API including negative slice offsets and steps. ([gh-27789](https://github.com/numpy/numpy/pull/27789)) #### Deprecations - The `numpy.typing.mypy_plugin` has been deprecated in favor of platform-agnostic static type inference. Please remove `numpy.typing.mypy_plugin` from the `plugins` section of your mypy configuration. If this change results in new errors being reported, kindly open an issue. ([gh-28129](https://github.com/numpy/numpy/pull/28129)) - The `numpy.typing.NBitBase` type has been deprecated and will be removed in a future version. This type was previously intended to be used as a generic upper bound for type-parameters, for example: ```python import numpy as np import numpy.typing as npt def f[NT: npt.NBitBase](x: np.complexfloating[NT]) -> np.floating[NT]: ... ``` But in NumPy 2.2.0, `float64` and `complex128` were changed to concrete subtypes, causing static type-checkers to reject `x: np.float64 = f(np.complex128(42j))`. So instead, the better approach is to use `typing.overload`: ```python import numpy as np from typing import overload @&#8203;overload def f(x: np.complex64) -> np.float32: ... @&#8203;overload def f(x: np.complex128) -> np.float64: ... @&#8203;overload def f(x: np.clongdouble) -> np.longdouble: ... ``` ([gh-28884](https://github.com/numpy/numpy/pull/28884)) #### Expired deprecations - Remove deprecated macros like `NPY_OWNDATA` from Cython interfaces in favor of `NPY_ARRAY_OWNDATA` (deprecated since 1.7) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Remove `numpy/npy_1_7_deprecated_api.h` and C macros like `NPY_OWNDATA` in favor of `NPY_ARRAY_OWNDATA` (deprecated since 1.7) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Remove alias `generate_divbyzero_error` to `npy_set_floatstatus_divbyzero` and `generate_overflow_error` to `npy_set_floatstatus_overflow` (deprecated since 1.10) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Remove `np.tostring` (deprecated since 1.19) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Raise on `np.conjugate` of non-numeric types (deprecated since 1.13) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Raise when using `np.bincount(...minlength=None)`, use 0 instead (deprecated since 1.14) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Passing `shape=None` to functions with a non-optional shape argument errors, use `()` instead (deprecated since 1.20) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Inexact matches for `mode` and `searchside` raise (deprecated since 1.20) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Setting `__array_finalize__ = None` errors (deprecated since 1.23) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - `np.fromfile` and `np.fromstring` error on bad data, previously they would guess (deprecated since 1.18) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - `datetime64` and `timedelta64` construction with a tuple no longer accepts an `event` value, either use a two-tuple of (unit, num) or a 4-tuple of (unit, num, den, 1) (deprecated since 1.14) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - When constructing a `dtype` from a class with a `dtype` attribute, that attribute must be a dtype-instance rather than a thing that can be parsed as a dtype instance (deprecated in 1.19). At some point the whole construct of using a dtype attribute will be deprecated (see [#&#8203;25306](https://github.com/numpy/numpy/issues/25306)) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Passing booleans as partition index errors (deprecated since 1.23) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Out-of-bounds indexes error even on empty arrays (deprecated since 1.20) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - `np.tostring` has been removed, use `tobytes` instead (deprecated since 1.19) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Disallow make a non-writeable array writeable for arrays with a base that do not own their data (deprecated since 1.17) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - `concatenate()` with `axis=None` uses `same-kind` casting by default, not `unsafe` (deprecated since 1.20) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Unpickling a scalar with object dtype errors (deprecated since 1.20) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - The binary mode of `fromstring` now errors, use `frombuffer` instead (deprecated since 1.14) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Converting `np.inexact` or `np.floating` to a dtype errors (deprecated since 1.19) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Converting `np.complex`, `np.integer`, `np.signedinteger`, `np.unsignedinteger`, `np.generic` to a dtype errors (deprecated since 1.19) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - The Python built-in `round` errors for complex scalars. Use `np.round` or `scalar.round` instead (deprecated since 1.19) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - 'np.bool' scalars can no longer be interpreted as an index (deprecated since 1.19) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Parsing an integer via a float string is no longer supported. (deprecated since 1.23) To avoid this error you can - make sure the original data is stored as integers. - use the `converters=float` keyword argument. - Use `np.loadtxt(...).astype(np.int64)` ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - The use of a length 1 tuple for the ufunc `signature` errors. Use `dtype` or fill the tuple with `None` (deprecated since 1.19) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Special handling of matrix is in np.outer is removed. Convert to a ndarray via `matrix.A` (deprecated since 1.20) ([gh-28254](https://github.com/numpy/numpy/pull/28254)) - Removed the `np.compat` package source code (removed in 2.0) ([gh-28961](https://github.com/numpy/numpy/pull/28961)) #### C API changes - `NpyIter_GetTransferFlags` is now available to check if the iterator needs the Python API or if casts may cause floating point errors (FPE). FPEs can for example be set when casting `float64(1e300)` to `float32` (overflow to infinity) or a NaN to an integer (invalid value). ([gh-27883](https://github.com/numpy/numpy/pull/27883)) - `NpyIter` now has no limit on the number of operands it supports. ([gh-28080](https://github.com/numpy/numpy/pull/28080)) ##### New `NpyIter_GetTransferFlags` and `NpyIter_IterationNeedsAPI` change NumPy now has the new `NpyIter_GetTransferFlags` function as a more precise way checking of iterator/buffering needs. I.e. whether the Python API/GIL is required or floating point errors may occur. This function is also faster if you already know your needs without buffering. The `NpyIter_IterationNeedsAPI` function now performs all the checks that were previously performed at setup time. While it was never necessary to call it multiple times, doing so will now have a larger cost. ([gh-27998](https://github.com/numpy/numpy/pull/27998)) #### New Features - The type parameter of `np.dtype` now defaults to `typing.Any`. This way, static type-checkers will infer `dtype: np.dtype` as `dtype: np.dtype[Any]`, without reporting an error. ([gh-28669](https://github.com/numpy/numpy/pull/28669)) - Static type-checkers now interpret: - `_: np.ndarray` as `_: npt.NDArray[typing.Any]`. - `_: np.flatiter` as `_: np.flatiter[np.ndarray]`. This is because their type parameters now have default values. ([gh-28940](https://github.com/numpy/numpy/pull/28940)) ##### NumPy now registers its pkg-config paths with the [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) PyPI package The [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) PyPI package provides an interface for projects like NumPy to register their own paths to be added to the pkg-config search path. This means that when using [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) from PyPI, NumPy will be discoverable without needing for any custom environment configuration. > \[!NOTE] > This only applies when using the [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) package from [PyPI](https://pypi.org/), > or put another way, this only applies when installing [pkgconf](https://github.com/pypackaging-native/pkgconf-pypi) via a > Python package manager. > > If you are using `pkg-config` or `pkgconf` provided by your system, > or any other source that does not use the [pkgconf-pypi](https://github.com/pypackaging-native/pkgconf-pypi) > project, the NumPy pkg-config directory will not be automatically added > to the search path. In these situations, you might want to use `numpy-config`. ([gh-28214](https://github.com/numpy/numpy/pull/28214)) ##### Allow `out=...` in ufuncs to ensure array result NumPy has the sometimes difficult behavior that it currently usually returns scalars rather than 0-D arrays (even if the inputs were 0-D arrays). This is especially problematic for non-numerical dtypes (e.g. `object`). For ufuncs (i.e. most simple math functions) it is now possible to use `out=...` (literally \`...\`, e.g. `out=Ellipsis`) which is identical in behavior to `out` not being passed, but will ensure a non-scalar return. This spelling is borrowed from `arr1d[0, ...]` where the `...` also ensures a non-scalar return. Other functions with an `out=` kwarg should gain support eventually. Downstream libraries that interoperate via `__array_ufunc__` or `__array_function__` may need to adapt to support this. ([gh-28576](https://github.com/numpy/numpy/pull/28576)) ##### Building NumPy with OpenMP Parallelization NumPy now supports OpenMP parallel processing capabilities when built with the `-Denable_openmp=true` Meson build flag. This feature is disabled by default. When enabled, `np.sort` and `np.argsort` functions can utilize OpenMP for parallel thread execution, improving performance for these operations. ([gh-28619](https://github.com/numpy/numpy/pull/28619)) ##### Interactive examples in the NumPy documentation The NumPy documentation includes a number of examples that can now be run interactively in your browser using WebAssembly and Pyodide. Please note that the examples are currently experimental in nature and may not work as expected for all methods in the public API. ([gh-26745](https://github.com/numpy/numpy/pull/26745)) #### Improvements - Scalar comparisons between non-comparable dtypes such as `np.array(1) == np.array('s')` now return a NumPy bool instead of a Python bool. ([gh-27288](https://github.com/numpy/numpy/pull/27288)) - `np.nditer` now has no limit on the number of supported operands (C-integer). ([gh-28080](https://github.com/numpy/numpy/pull/28080)) - No-copy pickling is now supported for any array that can be transposed to a C-contiguous array. ([gh-28105](https://github.com/numpy/numpy/pull/28105)) - The `__repr__` for user-defined dtypes now prefers the `__name__` of the custom dtype over a more generic name constructed from its `kind` and `itemsize`. ([gh-28250](https://github.com/numpy/numpy/pull/28250)) - `np.dot` now reports floating point exceptions. ([gh-28442](https://github.com/numpy/numpy/pull/28442)) - `np.dtypes.StringDType` is now a [generic type](https://typing.python.org/en/latest/spec/generics.html) which accepts a type argument for `na_object` that defaults to `typing.Never`. For example, `StringDType(na_object=None)` returns a `StringDType[None]`, and `StringDType()` returns a `StringDType[typing.Never]`. ([gh-28856](https://github.com/numpy/numpy/pull/28856)) ##### Added warnings to `np.isclose` Added warning messages if at least one of atol or rtol are either `np.nan` or `np.inf` within `np.isclose`. - Warnings follow the user's `np.seterr` settings ([gh-28205](https://github.com/numpy/numpy/pull/28205)) #### Performance improvements and changes ##### Performance improvements to `np.unique` `np.unique` now tries to use a hash table to find unique values instead of sorting values before finding unique values. This is limited to certain dtypes for now, and the function is now faster for those dtypes. The function now also exposes a `sorted` parameter to allow returning unique values as they were found, instead of sorting them afterwards. ([gh-26018](https://github.com/numpy/numpy/pull/26018)) ##### Performance improvements to `np.sort` and `np.argsort` `np.sort` and `np.argsort` functions now can leverage OpenMP for parallel thread execution, resulting in up to 3.5x speedups on x86 architectures with AVX2 or AVX-512 instructions. This opt-in feature requires NumPy to be built with the -Denable_openmp Meson flag. Users can control the number of threads used by setting the OMP_NUM_THREADS environment variable. ([gh-28619](https://github.com/numpy/numpy/pull/28619)) ##### Performance improvements for `np.float16` casts Earlier, floating point casts to and from `np.float16` types were emulated in software on all platforms. Now, on ARM devices that support Neon float16 intrinsics (such as recent Apple Silicon), the native float16 path is used to achieve the best performance. ([gh-28769](https://github.com/numpy/numpy/pull/28769)) #### Changes - The vector norm `ord=inf` and the matrix norms `ord={1, 2, inf, 'nuc'}` now always returns zero for empty arrays. Empty arrays have at least one axis of size zero. This affects `np.linalg.norm`, `np.linalg.vector_norm`, and `np.linalg.matrix_norm`. Previously, NumPy would raises errors or return zero depending on the shape of the array. ([gh-28343](https://github.com/numpy/numpy/pull/28343)) - A spelling error in the error message returned when converting a string to a float with the method `np.format_float_positional` has been fixed. ([gh-28569](https://github.com/numpy/numpy/pull/28569)) - NumPy's `__array_api_version__` was upgraded from `2023.12` to `2024.12`. - `numpy.count_nonzero` for `axis=None` (default) now returns a NumPy scalar instead of a Python integer. - The parameter `axis` in `numpy.take_along_axis` function has now a default value of `-1`. ([gh-28615](https://github.com/numpy/numpy/pull/28615)) - Printing of `np.float16` and `np.float32` scalars and arrays have been improved by adjusting the transition to scientific notation based on the floating point precision. A new legacy `np.printoptions` mode `'2.2'` has been added for backwards compatibility. ([gh-28703](https://github.com/numpy/numpy/pull/28703)) - Multiplication between a string and integer now raises OverflowError instead of MemoryError if the result of the multiplication would create a string that is too large to be represented. This follows Python's behavior. ([gh-29060](https://github.com/numpy/numpy/pull/29060)) ##### `unique_values` may return unsorted data The relatively new function (added in NumPy 2.0) `unique_values` may now return unsorted results. Just as `unique_counts` and `unique_all` these never guaranteed a sorted result, however, the result was sorted until now. In cases where these do return a sorted result, this may change in future releases to improve performance. ([gh-26018](https://github.com/numpy/numpy/pull/26018)) ##### Changes to the main iterator and potential numerical changes The main iterator, used in math functions and via `np.nditer` from Python and `NpyIter` in C, now behaves differently for some buffered iterations. This means that: - The buffer size used will often be smaller than the maximum buffer sized allowed by the `buffersize` parameter. - The "growinner" flag is now honored with buffered reductions when no operand requires buffering. For `np.sum()` such changes in buffersize may slightly change numerical results of floating point operations. Users who use "growinner" for custom reductions could notice changes in precision (for example, in NumPy we removed it from `einsum` to avoid most precision changes and improve precision for some 64bit floating point inputs). ([gh-27883](https://github.com/numpy/numpy/pull/27883)) ##### The minimum supported GCC version is now 9.3.0 The minimum supported version was updated from 8.4.0 to 9.3.0, primarily in order to reduce the chance of platform-specific bugs in old GCC versions from causing issues. ([gh-28102](https://github.com/numpy/numpy/pull/28102)) ##### Changes to automatic bin selection in numpy.histogram The automatic bin selection algorithm in `numpy.histogram` has been modified to avoid out-of-memory errors for samples with low variation. For full control over the selected bins the user can use set the `bin` or `range` parameters of `numpy.histogram`. ([gh-28426](https://github.com/numpy/numpy/pull/28426)) ##### Build manylinux\_2\_28 wheels Wheels for linux systems will use the `manylinux_2_28` tag (instead of the `manylinux2014` tag), which means dropping support for redhat7/centos7, amazonlinux2, debian9, ubuntu18.04, and other pre-glibc2.28 operating system versions, as per the [PEP 600 support table](https://github.com/mayeut/pep600\_compliance?tab=readme-ov-file#pep600-compliance-check). ([gh-28436](https://github.com/numpy/numpy/pull/28436)) ##### Remove use of -Wl,-ld_classic on macOS Remove use of -Wl,-ld_classic on macOS. This hack is no longer needed by Spack, and results in libraries that cannot link to other libraries built with ld (new). ([gh-28713](https://github.com/numpy/numpy/pull/28713)) ##### Re-enable overriding functions in the `numpy.strings` Re-enable overriding functions in the `numpy.strings` module. ([gh-28741](https://github.com/numpy/numpy/pull/28741)) #### Checksums ##### MD5 cf552b6b6390343c24bf60365950c91c numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl d3c377f49f84b36297cfc2fc30c6a288 numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl 4e12cd2aea876c09fdc3aaac2d0f4bac numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl a33af1d4e1f0ee5ed82d7933c5df9f84 numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl cd5cf04cb8b40e65aac8264c7bf3d7c9 numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl 6a45424beb8f4f23e7b2b853bc18aefa numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl 2dc1c1d1b9deb8c0626af68c0c00660a numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl 9ff8ea227afce090dea3b4dac4653fa6 numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl a1e9e40a20187e1f5ae2f8ba165e291b numpy-2.3.0-cp311-cp311-win32.whl 819e4ac62a3449c79818ff5aa0e6b276 numpy-2.3.0-cp311-cp311-win_amd64.whl 347260edfd35535b15b8133280793080 numpy-2.3.0-cp311-cp311-win_arm64.whl 9c1ad46e637b876a0535de60f5b604bc numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl 5b656fbed339bcac1af6de73b15e5dba numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl 5b86d6d0cab79d0cd381bb2e912e7e23 numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl ea83ef5cd00d5e42bb745eee1ee0ad3f numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl 15a5f57cb51d3d957c1b387c4bc54830 numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl b5fa92d1093dab4c3ca0622c29c4a241 numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl 666cad26086ee212047e5ea0e8906480 numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl 6263705622ca89ccadc6f458effde281 numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl bf1bf83eca701ff70351c2d7b308e181 numpy-2.3.0-cp312-cp312-win32.whl 0707b427c1102bb904994289e1555c3d numpy-2.3.0-cp312-cp312-win_amd64.whl 097bd498f8333d383db61105044906dc numpy-2.3.0-cp312-cp312-win_arm64.whl 54eb5fa0444ff5dd078bb1aa30d9533f numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl 004b4c3650562bd851e31fb925863acb numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl cd4e31304e51cc5dacd355730be25e4e numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl 0ed70aa071f35060ee68d6ab407159e5 numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl a89b304bbb52268b233ab9652fee8142 numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl 4b55cf791be482e8d8e5aaba0c10b6f2 numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl d3a1b81da2f2cba4743d1ee5385cb4d6 numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl fcaacdedcd8cfec7a6cb430fba7a5553 numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl 7d0deec2ad395fda48b80be59612db22 numpy-2.3.0-cp313-cp313-win32.whl 7386a22b0ef219ba043f6e085933dbd6 numpy-2.3.0-cp313-cp313-win_amd64.whl f4559038276d0e2bfb19601484d4cdff numpy-2.3.0-cp313-cp313-win_arm64.whl 6c586985db2e888876aa96ceaf99ee66 numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl 9726de30cce2b36940225a7ea086c824 numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl ea021092cbb7b1e7d0984dc774bb288d numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl 6f8261bc789eed1d3f6f7ea9ff3c2a2c numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl ab624ddc1425d44412541aad1f012fd9 numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl af55bc7a8f46ec8d413eb1fbe2c200e9 numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl 830eecf7c372aa0d7d746ad031ff0ba1 numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl 28870039fde4fec369185e185bf0077e numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl 4510373c08383787c263a4b5a21a24ef numpy-2.3.0-cp313-cp313t-win32.whl de883c4313f4dc984045a51b8edb4084 numpy-2.3.0-cp313-cp313t-win_amd64.whl 334f5c275a6aad46e5f46436572d3dc1 numpy-2.3.0-cp313-cp313t-win_arm64.whl 05b86d4a21a832e20e4ebdc6febf298d numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl 4589038edf55f085252f194e880d7454 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl 7d8f0554035717dc396de7d77c696377 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl c0cb89f0dca94446e6aa472ec6874c22 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl 14e43315dea5eddffe888986e47d8584 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl e3688182f8551c3c99b559c1696d41dc numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl 19a5470a37d066bd3e9385918d7760e7 numpy-2.3.0.tar.gz ##### SHA256 c3c9fdde0fa18afa1099d6257eb82890ea4f3102847e692193b54e00312a9ae9 numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl 46d16f72c2192da7b83984aa5455baee640e33a9f1e61e656f29adf55e406c2b numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl a0be278be9307c4ab06b788f2a077f05e180aea817b3e41cebbd5aaf7bd85ed3 numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl 99224862d1412d2562248d4710126355d3a8db7672170a39d6909ac47687a8a4 numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl 2393a914db64b0ead0ab80c962e42d09d5f385802006a6c87835acb1f58adb96 numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl 7729c8008d55e80784bd113787ce876ca117185c579c0d626f59b87d433ea779 numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl 06d4fb37a8d383b769281714897420c5cc3545c79dc427df57fc9b852ee0bf58 numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl c39ec392b5db5088259c68250e342612db82dc80ce044cf16496cf14cf6bc6f8 numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl ee9d3ee70d62827bc91f3ea5eee33153212c41f639918550ac0475e3588da59f numpy-2.3.0-cp311-cp311-win32.whl 43c55b6a860b0eb44d42341438b03513cf3879cb3617afb749ad49307e164edd numpy-2.3.0-cp311-cp311-win_amd64.whl 2e6a1409eee0cb0316cb64640a49a49ca44deb1a537e6b1121dc7c458a1299a8 numpy-2.3.0-cp311-cp311-win_arm64.whl 389b85335838155a9076e9ad7f8fdba0827496ec2d2dc32ce69ce7898bde03ba numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl 9498f60cd6bb8238d8eaf468a3d5bb031d34cd12556af53510f05fcf581c1b7e numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl 622a65d40d8eb427d8e722fd410ac3ad4958002f109230bc714fa551044ebae2 numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl b9446d9d8505aadadb686d51d838f2b6688c9e85636a0c3abaeb55ed54756459 numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl 50080245365d75137a2bf46151e975de63146ae6d79f7e6bd5c0e85c9931d06a numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl c24bb4113c66936eeaa0dc1e47c74770453d34f46ee07ae4efd853a2ed1ad10a numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl 4d8d294287fdf685281e671886c6dcdf0291a7c19db3e5cb4178d07ccf6ecc67 numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl 6295f81f093b7f5769d1728a6bd8bf7466de2adfa771ede944ce6711382b89dc numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl e6648078bdd974ef5d15cecc31b0c410e2e24178a6e10bf511e0557eed0f2570 numpy-2.3.0-cp312-cp312-win32.whl 0898c67a58cdaaf29994bc0e2c65230fd4de0ac40afaf1584ed0b02cd74c6fdd numpy-2.3.0-cp312-cp312-win_amd64.whl bd8df082b6c4695753ad6193018c05aac465d634834dca47a3ae06d4bb22d9ea numpy-2.3.0-cp312-cp312-win_arm64.whl 5754ab5595bfa2c2387d241296e0381c21f44a4b90a776c3c1d39eede13a746a numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl d11fa02f77752d8099573d64e5fe33de3229b6632036ec08f7080f46b6649959 numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl aba48d17e87688a765ab1cd557882052f238e2f36545dfa8e29e6a91aef77afe numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl 4dc58865623023b63b10d52f18abaac3729346a7a46a778381e0e3af4b7f3beb numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl df470d376f54e052c76517393fa443758fefcdd634645bc9c1f84eafc67087f0 numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl 87717eb24d4a8a64683b7a4e91ace04e2f5c7c77872f823f02a94feee186168f numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl d8fa264d56882b59dcb5ea4d6ab6f31d0c58a57b41aec605848b6eb2ef4a43e8 numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl e651756066a0eaf900916497e20e02fe1ae544187cb0fe88de981671ee7f6270 numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl e43c3cce3b6ae5f94696669ff2a6eafd9a6b9332008bafa4117af70f4b88be6f numpy-2.3.0-cp313-cp313-win32.whl 81ae0bf2564cf475f94be4a27ef7bcf8af0c3e28da46770fc904da9abd5279b5 numpy-2.3.0-cp313-cp313-win_amd64.whl c8738baa52505fa6e82778580b23f945e3578412554d937093eac9205e845e6e numpy-2.3.0-cp313-cp313-win_arm64.whl 39b27d8b38942a647f048b675f134dd5a567f95bfff481f9109ec308515c51d8 numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl 0eba4a1ea88f9a6f30f56fdafdeb8da3774349eacddab9581a21234b8535d3d3 numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl b0f1f11d0a1da54927436505a5a7670b154eac27f5672afc389661013dfe3d4f numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl 690d0a5b60a47e1f9dcec7b77750a4854c0d690e9058b7bef3106e3ae9117808 numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl 8b51ead2b258284458e570942137155978583e407babc22e3d0ed7af33ce06f8 numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl aaf81c7b82c73bd9b45e79cfb9476cb9c29e937494bfe9092c26aece812818ad numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl f420033a20b4f6a2a11f585f93c843ac40686a7c3fa514060a97d9de93e5e72b numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl d344ca32ab482bcf8735d8f95091ad081f97120546f3d250240868430ce52555 numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl 48a2e8eaf76364c32a1feaa60d6925eaf32ed7a040183b807e02674305beef61 numpy-2.3.0-cp313-cp313t-win32.whl ba17f93a94e503551f154de210e4d50c5e3ee20f7e7a1b5f6ce3f22d419b93bb numpy-2.3.0-cp313-cp313t-win_amd64.whl f14e016d9409680959691c109be98c436c6249eaf7f118b424679793607b5944 numpy-2.3.0-cp313-cp313t-win_arm64.whl 80b46117c7359de8167cc00a2c7d823bdd505e8c7727ae0871025a86d668283b numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl 5814a0f43e70c061f47abd5857d120179609ddc32a613138cbb6c4e9e2dbdda5 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl ef6c1e88fd6b81ac6d215ed71dc8cd027e54d4bf1d2682d362449097156267a2 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl 33a5a12a45bb82d9997e2c0b12adae97507ad7c347546190a18ff14c28bbca12 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl 54dfc8681c1906d239e95ab1508d0a533c4a9505e52ee2d71a5472b04437ef97 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl e017a8a251ff4d18d71f139e28bdc7c31edba7a507f72b1414ed902cbe48c74d numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl 581f87f9e9e9db2cba2141400e160e9dd644ee248788d6f90636eeb8fd9260a6 numpy-2.3.0.tar.gz ### [`v2.2.6`](https://github.com/numpy/numpy/releases/v2.2.6) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.5...v2.2.6) ### NumPy 2.2.6 Release Notes NumPy 2.2.6 is a patch release that fixes bugs found after the 2.2.5 release. It is a mix of typing fixes/improvements as well as the normal bug fixes and some CI maintenance. This release supports Python versions 3.10-3.13. #### Contributors A total of 8 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Ilhan Polat - Joren Hammudoglu - Marco Gorelli + - Matti Picus - Nathan Goldbaum - Peter Hawkins - Sayed Adel #### Pull requests merged A total of 11 pull requests were merged for this release. - [#&#8203;28778](https://github.com/numpy/numpy/pull/28778): MAINT: Prepare 2.2.x for further development - [#&#8203;28851](https://github.com/numpy/numpy/pull/28851): BLD: Update vendor-meson to fix module_feature conflicts arguments... - [#&#8203;28852](https://github.com/numpy/numpy/pull/28852): BUG: fix heap buffer overflow in np.strings.find - [#&#8203;28853](https://github.com/numpy/numpy/pull/28853): TYP: fix `NDArray[floating] + float` return type - [#&#8203;28864](https://github.com/numpy/numpy/pull/28864): BUG: fix stringdtype singleton thread safety - [#&#8203;28865](https://github.com/numpy/numpy/pull/28865): MAINT: use OpenBLAS 0.3.29 - [#&#8203;28889](https://github.com/numpy/numpy/pull/28889): MAINT: from_dlpack thread safety fixes - [#&#8203;28913](https://github.com/numpy/numpy/pull/28913): TYP: Fix non-existent `CanIndex` annotation in `ndarray.setfield` - [#&#8203;28915](https://github.com/numpy/numpy/pull/28915): MAINT: Avoid dereferencing/strict aliasing warnings - [#&#8203;28916](https://github.com/numpy/numpy/pull/28916): BUG: Fix missing check for PyErr_Occurred() in \_pyarray_correlate. - [#&#8203;28966](https://github.com/numpy/numpy/pull/28966): TYP: reject complex scalar types in ndarray.\__ifloordiv\_\_ #### Checksums ##### MD5 259343f056061f6eadb2f4b8999d06d4 numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl 16fa85488e149489ce7ee044d7b0d307 numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl f01b7aea9d2b76b1eeb49766e615d689 numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl f2ddc2b22517f6e31caa1372b12c2499 numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl 52190e22869884f0870eb3df7a283ca9 numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8f382b9ca6770db600edd5ea2447a925 numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e604aae2ef6e01fb92ecc39aca0424d9 numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl 3e5626cf6d8bec95d430a7362e71691c numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl 8f4f1982837618ed7636ebd432234aeb numpy-2.2.6-cp310-cp310-win32.whl 1cfd2ac5609b4800512f0ce304e19acc numpy-2.2.6-cp310-cp310-win_amd64.whl 116203803ceeaa911dd64810b0305b4c numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl 0427961f3a70ed92b1c4d2c5516c5803 numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl feb8104ed864d51c68984ff93f7255b5 numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl f640cd91637f1d474947ecdb18d17ee8 numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl 2f87d921a50fe50d04bb62125f8638dd numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7f986c33f49d5940d6d005ff7039e420 numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0f7073c78e0aede7179c537f64856db7 numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl 7402bbedcc0b59bd6cef1c483b77dac0 numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl 93c920d40abbc10d5d056b8bfbcdad74 numpy-2.2.6-cp311-cp311-win32.whl 9162cb90bff0e4ba322f1e61da9f2fba numpy-2.2.6-cp311-cp311-win_amd64.whl 75e9fa94b0a6ef568b532f6e0773a6a7 numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl 79d8f89e82971bb2a2f61d0ef8f1a677 numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl fb553e49196bce93af4b0d7e1e8fad1e numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl 01a338bc3a5349b5b7db4335fe879810 numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl f37533a7ae4aa95da824b1df2786ac55 numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2f9ac35f955d9217b6841568ce13d636 numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df530a075c04dbef9abcac95d027c8bc numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl 4edf8f80feec739de3e08fffe97195a3 numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl 3e2664254d9a7bb5c66df2b108aaec2f numpy-2.2.6-cp312-cp312-win32.whl ae2e39f1dba9b91d35edcd8736041df8 numpy-2.2.6-cp312-cp312-win_amd64.whl 2faa32e27b81105db53fb2fc25a54e0d numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl 0d05b1bb5af5059c8775a4f10fa0ec3d numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl bb404027de8df58312964e26528ef591 numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl 1340a90e0f62a31691e475214f773196 numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl 954981f2846e6735798fb33c1e6fba76 numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4e4eccd129b31fbef3ced7fb338e862e numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c704c1c56c777bc0fc0d54bbcf9f2ddb numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl fb459919a3433235312673bd5797ab8b numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl 9998e8ae155872c375ce6c020654176b numpy-2.2.6-cp313-cp313-win32.whl 03df8a78963b318b4dfede10b213dce4 numpy-2.2.6-cp313-cp313-win_amd64.whl d1982e582eae2fb076942c0bbedcefe4 numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl cbc7a48b9ca730a8d40927666651430a numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl cd1d2271c05ccc502b78827b88ff7670 numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl c2b4fb7464e42af240ad51c8be5fb1ba numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl 6a96c540b8df291a128bb50dfdad0ba4 numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 113d466026e770badd1061a6e1a8ca92 numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1fce5d26d8d6d021954f717b4bad483c numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl d980d6c4b486ad09dbf62ac5cf1b0b2a numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl 21571229d4376f3c0458d8eb1be3ba52 numpy-2.2.6-cp313-cp313t-win32.whl 4accc0387feec817565aeaba93c79173 numpy-2.2.6-cp313-cp313t-win_amd64.whl 774589ee5f842137322ff19b56a35270 numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl f934cef42ac65a2094dd5280aa6bf9a2 numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 0e53fbb4195726c62b8f237a4bf545e9 numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3c96c89609022ecd27d44b12c2349a06 numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl 63d66dc1db9d603df0a84c870e703cfc numpy-2.2.6.tar.gz ##### SHA256 b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl 8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90 numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl 37e990a01ae6ec7fe7fa1c26c55ecb672dd98b19c3d0e1d1f326fa13cb38d163 numpy-2.2.6-cp310-cp310-macosx_14_0_arm64.whl 5a6429d4be8ca66d889b7cf70f536a397dc45ba6faeb5f8c5427935d9592e9cf numpy-2.2.6-cp310-cp310-macosx_14_0_x86_64.whl efd28d4e9cd7d7a8d39074a4d44c63eda73401580c5c76acda2ce969e0a38e83 numpy-2.2.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915 numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 74d4531beb257d2c3f4b261bfb0fc09e0f9ebb8842d82a7b4209415896adc680 numpy-2.2.6-cp310-cp310-musllinux_1_2_aarch64.whl 8fc377d995680230e83241d8a96def29f204b5782f371c532579b4f20607a289 numpy-2.2.6-cp310-cp310-musllinux_1_2_x86_64.whl b093dd74e50a8cba3e873868d9e93a85b78e0daf2e98c6797566ad8044e8363d numpy-2.2.6-cp310-cp310-win32.whl f0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3 numpy-2.2.6-cp310-cp310-win_amd64.whl f9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl c820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl 3d70692235e759f260c3d837193090014aebdf026dfd167834bcba43e30c2a42 numpy-2.2.6-cp311-cp311-macosx_14_0_arm64.whl 481b49095335f8eed42e39e8041327c05b0f6f4780488f61286ed3c01368d491 numpy-2.2.6-cp311-cp311-macosx_14_0_x86_64.whl b64d8d4d17135e00c8e346e0a738deb17e754230d7e0810ac5012750bbd85a5a numpy-2.2.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bd48227a919f1bafbdda0583705e547892342c26fb127219d60a5c36882609d1 numpy-2.2.6-cp311-cp311-musllinux_1_2_aarch64.whl 9551a499bf125c1d4f9e250377c1ee2eddd02e01eac6644c080162c0c51778ab numpy-2.2.6-cp311-cp311-musllinux_1_2_x86_64.whl 0678000bb9ac1475cd454c6b8c799206af8107e310843532b04d49649c717a47 numpy-2.2.6-cp311-cp311-win32.whl e8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303 numpy-2.2.6-cp311-cp311-win_amd64.whl 41c5a21f4a04fa86436124d388f6ed60a9343a6f767fced1a8a71c3fbca038ff numpy-2.2.6-cp312-cp312-macosx_10_13_x86_64.whl de749064336d37e340f640b05f24e9e3dd678c57318c7289d222a8a2f543e90c numpy-2.2.6-cp312-cp312-macosx_11_0_arm64.whl 894b3a42502226a1cac872f840030665f33326fc3dac8e57c607905773cdcde3 numpy-2.2.6-cp312-cp312-macosx_14_0_arm64.whl 71594f7c51a18e728451bb50cc60a3ce4e6538822731b2933209a1f3614e9282 numpy-2.2.6-cp312-cp312-macosx_14_0_x86_64.whl f2618db89be1b4e05f7a1a847a9c1c0abd63e63a1607d892dd54668dd92faf87 numpy-2.2.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fd83c01228a688733f1ded5201c678f0c53ecc1006ffbc404db9f7a899ac6249 numpy-2.2.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 37c0ca431f82cd5fa716eca9506aefcabc247fb27ba69c5062a6d3ade8cf8f49 numpy-2.2.6-cp312-cp312-musllinux_1_2_aarch64.whl fe27749d33bb772c80dcd84ae7e8df2adc920ae8297400dabec45f0dedb3f6de numpy-2.2.6-cp312-cp312-musllinux_1_2_x86_64.whl 4eeaae00d789f66c7a25ac5f34b71a7035bb474e679f410e5e1a94deb24cf2d4 numpy-2.2.6-cp312-cp312-win32.whl c1f9540be57940698ed329904db803cf7a402f3fc200bfe599334c9bd84a40b2 numpy-2.2.6-cp312-cp312-win_amd64.whl 0811bb762109d9708cca4d0b13c4f67146e3c3b7cf8d34018c722adb2d957c84 numpy-2.2.6-cp313-cp313-macosx_10_13_x86_64.whl 287cc3162b6f01463ccd86be154f284d0893d2b3ed7292439ea97eafa8170e0b numpy-2.2.6-cp313-cp313-macosx_11_0_arm64.whl f1372f041402e37e5e633e586f62aa53de2eac8d98cbfb822806ce4bbefcb74d numpy-2.2.6-cp313-cp313-macosx_14_0_arm64.whl 55a4d33fa519660d69614a9fad433be87e5252f4b03850642f88993f7b2ca566 numpy-2.2.6-cp313-cp313-macosx_14_0_x86_64.whl f92729c95468a2f4f15e9bb94c432a9229d0d50de67304399627a943201baa2f numpy-2.2.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1bc23a79bfabc5d056d106f9befb8d50c31ced2fbc70eedb8155aec74a45798f numpy-2.2.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e3143e4451880bed956e706a3220b4e5cf6172ef05fcc397f6f36a550b1dd868 numpy-2.2.6-cp313-cp313-musllinux_1_2_aarch64.whl b4f13750ce79751586ae2eb824ba7e1e8dba64784086c98cdbbcc6a42112ce0d numpy-2.2.6-cp313-cp313-musllinux_1_2_x86_64.whl 5beb72339d9d4fa36522fc63802f469b13cdbe4fdab4a288f0c441b74272ebfd numpy-2.2.6-cp313-cp313-win32.whl b0544343a702fa80c95ad5d3d608ea3599dd54d4632df855e4c8d24eb6ecfa1c numpy-2.2.6-cp313-cp313-win_amd64.whl 0bca768cd85ae743b2affdc762d617eddf3bcf8724435498a1e80132d04879e6 numpy-2.2.6-cp313-cp313t-macosx_10_13_x86_64.whl fc0c5673685c508a142ca65209b4e79ed6740a4ed6b2267dbba90f34b0b3cfda numpy-2.2.6-cp313-cp313t-macosx_11_0_arm64.whl 5bd4fc3ac8926b3819797a7c0e2631eb889b4118a9898c84f585a54d475b7e40 numpy-2.2.6-cp313-cp313t-macosx_14_0_arm64.whl fee4236c876c4e8369388054d02d0e9bb84821feb1a64dd59e137e6511a551f8 numpy-2.2.6-cp313-cp313t-macosx_14_0_x86_64.whl e1dda9c7e08dc141e0247a5b8f49cf05984955246a327d4c48bda16821947b2f numpy-2.2.6-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f447e6acb680fd307f40d3da4852208af94afdfab89cf850986c3ca00562f4fa numpy-2.2.6-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 389d771b1623ec92636b0786bc4ae56abafad4a4c513d36a55dce14bd9ce8571 numpy-2.2.6-cp313-cp313t-musllinux_1_2_aarch64.whl 8e9ace4a37db23421249ed236fdcdd457d671e25146786dfc96835cd951aa7c1 numpy-2.2.6-cp313-cp313t-musllinux_1_2_x86_64.whl 038613e9fb8c72b0a41f025a7e4c3f0b7a1b5d768ece4796b674c8f3fe13efff numpy-2.2.6-cp313-cp313t-win32.whl 6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06 numpy-2.2.6-cp313-cp313t-win_amd64.whl 0b605b275d7bd0c640cad4e5d30fa701a8d59302e127e5f79138ad62762c3e3d numpy-2.2.6-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 7befc596a7dc9da8a337f79802ee8adb30a552a94f792b9c9d18c840055907db numpy-2.2.6-pp310-pypy310_pp73-macosx_14_0_x86_64.whl ce47521a4754c8f4593837384bd3424880629f718d87c5d44f8ed763edd63543 numpy-2.2.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d042d24c90c41b54fd506da306759e06e568864df8ec17ccc17e9e884634fd00 numpy-2.2.6-pp310-pypy310_pp73-win_amd64.whl e29554e2bef54a90aa5cc07da6ce955accb83f21ab5de01a62c8478897b264fd numpy-2.2.6.tar.gz ### [`v2.2.5`](https://github.com/numpy/numpy/releases/v2.2.5) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.4...v2.2.5) ### NumPy 2.2.5 Release Notes NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4 release. It has a large number of typing fixes/improvements as well as the normal bug fixes and some CI maintenance. This release supports Python versions 3.10-3.13. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Joren Hammudoglu - Baskar Gopinath + - Nathan Goldbaum - Nicholas Christensen + - Sayed Adel - karl + #### Pull requests merged A total of 19 pull requests were merged for this release. - [#&#8203;28545](https://github.com/numpy/numpy/pull/28545): MAINT: Prepare 2.2.x for further development - [#&#8203;28582](https://github.com/numpy/numpy/pull/28582): BUG: Fix return type of NpyIter_GetIterNext in Cython declarations - [#&#8203;28583](https://github.com/numpy/numpy/pull/28583): BUG: avoid deadlocks with C++ shared mutex in dispatch cache - [#&#8203;28585](https://github.com/numpy/numpy/pull/28585): TYP: fix typing errors in `_core.strings` - [#&#8203;28631](https://github.com/numpy/numpy/pull/28631): MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines - [#&#8203;28632](https://github.com/numpy/numpy/pull/28632): BUG: Set writeable flag for writeable dlpacks. - [#&#8203;28633](https://github.com/numpy/numpy/pull/28633): BUG: Fix crackfortran parsing error when a division occurs within... - [#&#8203;28650](https://github.com/numpy/numpy/pull/28650): TYP: fix `ndarray.tolist()` and `.item()` for unknown dtype - [#&#8203;28654](https://github.com/numpy/numpy/pull/28654): BUG: fix deepcopying StringDType arrays ([#&#8203;28643](https://github.com/numpy/numpy/issues/28643)) - [#&#8203;28661](https://github.com/numpy/numpy/pull/28661): TYP: Accept objects that `write()` to `str` in `savetxt` - [#&#8203;28663](https://github.com/numpy/numpy/pull/28663): CI: Replace QEMU armhf with native (32-bit compatibility mode) - [#&#8203;28682](https://github.com/numpy/numpy/pull/28682): SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD - [#&#8203;28683](https://github.com/numpy/numpy/pull/28683): TYP: add missing `"b1"` literals for `dtype[bool]` - [#&#8203;28705](https://github.com/numpy/numpy/pull/28705): TYP: Fix false rejection of `NDArray[object_].__abs__()` - [#&#8203;28706](https://github.com/numpy/numpy/pull/28706): TYP: Fix inconsistent `NDArray[float64].__[r]truediv__` return... - [#&#8203;28723](https://github.com/numpy/numpy/pull/28723): TYP: fix string-like `ndarray` rich comparison operators - [#&#8203;28758](https://github.com/numpy/numpy/pull/28758): TYP: some `[arg]partition` fixes - [#&#8203;28772](https://github.com/numpy/numpy/pull/28772): TYP: fix incorrect `random.Generator.integers` return type - [#&#8203;28774](https://github.com/numpy/numpy/pull/28774): TYP: fix `count_nonzero` signature #### Checksums ##### MD5 3a5d0889d6d7951f44bc6f7a03fa30c6 numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl bcf9f4e768b070e17b2635f422a6e27d numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl e82c8fa47a65bb5c2c83295f549dab12 numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl a5511a995c0f79a8b9a81f2b50e9f692 numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl 72bfc1f98238a8e4ba08999e61111e0e numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 146c83a5b8099d8d2607392b2ef7fedf numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6ebdc80b54b008a10575e5d7bbb613f5 numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl 97efde6443da8f9280a5fc2614a087e5 numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl c143f352206cec535b41b6b1d34c5898 numpy-2.2.5-cp310-cp310-win32.whl 0b17fbbf584785f675f1c5b24a00ff93 numpy-2.2.5-cp310-cp310-win_amd64.whl 58532622d7eff69a3c71c1ae89dea070 numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl 0d002c733bb02debe0b15de5ba872d1e numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl ff0c736c60be96506806061ace2251a1 numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl 4febdec973c4405fd08ef35e0c130de1 numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl 0bf4e457c612e565420e135458e70fe0 numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a43b608ad15ebdc0960611497205d598 numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7b4b1afd412149a9af7c25d7346fade8 numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl a1e70be013820f92dbfd4796fc4044bb numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl 73344e05a6fec0b38183363b4a026252 numpy-2.2.5-cp311-cp311-win32.whl b7d5fdd23057c58d15c84eef6bfedb55 numpy-2.2.5-cp311-cp311-win_amd64.whl 801b11bb546aac2d92d7b3d5d6c90e86 numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl 68dc4298cad9405ad30cfb723be4ae48 numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl c31c872e0fa8df5ed7f91882621a925f numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl 179dfa545c32c44b77cf8db3b973785f numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl 4562513ff2f1e3f31d66b8e435000141 numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c80a2d8aab1a4d6a66f3fca2f0744744 numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e363e0d8c116522d55b0ddd0cbf2de67 numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl d31d443270c76b7238ece2f87b048d21 numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl bf469fe048fa4ed75a5d8725297e283a numpy-2.2.5-cp312-cp312-win32.whl 069b832aa15b6a815497135e7fa8cae8 numpy-2.2.5-cp312-cp312-win_amd64.whl b2cf059c831cbcfdb4044613a1e5bc8d numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl 70bcb93e55ff0f6602636602e0834607 numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl 00c4938d67fd5b658ad92ac26fbe9cab numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl 0ca38aa51874b9252a2c9d85f81dcd07 numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl 6062cf707b8bc07a1600af0991a0a88e numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 62c1cf7de0327546f3a1e3852de640d3 numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ab3ad3390396552f76160139cc528784 numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl d258ba55c9a3936fa0c113cac8bbc0cc numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl 59bb7e1acb81fc4a02c3b791e110f01e numpy-2.2.5-cp313-cp313-win32.whl 2e5728a9e5c6405d3a22138e4dd7019f numpy-2.2.5-cp313-cp313-win_amd64.whl d315521ec7275d0341787f2450e57e55 numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl 17018c7c259ae81cf2ca4f58523d7d1c numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl ef6fd6a9c6a07db004a272b82f0ea710 numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl 07b2baf70b84b44ca6924794d9c7e431 numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl a2fb1ed562d2b6da091d980c7486d113 numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 22fa9137283f463436d7b20a220071cd numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b0ae924e4834155eb5ac159ae611c292 numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl c7a8351484f2df9a499c68f1ac73121c numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl 1da753e4127a0bdcdfbfa6639568057e numpy-2.2.5-cp313-cp313t-win32.whl a8c869efc0888f214239e5c4f0e6acfb numpy-2.2.5-cp313-cp313t-win_amd64.whl 7255b93f38e7d54a59d6798182f24c6a numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 6743ce025de6c245b03ca8511b306503 numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 5abbeec4ff2add1c46f8779f730c73fa numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8e2e01f02d05e111ef2b104d1b3afad1 numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl df2e46b468f9fdf06b13b04eca9a723f numpy-2.2.5.tar.gz ##### SHA256 1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26 numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl 19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl 6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3 numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57 numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl 36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1 numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl 422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88 numpy-2.2.5-cp310-cp310-win32.whl e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7 numpy-2.2.5-cp310-cp310-win_amd64.whl c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl 498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl 6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl 9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54 numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl 369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610 numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl 37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906 numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175 numpy-2.2.5-cp311-cp311-win32.whl b13f04968b46ad705f7c8a80122a42ae8f620536ea38cf4bdd374302926424dd numpy-2.2.5-cp311-cp311-win_amd64.whl ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051 numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl 47834cde750d3c9f4e52c6ca28a7361859fcaf52695c7dc3cc1a720b8922683e numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl 2c1a1c6ccce4022383583a6ded7bbcda22fc635eb4eb1e0a053336425ed36dfa numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl 9d75f338f5f79ee23548b03d801d28a505198297534f62416391857ea0479571 numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3a801fef99668f309b88640e28d261991bfad9617c27beda4a3aec4f217ea073 numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl abe38cd8381245a7f49967a6010e77dbf3680bd3627c0fe4362dd693b404c7f8 numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl 5a0ac90e46fdb5649ab6369d1ab6104bfe5854ab19b645bf5cda0127a13034ae numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl 0cd48122a6b7eab8f06404805b1bd5856200e3ed6f8a1b9a194f9d9054631beb numpy-2.2.5-cp312-cp312-win32.whl ced69262a8278547e63409b2653b372bf4baff0870c57efa76c5703fd6543282 numpy-2.2.5-cp312-cp312-win_amd64.whl 059b51b658f4414fff78c6d7b1b4e18283ab5fa56d270ff212d5ba0c561846f4 numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl 47f9ed103af0bc63182609044b0490747e03bd20a67e391192dde119bf43d52f numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl 261a1ef047751bb02f29dfe337230b5882b54521ca121fc7f62668133cb119c9 numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl 4520caa3807c1ceb005d125a75e715567806fed67e315cea619d5ec6e75a4191 numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl 3d14b17b9be5f9c9301f43d2e2a4886a33b53f4e6fdf9ca2f4cc60aeeee76372 numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2ba321813a00e508d5421104464510cc962a6f791aa2fca1c97b1e65027da80d numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a4cbdef3ddf777423060c6f81b5694bad2dc9675f110c4b2a60dc0181543fac7 numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl 54088a5a147ab71a8e7fdfd8c3601972751ded0739c6b696ad9cb0343e21ab73 numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl c8b82a55ef86a2d8e81b63da85e55f5537d2157165be1cb2ce7cfa57b6aef38b numpy-2.2.5-cp313-cp313-win32.whl d8882a829fd779f0f43998e931c466802a77ca1ee0fe25a3abe50278616b1471 numpy-2.2.5-cp313-cp313-win_amd64.whl e8b025c351b9f0e8b5436cf28a07fa4ac0204d67b38f01433ac7f9b870fa38c6 numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl 8dfa94b6a4374e7851bbb6f35e6ded2120b752b063e6acdd3157e4d2bb922eba numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl 97c8425d4e26437e65e1d189d22dff4a079b747ff9c2788057bfb8114ce1e133 numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl 352d330048c055ea6db701130abc48a21bec690a8d38f8284e00fab256dc1376 numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl 8b4c0773b6ada798f51f0f8e30c054d32304ccc6e9c5d93d46cb26f3d385ab19 numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 55f09e00d4dccd76b179c0f18a44f041e5332fd0e022886ba1c0bbf3ea4a18d0 numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl c26843fd58f65da9491165072da2cccc372530681de481ef670dcc8e27cfb066 numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl 1a161c2c79ab30fe4501d5a2bbfe8b162490757cf90b7f05be8b80bc02f7bb8e numpy-2.2.5-cp313-cp313t-win32.whl d403c84991b5ad291d3809bace5e85f4bbf44a04bdc9a88ed2bb1807b3360bb8 numpy-2.2.5-cp313-cp313t-win_amd64.whl b4ea7e1cff6784e58fe281ce7e7f05036b3e1c89c6f922a6bfbc0a7e8768adbe numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl d7543263084a85fbc09c704b515395398d31d6395518446237eac219eab9e55e numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70 numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d2e3bdadaba0e040d1e7ab39db73e0afe2c74ae277f5614dad53eadbecbbb169 numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl a9c0d994680cd991b1cb772e8b297340085466a6fe964bc9d4e80f5e2f43c291 numpy-2.2.5.tar.gz ### [`v2.2.4`](https://github.com/numpy/numpy/releases/v2.2.4) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.3...v2.2.4) ### NumPy 2.2.4 Release Notes NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3 release. There are a large number of typing improvements, the rest of the changes are the usual mix of bugfixes and platform maintenace. This release supports Python versions 3.10-3.13. #### Contributors A total of 15 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Abhishek Kumar - Andrej Zhilenkov - Andrew Nelson - Charles Harris - Giovanni Del Monte - Guan Ming(Wesley) Chiu + - Jonathan Albrecht + - Joren Hammudoglu - Mark Harfouche - Matthieu Darbois - Nathan Goldbaum - Pieter Eendebak - Sebastian Berg - Tyler Reddy - lvllvl + #### Pull requests merged A total of 17 pull requests were merged for this release. - [#&#8203;28333](https://github.com/numpy/numpy/pull/28333): MAINT: Prepare 2.2.x for further development. - [#&#8203;28348](https://github.com/numpy/numpy/pull/28348): TYP: fix positional- and keyword-only params in astype, cross... - [#&#8203;28377](https://github.com/numpy/numpy/pull/28377): MAINT: Update FreeBSD version and fix test failure - [#&#8203;28379](https://github.com/numpy/numpy/pull/28379): BUG: numpy.loadtxt reads only 50000 lines when skip_rows >= max_rows - [#&#8203;28385](https://github.com/numpy/numpy/pull/28385): BUG: Make np.nonzero threading safe - [#&#8203;28420](https://github.com/numpy/numpy/pull/28420): BUG: safer bincount casting (backport to 2.2.x) - [#&#8203;28422](https://github.com/numpy/numpy/pull/28422): BUG: Fix building on s390x with clang - [#&#8203;28423](https://github.com/numpy/numpy/pull/28423): CI: use QEMU 9.2.2 for Linux Qemu tests - [#&#8203;28424](https://github.com/numpy/numpy/pull/28424): BUG: skip legacy dtype multithreaded test on 32 bit runners - [#&#8203;28435](https://github.com/numpy/numpy/pull/28435): BUG: Fix searchsorted and CheckFromAny byte-swapping logic - [#&#8203;28449](https://github.com/numpy/numpy/pull/28449): BUG: sanity check `__array_interface__` number of dimensions - [#&#8203;28510](https://github.com/numpy/numpy/pull/28510): MAINT: Hide decorator from pytest traceback - [#&#8203;28512](https://github.com/numpy/numpy/pull/28512): TYP: Typing fixes backported from [#&#8203;28452](https://github.com/numpy/numpy/issues/28452), [#&#8203;28491](https://github.com/numpy/numpy/issues/28491), [#&#8203;28494](https://github.com/numpy/numpy/issues/28494) - [#&#8203;28521](https://github.com/numpy/numpy/pull/28521): TYP: Backport fixes from [#&#8203;28505](https://github.com/numpy/numpy/issues/28505), [#&#8203;28506](https://github.com/numpy/numpy/issues/28506), [#&#8203;28508](https://github.com/numpy/numpy/issues/28508), and [#&#8203;28511](https://github.com/numpy/numpy/issues/28511) - [#&#8203;28533](https://github.com/numpy/numpy/pull/28533): TYP: Backport typing fixes from main (2) - [#&#8203;28534](https://github.com/numpy/numpy/pull/28534): TYP: Backport typing fixes from main (3) - [#&#8203;28542](https://github.com/numpy/numpy/pull/28542): TYP: Backport typing fixes from main (4) #### Checksums ##### MD5 935928cbd2de140da097f6d5f4a01d72 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl bf7fd01bb177885e920173b610c195d9 numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl 826e52cd898567a0c446113ab7a7b362 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl 9982a91d7327aea541c24aff94d3e462 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl 5bdf5b63f4ee01fa808d13043b2a2275 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 677b3031105e24eaee2e0e57d7c2a306 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d857867787fe1eb236670e7fdb25f414 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl a5aff3a7eb2923878e67fbe1cd04a9e9 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl e00bd3ac85d8f34b46b7f97a8278aeb3 numpy-2.2.4-cp310-cp310-win32.whl e5cb2a5d14bccee316bb73173be125ec numpy-2.2.4-cp310-cp310-win_amd64.whl 494f60d8e1c3500413bd093bb3f486ea numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl a886a9f3e80a60ce6ba95b431578bbca numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl 889f3b507bab9272d9b549780840a642 numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl 059788668d2c4e9aace4858e77c099ed numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl db9ae978afb76a4bf79df0657a66aaeb numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e36963a4c177157dc7b0775c309fa5a8 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3603e683878b74f38e5617f04ff6a369 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl afbc410fb9b42b19f4f7c81c21d6777f numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl 33ff8081378188894097942f80c33e26 numpy-2.2.4-cp311-cp311-win32.whl 5b11fe8d26318d85e0bc577a654f6643 numpy-2.2.4-cp311-cp311-win_amd64.whl 91121787f396d3e98210de8b617e5d48 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl c524d1020b4652aacf4477d1628fa1ba numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl eb08f551bdd6772155bb39ac0da47479 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl 7cb37fc9145d0ebbea5666b4f9ed1027 numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl c4452a5dc557c291904b5c51a4148237 numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bd23a12ead870759f264160ab38b2c9d numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 07b44109381985b48d1eef80feebc5ad numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl 95f1a27d33106fa9f40ee0714681c840 numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl 507e550a55b19dedf267b58a487ba0bc numpy-2.2.4-cp312-cp312-win32.whl be21ccbf8931e92ba1fdb2dc1250bf2a numpy-2.2.4-cp312-cp312-win_amd64.whl e94003c2b65d81b00203711c5c42fb8e numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl cf781fd5412ffd826e0436883452cc17 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl 92c9a30386a64f2deddad1db742bd296 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl 7fd16554fa0a15b7f99b1fabf1c4592c numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl 9293b0575a902b2d55c35567dee7679e numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9970699bd95e8a64a562b1e6328b83d0 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e8597c611a919a8e88229d6889c1f86e numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl 329288501f012606605bdbed368e58e9 numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl 04bf8d0f6a9e279ab01df4ed0b4aeee1 numpy-2.2.4-cp313-cp313-win32.whl 66801fe84a436b7ed3be6e0082b86917 numpy-2.2.4-cp313-cp313-win_amd64.whl 3e2f31e01b45cd16a87b794477de3714 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl 7504018213a3a8fea7173e2c1d0fcfd1 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl e299021397c3cdb941b7ffe77cf0fefe numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl 1cc2731a246079bcab361179f38e7ccb numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl e6eccf936d25c9eda9df1a4d50ae2fdc numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ba825efd05cca6d56c3dca9f7f1f88e7 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 369eebec47c9c27cb4841a13e9522167 numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl 554dbfa52988d01f715cbe8d4da4b409 numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl 811d25a008c68086c9382487e9a4127a numpy-2.2.4-cp313-cp313t-win32.whl 893fd2fdd42f386e300bee885bbb7778 numpy-2.2.4-cp313-cp313t-win_amd64.whl 65e284546c5ee575eca0a3726c0a1d98 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl e4e73511eac8f1a10c6abbd6fa2fa0aa numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl a884ed5263b91fa87b5e3d14caf955a5 numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7330087a6ad1527ae20a495e2fb3b357 numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl 56232f4a69b03dd7a87a55fffc5f2ebc numpy-2.2.4.tar.gz ##### SHA256 8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl 4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl 7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a numpy-2.2.4-cp310-cp310-win32.whl 0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542 numpy-2.2.4-cp310-cp310-win_amd64.whl e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4 numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl 9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4 numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880 numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl 2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1 numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6 numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09 numpy-2.2.4-cp311-cp311-win32.whl f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91 numpy-2.2.4-cp311-cp311-win_amd64.whl a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854 numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592 numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl 11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl 65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00 numpy-2.2.4-cp312-cp312-win32.whl 2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146 numpy-2.2.4-cp312-cp312-win_amd64.whl 1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7 numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl 1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl 79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl 3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl 6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298 numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6 numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl 81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c numpy-2.2.4-cp313-cp313-win32.whl 207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3 numpy-2.2.4-cp313-cp313-win_amd64.whl 8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl 879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0 numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960 numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl 05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286 numpy-2.2.4-cp313-cp313t-win32.whl 188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d numpy-2.2.4-cp313-cp313t-win_amd64.whl 7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl 9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f numpy-2.2.4.tar.gz ### [`v2.2.3`](https://github.com/numpy/numpy/releases/v2.2.3) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.2...v2.2.3) ### NumPy 2.2.3 Release Notes NumPy 2.2.3 is a patch release that fixes bugs found after the 2.2.2 release. The majority of the changes are typing improvements and fixes for free threaded Python. Both of those areas are still under development, so if you discover new problems, please report them. This release supports Python versions 3.10-3.13. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - !amotzop - Charles Harris - Chris Sidebottom - Joren Hammudoglu - Matthew Brett - Nathan Goldbaum - Raghuveer Devulapalli - Sebastian Berg - Yakov Danishevsky + #### Pull requests merged A total of 21 pull requests were merged for this release. - [#&#8203;28185](https://github.com/numpy/numpy/pull/28185): MAINT: Prepare 2.2.x for further development - [#&#8203;28201](https://github.com/numpy/numpy/pull/28201): BUG: fix data race in a more minimal way on stable branch - [#&#8203;28208](https://github.com/numpy/numpy/pull/28208): BUG: Fix `from_float_positional` errors for huge pads - [#&#8203;28209](https://github.com/numpy/numpy/pull/28209): BUG: fix data race in np.repeat - [#&#8203;28212](https://github.com/numpy/numpy/pull/28212): MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should... - [#&#8203;28224](https://github.com/numpy/numpy/pull/28224): MAINT: update highway to latest - [#&#8203;28236](https://github.com/numpy/numpy/pull/28236): BUG: Add cpp atomic support ([#&#8203;28234](https://github.com/numpy/numpy/issues/28234)) - [#&#8203;28237](https://github.com/numpy/numpy/pull/28237): BLD: Compile fix for clang-cl on WoA - [#&#8203;28243](https://github.com/numpy/numpy/pull/28243): TYP: Avoid upcasting `float64` in the set-ops - [#&#8203;28249](https://github.com/numpy/numpy/pull/28249): BLD: better fix for clang / ARM compiles - [#&#8203;28266](https://github.com/numpy/numpy/pull/28266): TYP: Fix `timedelta64.__divmod__` and `timedelta64.__mod__`... - [#&#8203;28274](https://github.com/numpy/numpy/pull/28274): TYP: Fixed missing typing information of set_printoptions - [#&#8203;28278](https://github.com/numpy/numpy/pull/28278): BUG: backport resource cleanup bugfix from [gh-28273](https://github.com/numpy/numpy/issues/28273) - [#&#8203;28282](https://github.com/numpy/numpy/pull/28282): BUG: fix incorrect bytes to stringdtype coercion - [#&#8203;28283](https://github.com/numpy/numpy/pull/28283): TYP: Fix scalar constructors - [#&#8203;28284](https://github.com/numpy/numpy/pull/28284): TYP: stub `numpy.matlib` - [#&#8203;28285](https://github.com/numpy/numpy/pull/28285): TYP: stub the missing `numpy.testing` modules - [#&#8203;28286](https://github.com/numpy/numpy/pull/28286): CI: Fix the github label for `TYP:` PR's and issues - [#&#8203;28305](https://github.com/numpy/numpy/pull/28305): TYP: Backport typing updates from main - [#&#8203;28321](https://github.com/numpy/numpy/pull/28321): BUG: fix race initializing legacy dtype casts - [#&#8203;28324](https://github.com/numpy/numpy/pull/28324): CI: update test_moderately_small_alpha #### Checksums ##### MD5 9cd8b5e358f89016f403a6c1a27e7e87 numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl 2818f5a9efcfc3bb6bf657137df26046 numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl 6d65c6a336cfb69fe4ddd756cad73d55 numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl 7f4cf33c634b33f633d4bf47f560a86d numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl 3c04024badd42bfcc68c14f106efa93f numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 07658df1de0e1d3721de0aacff4313cd numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3e753fc4b7c879b29442ee9bab25eddd numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl d1811f1988d88b00825bc6e943d8e22d numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl b5fe91363c16001ea30cbd5befbb0555 numpy-2.2.3-cp310-cp310-win32.whl 44dfe1df1640e4fe762bedad57cd7165 numpy-2.2.3-cp310-cp310-win_amd64.whl 6156418f596620b00a3c221baef02476 numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl 97b925bac245aad1297d22ad3cfaa74c numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl 3f05819fcb71df1d3093e5d1c041a4e9 numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl f6763893ba9a5739fefa0929fd152db2 numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl e93cf6ed4e1a3f9a8009ee7f2fcb0da8 numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 851dcbcbe90212c385dcdac1614cca83 numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9b27cf1d6319f70370f4b0af10c03f5c numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl 28d20c95ff23d27ae639b4960df777ec numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl 559fefe30c0043a088adeca90231b382 numpy-2.2.3-cp311-cp311-win32.whl 5e32a1cc3dcfe729f675784a53e4d553 numpy-2.2.3-cp311-cp311-win_amd64.whl 12134dcf62b2bca2eeebb7bbc45c2a71 numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl c72318236531d3ca61d229eaf96f7d04 numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl 1b807acc844c2ba5be7bc7586d4a3a6b numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl 810d4908371bb2f08b0c7b16d3f05970 numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl bb918cedd0931cb68af9e77096dedf54 numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 92c6c6c5b22b207425b329f061bd18fa numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 10d48fb9d86280db1afe7224b15a51af numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl a73da0434a971b21d8a9c0596015d629 numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl c5f1e734c7d872e2f9af71d32e62d59c numpy-2.2.3-cp312-cp312-win32.whl 884c1a89844f539ab15b7016a43d231c numpy-2.2.3-cp312-cp312-win_amd64.whl 3a2de7f886cb756cf8d0375a36721926 numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl c1fe5b6a9015c2877647419caa009be0 numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl bb3f3a69219bbcdb719bbe38e4e69f79 numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl 8158c2e980a1cbfb4d98ff3a273bb2e9 numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl 4d3d9b0c14db955e4b1aa1a1971d2def numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6575308269513900c94803258b89ac83 numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 945b91c2093fed2a1f34597fc66e5a35 numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl c5867508607f75ed23426315a7ad86d7 numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl 5a1497c262d9aa52ce6859a12a54ebbc numpy-2.2.3-cp313-cp313-win32.whl 69c98e036d59eb74e4620c7649b5d7fc numpy-2.2.3-cp313-cp313-win_amd64.whl 2535d7c0f98ad848bcf1f48f7c358e41 numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl aea9afa69d510ce905b2b8dbf0e33a11 numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl cc5aceacd0a44a67cdd2cf8d5a446ca3 numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl 32eb2ed1e734ea26c90f75b1f5616564 numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl f1d85f322c3e85ef748c3e5594b94226 numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7f24ce01ad5c352c76614a12fa5e2319 numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 62841d4b49c5a0cef2c2ba26a16f6959 numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl d7b512f83999d05c47e55b931f2dcdfe numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl 1dca2f20e0accc1741e5fb233ecf7dff numpy-2.2.3-cp313-cp313t-win32.whl 347b71f0db5b49a25ef1ed677e47999b numpy-2.2.3-cp313-cp313t-win_amd64.whl 3615d13c8c14c323aeda1c07d5a7fd55 numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl f7d2ba950c5aa11c100bb6bf202d5799 numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl b4336174c843c4943084e17945cd1165 numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0d856a89e028c393f8125739c56591e0 numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl c6ee254bcdf1e2fdb13d87e0ee4166ba numpy-2.2.3.tar.gz ##### SHA256 cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71 numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787 numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716 numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl 95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3 numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52 numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl 1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027 numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl 5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094 numpy-2.2.3-cp310-cp310-win32.whl 596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb numpy-2.2.3-cp310-cp310-win_amd64.whl 16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8 numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl 5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl 7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl 77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636 numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2 numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl 1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5 numpy-2.2.3-cp311-cp311-win32.whl 9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f numpy-2.2.3-cp311-cp311-win_amd64.whl 12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl 87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95 numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl 712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532 numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl 5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021 numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl 4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8 numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl 4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe numpy-2.2.3-cp312-cp312-win32.whl 83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d numpy-2.2.3-cp312-cp312-win_amd64.whl 7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl 23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50 numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1 numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl 2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5 numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl 8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2 numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1 numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304 numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl 1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl 136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693 numpy-2.2.3-cp313-cp313-win32.whl 5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b numpy-2.2.3-cp313-cp313-win_amd64.whl 435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890 numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl 7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl 2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94 numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0 numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610 numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76 numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef numpy-2.2.3-cp313-cp313t-win32.whl aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082 numpy-2.2.3-cp313-cp313t-win_amd64.whl 3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9 numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4 numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020 numpy-2.2.3.tar.gz ### [`v2.2.2`](https://github.com/numpy/numpy/releases/v2.2.2) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.1...v2.2.2) ### NumPy 2.2.2 Release Notes NumPy 2.2.2 is a patch release that fixes bugs found after the 2.2.1 release. The number of typing fixes/updates is notable. This release supports Python versions 3.10-3.13. #### Contributors A total of 8 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Alicia Boya García + - Charles Harris - Joren Hammudoglu - Kai Germaschewski + - Nathan Goldbaum - PTUsumit + - Rohit Goswami - Sebastian Berg #### Pull requests merged A total of 16 pull requests were merged for this release. - [#&#8203;28050](https://github.com/numpy/numpy/pull/28050): MAINT: Prepare 2.2.x for further development - [#&#8203;28055](https://github.com/numpy/numpy/pull/28055): TYP: fix `void` arrays not accepting `str` keys in `__setitem__` - [#&#8203;28066](https://github.com/numpy/numpy/pull/28066): TYP: fix unnecessarily broad `integer` binop return types ([#&#8203;28065](https://github.com/numpy/numpy/issues/28065)) - [#&#8203;28112](https://github.com/numpy/numpy/pull/28112): TYP: Better `ndarray` binop return types for `float64` &... - [#&#8203;28113](https://github.com/numpy/numpy/pull/28113): TYP: Return the correct `bool` from `issubdtype` - [#&#8203;28114](https://github.com/numpy/numpy/pull/28114): TYP: Always accept `date[time]` in the `datetime64` constructor - [#&#8203;28120](https://github.com/numpy/numpy/pull/28120): BUG: Fix auxdata initialization in ufunc slow path - [#&#8203;28131](https://github.com/numpy/numpy/pull/28131): BUG: move reduction initialization to ufunc initialization - [#&#8203;28132](https://github.com/numpy/numpy/pull/28132): TYP: Fix `interp` to accept and return scalars - [#&#8203;28137](https://github.com/numpy/numpy/pull/28137): BUG: call PyType_Ready in f2py to avoid data races - [#&#8203;28145](https://github.com/numpy/numpy/pull/28145): BUG: remove unnecessary call to PyArray_UpdateFlags - [#&#8203;28160](https://github.com/numpy/numpy/pull/28160): BUG: Avoid data race in PyArray_CheckFromAny_int - [#&#8203;28175](https://github.com/numpy/numpy/pull/28175): BUG: Fix f2py directives and --lower casing - [#&#8203;28176](https://github.com/numpy/numpy/pull/28176): TYP: Fix overlapping overloads issue in 2->1 ufuncs - [#&#8203;28177](https://github.com/numpy/numpy/pull/28177): TYP: preserve shape-type in ndarray.astype() - [#&#8203;28178](https://github.com/numpy/numpy/pull/28178): TYP: Fix missing and spurious top-level exports #### Checksums ##### MD5 749cb2adf8043551aae22bbf0ed3130a numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl bc79fa2e44316b7ce9bacb48a993ed91 numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl c6b2caa2bbb645b5950dccb77efb1dbb numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl 8c410efac169af880cacbbac8a731658 numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl 21d165669635a9b680d03b0b4e7f5b98 numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a34ef5e7c967136fdc59c822e99f87d6 numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a81749effc5160ff8dde7eb2ebe868c4 numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl 546612d82fae082697879aaf2b985b1b numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl d874e626f58175ad603cb68fda2a4e28 numpy-2.2.2-cp310-cp310-win32.whl 20564a5caeb621061267f9d80c1e7ed0 numpy-2.2.2-cp310-cp310-win_amd64.whl ef5336ddae73feef891844a205f89b15 numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl 7a0c8804cb6ebca82b1cf3063b410687 numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl 1682639d0420a532f8894c4a8685b23d numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl d33d53efc5744b577cb8a6ac9971cfdb numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl c85b92e2ed7ef0eaeb15909ad73aea22 numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl efa1a587f607a37336c477bed977ea64 numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e0effe9902e262704a115c6f7095daf7 numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl 425e0cebeb1c2c91bba42ae195836268 numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl 57121319a2fbb76eed4b268282ed668e numpy-2.2.2-cp311-cp311-win32.whl fdb54e7345ff657d208fbb52469a5861 numpy-2.2.2-cp311-cp311-win_amd64.whl bdf299e0abc45b5c5113a1cc5505636a numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl 30c25784c07965592cf88104b6c02508 numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl 65e630a0de5403c41a0083198bc14442 numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl 6d9f50717e7b40f1ebdf139f83cc7504 numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl 6b092a9280ada70482d44f538752fc0b numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9c273da8438391eab30f6c1c4898be5d numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d619047dcaf041b806a7b59ff0a798d5 numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl fa5d0d979104456d7c43a183223c8587 numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl 3b8689aedff5037cad85b018e2d5e43a numpy-2.2.2-cp312-cp312-win32.whl a2340ff05cae7e09f63bfcfd4e75ea87 numpy-2.2.2-cp312-cp312-win_amd64.whl 044e86bd65492af34a59e4109fbeed16 numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl 7ca0f0e8c8d3d80ec473ec33929c2ae3 numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl 4b866ad895e007005afe8a29837cf7d6 numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl 2e6247faabf6d0ac0fafaca0bb405ff8 numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl 773982551185ae327cdefe416e73acfc numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1c0ecc958a555a8a95c92c1dd7dc2358 numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9f662eb58b8f711585550d6fdf8afa4f numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl 53471186fc990eb22e82a0512b310438 numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl 6b4d65349c74dd91853a7cc6b5c5786e numpy-2.2.2-cp313-cp313-win32.whl 33dc5bab2d3f752ef00f81021d68cb5a numpy-2.2.2-cp313-cp313-win_amd64.whl 0acc5069c5ab4fe3ea7c35956636c462 numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl 01e3f727594a12eee6d0677113525b96 numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl 7b1ddabcb187b18caa52055bb2b2dc67 numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl a09f5c138ad8c87b9692eea99f344a98 numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl 289ec3155aa21c5a161b2d61d2cf3c2d numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6bb3eb03d400ad708942afbfebd07abc numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 62f8ef2a5c9e76b0e43851a7bb9c0379 numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl 59b4b77118f958dd07484686e82b1e7a numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl 726b58ec542581c5e46adfd4c5c0fed0 numpy-2.2.2-cp313-cp313t-win32.whl f2b4eab55a963e8cd4c6c1e573c9a59f numpy-2.2.2-cp313-cp313t-win_amd64.whl f6a93eaebee6f9890a4922571141ecb5 numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl fb457bbe2d231e836d2230b06d4706ca numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl df4c07a48a24621167c12704ba5ac0de numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0d1108b9060469eb28bb4a4cffa7b98f numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl ac108586d3aeab9e2d0134b744763eb9 numpy-2.2.2.tar.gz ##### SHA256 7079129b64cb78bdc8d611d1fd7e8002c0a2565da6a47c4df8062349fee90e3e numpy-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl 2ec6c689c61df613b783aeb21f945c4cbe6c51c28cb70aae8430577ab39f163e numpy-2.2.2-cp310-cp310-macosx_11_0_arm64.whl 40c7ff5da22cd391944a28c6a9c638a5eef77fcf71d6e3a79e1d9d9e82752715 numpy-2.2.2-cp310-cp310-macosx_14_0_arm64.whl 995f9e8181723852ca458e22de5d9b7d3ba4da3f11cc1cb113f093b271d7965a numpy-2.2.2-cp310-cp310-macosx_14_0_x86_64.whl b78ea78450fd96a498f50ee096f69c75379af5138f7881a51355ab0e11286c97 numpy-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3fbe72d347fbc59f94124125e73fc4976a06927ebc503ec5afbfb35f193cd957 numpy-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8e6da5cffbbe571f93588f562ed130ea63ee206d12851b60819512dd3e1ba50d numpy-2.2.2-cp310-cp310-musllinux_1_2_aarch64.whl 09d6a2032faf25e8d0cadde7fd6145118ac55d2740132c1d845f98721b5ebcfd numpy-2.2.2-cp310-cp310-musllinux_1_2_x86_64.whl 159ff6ee4c4a36a23fe01b7c3d07bd8c14cc433d9720f977fcd52c13c0098160 numpy-2.2.2-cp310-cp310-win32.whl 64bd6e1762cd7f0986a740fee4dff927b9ec2c5e4d9a28d056eb17d332158014 numpy-2.2.2-cp310-cp310-win_amd64.whl 642199e98af1bd2b6aeb8ecf726972d238c9877b0f6e8221ee5ab945ec8a2189 numpy-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl 6d9fc9d812c81e6168b6d405bf00b8d6739a7f72ef22a9214c4241e0dc70b323 numpy-2.2.2-cp311-cp311-macosx_11_0_arm64.whl c7d1fd447e33ee20c1f33f2c8e6634211124a9aabde3c617687d8b739aa69eac numpy-2.2.2-cp311-cp311-macosx_14_0_arm64.whl 451e854cfae0febe723077bd0cf0a4302a5d84ff25f0bfece8f29206c7bed02e numpy-2.2.2-cp311-cp311-macosx_14_0_x86_64.whl bd249bc894af67cbd8bad2c22e7cbcd46cf87ddfca1f1289d1e7e54868cc785c numpy-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 02935e2c3c0c6cbe9c7955a8efa8908dd4221d7755644c59d1bba28b94fd334f numpy-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a972cec723e0563aa0823ee2ab1df0cb196ed0778f173b381c871a03719d4826 numpy-2.2.2-cp311-cp311-musllinux_1_2_aarch64.whl d6d6a0910c3b4368d89dde073e630882cdb266755565155bc33520283b2d9df8 numpy-2.2.2-cp311-cp311-musllinux_1_2_x86_64.whl 860fd59990c37c3ef913c3ae390b3929d005243acca1a86facb0773e2d8d9e50 numpy-2.2.2-cp311-cp311-win32.whl da1eeb460ecce8d5b8608826595c777728cdf28ce7b5a5a8c8ac8d949beadcf2 numpy-2.2.2-cp311-cp311-win_amd64.whl ac9bea18d6d58a995fac1b2cb4488e17eceeac413af014b1dd26170b766d8467 numpy-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl 23ae9f0c2d889b7b2d88a3791f6c09e2ef827c2446f1c4a3e3e76328ee4afd9a numpy-2.2.2-cp312-cp312-macosx_11_0_arm64.whl 3074634ea4d6df66be04f6728ee1d173cfded75d002c75fac79503a880bf3825 numpy-2.2.2-cp312-cp312-macosx_14_0_arm64.whl 8ec0636d3f7d68520afc6ac2dc4b8341ddb725039de042faf0e311599f54eb37 numpy-2.2.2-cp312-cp312-macosx_14_0_x86_64.whl 2ffbb1acd69fdf8e89dd60ef6182ca90a743620957afb7066385a7bbe88dc748 numpy-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0349b025e15ea9d05c3d63f9657707a4e1d471128a3b1d876c095f328f8ff7f0 numpy-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 463247edcee4a5537841d5350bc87fe8e92d7dd0e8c71c995d2c6eecb8208278 numpy-2.2.2-cp312-cp312-musllinux_1_2_aarch64.whl 9dd47ff0cb2a656ad69c38da850df3454da88ee9a6fde0ba79acceee0e79daba numpy-2.2.2-cp312-cp312-musllinux_1_2_x86_64.whl 4525b88c11906d5ab1b0ec1f290996c0020dd318af8b49acaa46f198b1ffc283 numpy-2.2.2-cp312-cp312-win32.whl 5acea83b801e98541619af398cc0109ff48016955cc0818f478ee9ef1c5c3dcb numpy-2.2.2-cp312-cp312-win_amd64.whl b208cfd4f5fe34e1535c08983a1a6803fdbc7a1e86cf13dd0c61de0b51a0aadc numpy-2.2.2-cp313-cp313-macosx_10_13_x86_64.whl d0bbe7dd86dca64854f4b6ce2ea5c60b51e36dfd597300057cf473d3615f2369 numpy-2.2.2-cp313-cp313-macosx_11_0_arm64.whl 22ea3bb552ade325530e72a0c557cdf2dea8914d3a5e1fecf58fa5dbcc6f43cd numpy-2.2.2-cp313-cp313-macosx_14_0_arm64.whl 128c41c085cab8a85dc29e66ed88c05613dccf6bc28b3866cd16050a2f5448be numpy-2.2.2-cp313-cp313-macosx_14_0_x86_64.whl 250c16b277e3b809ac20d1f590716597481061b514223c7badb7a0f9993c7f84 numpy-2.2.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e0c8854b09bc4de7b041148d8550d3bd712b5c21ff6a8ed308085f190235d7ff numpy-2.2.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b6fb9c32a91ec32a689ec6410def76443e3c750e7cfc3fb2206b985ffb2b85f0 numpy-2.2.2-cp313-cp313-musllinux_1_2_aarch64.whl 57b4012e04cc12b78590a334907e01b3a85efb2107df2b8733ff1ed05fce71de numpy-2.2.2-cp313-cp313-musllinux_1_2_x86_64.whl 4dbd80e453bd34bd003b16bd802fac70ad76bd463f81f0c518d1245b1c55e3d9 numpy-2.2.2-cp313-cp313-win32.whl 5a8c863ceacae696aff37d1fd636121f1a512117652e5dfb86031c8d84836369 numpy-2.2.2-cp313-cp313-win_amd64.whl b3482cb7b3325faa5f6bc179649406058253d91ceda359c104dac0ad320e1391 numpy-2.2.2-cp313-cp313t-macosx_10_13_x86_64.whl 9491100aba630910489c1d0158034e1c9a6546f0b1340f716d522dc103788e39 numpy-2.2.2-cp313-cp313t-macosx_11_0_arm64.whl 41184c416143defa34cc8eb9d070b0a5ba4f13a0fa96a709e20584638254b317 numpy-2.2.2-cp313-cp313t-macosx_14_0_arm64.whl 7dca87ca328f5ea7dafc907c5ec100d187911f94825f8700caac0b3f4c384b49 numpy-2.2.2-cp313-cp313t-macosx_14_0_x86_64.whl 0bc61b307655d1a7f9f4b043628b9f2b721e80839914ede634e3d485913e1fb2 numpy-2.2.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9fad446ad0bc886855ddf5909cbf8cb5d0faa637aaa6277fb4b19ade134ab3c7 numpy-2.2.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 149d1113ac15005652e8d0d3f6fd599360e1a708a4f98e43c9c77834a28238cb numpy-2.2.2-cp313-cp313t-musllinux_1_2_aarch64.whl 106397dbbb1896f99e044efc90360d098b3335060375c26aa89c0d8a97c5f648 numpy-2.2.2-cp313-cp313t-musllinux_1_2_x86_64.whl 0eec19f8af947a61e968d5429f0bd92fec46d92b0008d0a6685b40d6adf8a4f4 numpy-2.2.2-cp313-cp313t-win32.whl 97b974d3ba0fb4612b77ed35d7627490e8e3dff56ab41454d9e8b23448940576 numpy-2.2.2-cp313-cp313t-win_amd64.whl b0531f0b0e07643eb089df4c509d30d72c9ef40defa53e41363eca8a8cc61495 numpy-2.2.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl e9e82dcb3f2ebbc8cb5ce1102d5f1c5ed236bf8a11730fb45ba82e2841ec21df numpy-2.2.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl e0d4142eb40ca6f94539e4db929410f2a46052a0fe7a2c1c59f6179c39938d2a numpy-2.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 356ca982c188acbfa6af0d694284d8cf20e95b1c3d0aefa8929376fea9146f60 numpy-2.2.2-pp310-pypy310_pp73-win_amd64.whl ed6906f61834d687738d25988ae117683705636936cc605be0bb208b23df4d8f numpy-2.2.2.tar.gz ### [`v2.2.1`](https://github.com/numpy/numpy/releases/v2.2.1) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.0...v2.2.1) ### NumPy 2.2.1 Release Notes NumPy 2.2.1 is a patch release following 2.2.0. It fixes bugs found after the 2.2.0 release and has several maintenance pins to work around upstream changes. There was some breakage in downstream projects following the 2.2.0 release due to updates to NumPy typing. Because of problems due to MyPy defects, we recommend using basedpyright for type checking, it can be installed from PyPI. The Pylance extension for Visual Studio Code is also based on Pyright. Problems that persist when using basedpyright should be reported as issues on the NumPy github site. This release supports Python 3.10-3.13. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Joren Hammudoglu - Matti Picus - Nathan Goldbaum - Peter Hawkins - Simon Altrogge - Thomas A Caswell - Warren Weckesser - Yang Wang + #### Pull requests merged A total of 12 pull requests were merged for this release. - [#&#8203;27935](https://github.com/numpy/numpy/pull/27935): MAINT: Prepare 2.2.x for further development - [#&#8203;27950](https://github.com/numpy/numpy/pull/27950): TEST: cleanups - [#&#8203;27958](https://github.com/numpy/numpy/pull/27958): BUG: fix use-after-free error in npy_hashtable.cpp ([#&#8203;27955](https://github.com/numpy/numpy/issues/27955)) - [#&#8203;27959](https://github.com/numpy/numpy/pull/27959): BLD: add missing include - [#&#8203;27982](https://github.com/numpy/numpy/pull/27982): BUG:fix compile error libatomic link test to meson.build - [#&#8203;27990](https://github.com/numpy/numpy/pull/27990): TYP: Fix falsely rejected value types in `ndarray.__setitem__` - [#&#8203;27991](https://github.com/numpy/numpy/pull/27991): MAINT: Don't wrap `#include <Python.h>` with `extern "C"` - [#&#8203;27993](https://github.com/numpy/numpy/pull/27993): BUG: Fix segfault in stringdtype lexsort - [#&#8203;28006](https://github.com/numpy/numpy/pull/28006): MAINT: random: Tweak module code in mtrand.pyx to fix a Cython... - [#&#8203;28007](https://github.com/numpy/numpy/pull/28007): BUG: Cython API was missing NPY_UINTP. - [#&#8203;28021](https://github.com/numpy/numpy/pull/28021): CI: pin scipy-doctest to 1.5.1 - [#&#8203;28044](https://github.com/numpy/numpy/pull/28044): TYP: allow `None` in operand sequence of nditer #### Checksums ##### MD5 d3032be00b974d44aae687fd78a897b4 numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl 49863a39471cf191402da96512e52cb6 numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl 31c912e2fa723b877f2d710c26332927 numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl 95af4f6b620c76f9ccb8c5693c99737d numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl c1b113ad487a3bece6d7a70e0cf70f17 numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e93369ddbb637d9d5a820b2bb79588c4 numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b3de0a2c345541d2c9a322df360ca497 numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl e3e62b93245d9e37cc03ec3cfaf68118 numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl 004063642d3c3792a3f5ff0241a3fa0f numpy-2.2.1-cp310-cp310-win32.whl 462b0704ebfd79120edfe6431adc57f4 numpy-2.2.1-cp310-cp310-win_amd64.whl a739a2dfbceaa1140e564424b2a57540 numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl 91731d46f4ce4b04db512400f4e76ccb numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl 93f50db664a6986c2ebed3ceb588f7cc numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl 8cc0d82b938d71f45a67c74e07ddc7fd numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl fc7b253096fc566bbcbadfdf6b034f1b numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b88238965c708578f2c198d1c6e2cf70 numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df20d649bb023f98e487b229f01e9708 numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl e23d2bfbdb1bd1b2872c9e6e15f64dca numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl cce4ebb9afc1470db243c2ab4cc6639b numpy-2.2.1-cp311-cp311-win32.whl c96783ee8ad6ce1efee94821929a12f5 numpy-2.2.1-cp311-cp311-win_amd64.whl 0b2024655573f96a595c7f5072205e84 numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl 22483d8935f5dc128393ad671fde7d8e numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl 61d38533acaa90fb24657f089d177a6c numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl ecd4289c703356f5b4fd7e440bf94ce8 numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl a05208461ea09079ae569414d82a606c numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4c66f10580fa26d1d17b2bdda96a5fc5 numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 60a01c86b1fc55e4ba8f2b41f690703b numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl 4bcac2b7f8510b0a6582b7d8661257be numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl 7c24a6a3b5c5b2c53c6807bf06c595c5 numpy-2.2.1-cp312-cp312-win32.whl dc9f3c1eaade4da63e5f87e878e5805e numpy-2.2.1-cp312-cp312-win_amd64.whl 9aacdedcb2cb3d6a45dfb823148e01cf numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl 8a2598b081c8af4ea6f6bbccc8965882 numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl e58b8db1a97599ed02a630eb86616bb9 numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl be6871a4edd2cd92b147421b9290e047 numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl 6d3f141f3a8ecd04e1a1f7c1f89a8ca2 numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl eba9d71e631521bd1d9882f8bfbc01d2 numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 07f7ea0a7f9f6ce0ba5e016dff2a91e8 numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl a015f42afa15be8b87fc64120c245f18 numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl 881b9b20e68b317850ad7b6306ac1c51 numpy-2.2.1-cp313-cp313-win32.whl 35bd751636dcea0ca0534ad9dee8057a numpy-2.2.1-cp313-cp313-win_amd64.whl 7057313b668a4a26b5386203ebc040d9 numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl 02031b405d028714126c26ffc5772f0e numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl 73eb35111b027d6771d9a91eb21ad7ef numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl 01f9a5eb7ec872d9682bb6a174897b35 numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl 9bc363d2782931efa2648b42ce358a4c numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b6492f49b50e892a7134baf2dba9f88d numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a1c458a98cd9c7ad63f9c301398f4d63 numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl 38d2bf31247d9005c7a0197aa992cf1d numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl 30e6acf4391728d0a3a5e3494bd4a2c8 numpy-2.2.1-cp313-cp313t-win32.whl 2100b60306e75288799fca60bd00b84f numpy-2.2.1-cp313-cp313t-win_amd64.whl f975551321147c307bbdff4889061b47 numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl cefbc2de3aa5ef518ce652fdaab00c96 numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 7e379c1d0a5be8e548e35fa7abe1d2c0 numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3cba151351656a83e4c84c942cf490e7 numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl 57c5757508a50d1daefa4b689e9701cb numpy-2.2.1.tar.gz ##### SHA256 5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440 numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl 61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675 numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl 7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308 numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl 4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957 numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2 numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528 numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl 48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95 numpy-2.2.1-cp310-cp310-win32.whl b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf numpy-2.2.1-cp310-cp310-win_amd64.whl 40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484 numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7 numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl 9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5 numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl 51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73 numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591 numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8 numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl 4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0 numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd numpy-2.2.1-cp311-cp311-win32.whl 360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16 numpy-2.2.1-cp311-cp311-win_amd64.whl 694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl 3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl 780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315 numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl 55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355 numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl 9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7 numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51 numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl 67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046 numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl 32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2 numpy-2.2.1-cp312-cp312-win32.whl ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8 numpy-2.2.1-cp312-cp312-win_amd64.whl f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780 numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl 3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821 numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl 5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348 numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl 526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59 numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51 numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716 numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl 9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e numpy-2.2.1-cp313-cp313-win32.whl 164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60 numpy-2.2.1-cp313-cp313-win_amd64.whl 4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl 733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712 numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl 89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008 numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl 676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84 numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl 27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631 numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5 numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl 26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71 numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl 93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2 numpy-2.2.1-cp313-cp313t-win32.whl bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268 numpy-2.2.1-cp313-cp313t-win_amd64.whl 7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3 numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964 numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800 numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl 45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918 numpy-2.2.1.tar.gz ### [`v2.2.0`](https://github.com/numpy/numpy/releases/v2.2.0) [Compare Source](https://github.com/numpy/numpy/compare/v2.1.3...v2.2.0) ### NumPy 2.2.0 Release Notes The NumPy 2.2.0 release is quick release that brings us back into sync with the usual twice yearly release cycle. There have been an number of small cleanups, as well as work bringing the new StringDType to completion and improving support for free threaded Python. Highlights are: - New functions `matvec` and `vecmat`, see below. - Many improved annotations. - Improved support for the new StringDType. - Improved support for free threaded Python - Fixes for f2py This release supports Python versions 3.10-3.13. #### Deprecations - `_add_newdoc_ufunc` is now deprecated. `ufunc.__doc__ = newdoc` should be used instead. ([gh-27735](https://github.com/numpy/numpy/pull/27735)) #### Expired deprecations - `bool(np.array([]))` and other empty arrays will now raise an error. Use `arr.size > 0` instead to check whether an array has no elements. ([gh-27160](https://github.com/numpy/numpy/pull/27160)) #### Compatibility notes - `numpy.cov` now properly transposes single-row (2d array) design matrices when `rowvar=False`. Previously, single-row design matrices would return a scalar in this scenario, which is not correct, so this is a behavior change and an array of the appropriate shape will now be returned. ([gh-27661](https://github.com/numpy/numpy/pull/27661)) #### New Features - New functions for matrix-vector and vector-matrix products Two new generalized ufuncs were defined: - `numpy.matvec` - matrix-vector product, treating the arguments as stacks of matrices and column vectors, respectively. - `numpy.vecmat` - vector-matrix product, treating the arguments as stacks of column vectors and matrices, respectively. For complex vectors, the conjugate is taken. These add to the existing `numpy.matmul` as well as to `numpy.vecdot`, which was added in numpy 2.0. Note that `numpy.matmul` never takes a complex conjugate, also not when its left input is a vector, while both `numpy.vecdot` and `numpy.vecmat` do take the conjugate for complex vectors on the left-hand side (which are taken to be the ones that are transposed, following the physics convention). ([gh-25675](https://github.com/numpy/numpy/pull/25675)) - `np.complexfloating[T, T]` can now also be written as `np.complexfloating[T]` ([gh-27420](https://github.com/numpy/numpy/pull/27420)) - UFuncs now support `__dict__` attribute and allow overriding `__doc__` (either directly or via `ufunc.__dict__["__doc__"]`). `__dict__` can be used to also override other properties, such as `__module__` or `__qualname__`. ([gh-27735](https://github.com/numpy/numpy/pull/27735)) - The "nbit" type parameter of `np.number` and its subtypes now defaults to `typing.Any`. This way, type-checkers will infer annotations such as `x: np.floating` as `x: np.floating[Any]`, even in strict mode. ([gh-27736](https://github.com/numpy/numpy/pull/27736)) #### Improvements - The `datetime64` and `timedelta64` hashes now correctly match the Pythons builtin `datetime` and `timedelta` ones. The hashes now evaluated equal even for equal values with different time units. ([gh-14622](https://github.com/numpy/numpy/pull/14622)) - Fixed a number of issues around promotion for string ufuncs with StringDType arguments. Mixing StringDType and the fixed-width DTypes using the string ufuncs should now generate much more uniform results. ([gh-27636](https://github.com/numpy/numpy/pull/27636)) - Improved support for empty `memmap`. Previously an empty `memmap` would fail unless a non-zero `offset` was set. Now a zero-size `memmap` is supported even if `offset=0`. To achieve this, if a `memmap` is mapped to an empty file that file is padded with a single byte. ([gh-27723](https://github.com/numpy/numpy/pull/27723)) - A regression has been fixed which allows F2PY users to expose variables to Python in modules with only assignments, and also fixes situations where multiple modules are present within a single source file. ([gh-27695](https://github.com/numpy/numpy/pull/27695)) #### Performance improvements and changes - Improved multithreaded scaling on the free-threaded build when many threads simultaneously call the same ufunc operations. ([gh-27896](https://github.com/numpy/numpy/pull/27896)) - NumPy now uses fast-on-failure attribute lookups for protocols. This can greatly reduce overheads of function calls or array creation especially with custom Python objects. The largest improvements will be seen on Python 3.12 or newer. ([gh-27119](https://github.com/numpy/numpy/pull/27119)) - OpenBLAS on x86\_64 and i686 is built with fewer kernels. Based on benchmarking, there are 5 clusters of performance around these kernels: `PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX`. - OpenBLAS on windows is linked without quadmath, simplifying licensing - Due to a regression in OpenBLAS on windows, the performance improvements when using multiple threads for OpenBLAS 0.3.26 were reverted. ([gh-27147](https://github.com/numpy/numpy/pull/27147)) - NumPy now indicates hugepages also for large `np.zeros` allocations on linux. Thus should generally improve performance. ([gh-27808](https://github.com/numpy/numpy/pull/27808)) #### Changes - `numpy.fix` now won't perform casting to a floating data-type for integer and boolean data-type input arrays. ([gh-26766](https://github.com/numpy/numpy/pull/26766)) - The type annotations of `numpy.float64` and `numpy.complex128` now reflect that they are also subtypes of the built-in `float` and `complex` types, respectively. This update prevents static type-checkers from reporting errors in cases such as: ```python x: float = numpy.float64(6.28) # valid z: complex = numpy.complex128(-1j) # valid ``` ([gh-27334](https://github.com/numpy/numpy/pull/27334)) - The `repr` of arrays large enough to be summarized (i.e., where elements are replaced with `...`) now includes the `shape` of the array, similar to what already was the case for arrays with zero size and non-obvious shape. With this change, the shape is always given when it cannot be inferred from the values. Note that while written as `shape=...`, this argument cannot actually be passed in to the `np.array` constructor. If you encounter problems, e.g., due to failing doctests, you can use the print option `legacy=2.1` to get the old behaviour. ([gh-27482](https://github.com/numpy/numpy/pull/27482)) - Calling `__array_wrap__` directly on NumPy arrays or scalars now does the right thing when `return_scalar` is passed (Added in NumPy 2\). It is further safe now to call the scalar `__array_wrap__` on a non-scalar result. ([gh-27807](https://github.com/numpy/numpy/pull/27807)) - Bump the musllinux CI image and wheels to 1\_2 from 1\_1. This is because 1\_1 is [end of life](https://github.com/pypa/manylinux/issues/1629). ([gh-27088](https://github.com/numpy/numpy/pull/27088)) - The NEP 50 promotion state settings are now removed. They were always meant as temporary means for testing. A warning will be given if the environment variable is set to anything but `NPY_PROMOTION_STATE=weak` while `_set_promotion_state` and `_get_promotion_state` are removed. In case code used `_no_nep50_warning`, a `contextlib.nullcontext` could be used to replace it when not available. ([gh-27156](https://github.com/numpy/numpy/pull/27156)) #### Checksums ##### MD5 1b58b9e275e80364cd02dafb3f8daf35 numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl 7d3773d9b665b2d7cfec0cc0b760e69e numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl 8ef666a462d3765ccfd5288f2fdf8e08 numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl e4f9e3117075ffe53d7993253c774158 numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl fd60e410e5db402a2d0c0cb4dd23281d numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 64c083cdbd91eb8670cd72b619f3a039 numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c3c75c2299f5163770e2e42f0dee5276 numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl f6ab05f787221bbaf8fb4a9778af5467 numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl 9b04caec124cadf90005ccdb662aad9f numpy-2.2.0-cp310-cp310-win32.whl 58934f23b6bc71fb1f984b688c1c6136 numpy-2.2.0-cp310-cp310-win_amd64.whl 769e53438154e53ba490fb4f816c083e numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl aa8060c013c04133b63780025eef4451 numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl 72c10ef28a0ddffe6bf2495954ab82e0 numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl 946b2510c86eb48e374e6987582c9b46 numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl 3f5203ae901ddd78cb298582eda07627 numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fd14624d40100a5eb0181bf393394448 numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7c86d51d89dbc5a6860d65641ea131ef numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl 895c6588c74019b94fb3c740b9e9a0f5 numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl 1468ae1cb59a43991b199cfa6f1e5679 numpy-2.2.0-cp311-cp311-win32.whl 48a3792698a81917320b91a30c0bacf4 numpy-2.2.0-cp311-cp311-win_amd64.whl db4377351f167d82adc66b16965d11bd numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl 3f3978b5e480ed18d55b1799d9a534ff numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl 584b4063eb66688b607f7e7bdca58011 numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl dfacf4ee4842d845f5e12f912ebc2055 numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl 2f10d9bc44635078a6222ed50c9fd0f2 numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bb69665b4b68b7af82939132972e8261 numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 92e9b03039ab737e6799dbd9d057fce2 numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl a4198f53e3906394012ab88dffff4077 numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl f9cb2f38ae8272ab5eb4b209c59be45f numpy-2.2.0-cp312-cp312-win32.whl 6ffe9e1abf69bb8c4ee2e913b1badfde numpy-2.2.0-cp312-cp312-win_amd64.whl 330838b6e06481341b35f8d4b6b50bbb numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl 4fb63be6d2b92acfba0c2eaedce82e06 numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl e4086f43f9ce29b5adf939e1b5150f03 numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl ba74e1f7142954127fb2aef544a6b05e numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl 83f51806139d5adc70a2e309d0300ad1 numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bf9af9abb1e30521b3491f0748ba6199 numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4d30c57bd7103b36a4bf7a4a9e25e10d numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl 5b12557dde538f99fd87d1682638a212 numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl ee7689d2ecbcbd7c883f69099bd41892 numpy-2.2.0-cp313-cp313-win32.whl 370a2b14681c6dc4af8596f62d96bb20 numpy-2.2.0-cp313-cp313-win_amd64.whl e6fd32fb42fd89c7659e799d65c19557 numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl 8e9b0579f2e22f38f57399ab18d6e651 numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl 71a7ee75208a633a8c36d4ed5b551c33 numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl 3d76dfe8c2e26dc42b97fdf086ce1fa5 numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl b70ea00b40fb7d1b5d84868d8a073afb numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a6bc7090a4e2b1e9deabd0671c691129 numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9789193a075e8d494851fe7955a23af7 numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl 8c199d25bd806f737950428232b0dfa5 numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl 1f566cfe4880ca30a591a828634da429 numpy-2.2.0-cp313-cp313t-win32.whl eb9ea9f8fba78e7ae5b1415de1ee5c2c numpy-2.2.0-cp313-cp313t-win_amd64.whl 9fbe2640c73e4f391019db5af6e854f5 numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl fc89986fda7ba19c7c50712f1fc1e342 numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl d76c5769a3fdfb9e25b3c1a951bd021f numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c138d726fee19ec6ba85eaa2ba9a3390 numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl 81a58d5fd26fe983162dc3cea2989b7a numpy-2.2.0.tar.gz ##### SHA256 1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219 numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl 36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9 numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl 7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3 numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83 numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl 7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31 numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661 numpy-2.2.0-cp310-cp310-win32.whl 54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4 numpy-2.2.0-cp310-cp310-win_amd64.whl 9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6 numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl 0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90 numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl 0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608 numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl 3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl 40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74 numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl 4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl 4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410 numpy-2.2.0-cp311-cp311-win32.whl 16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73 numpy-2.2.0-cp311-cp311-win_amd64.whl cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3 numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl 58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67 numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl 57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038 numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03 numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl 0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1 numpy-2.2.0-cp312-cp312-win32.whl 3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3 numpy-2.2.0-cp312-cp312-win_amd64.whl f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367 numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl 0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl 1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69 numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl 5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13 numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl 18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671 numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571 numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742 numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl 3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e numpy-2.2.0-cp313-cp313-win32.whl a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2 numpy-2.2.0-cp313-cp313-win_amd64.whl 7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95 numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl 6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529 numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3 numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl 4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72 numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl 30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066 numpy-2.2.0-cp313-cp313t-win32.whl d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881 numpy-2.2.0-cp313-cp313t-win_amd64.whl e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773 numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7 numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221 numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl 140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0 numpy-2.2.0.tar.gz ### [`v2.1.3`](https://github.com/numpy/numpy/releases/v2.1.3) [Compare Source](https://github.com/numpy/numpy/compare/v2.1.2...v2.1.3) ### NumPy 2.1.3 Release Notes NumPy 2.1.3 is a maintenance release that fixes bugs and regressions discovered after the 2.1.2 release. This release also adds support for free threaded Python 3.13 on Windows. The Python versions supported by this release are 3.10-3.13. #### Improvements - Fixed a number of issues around promotion for string ufuncs with StringDType arguments. Mixing StringDType and the fixed-width DTypes using the string ufuncs should now generate much more uniform results. ([gh-27636](https://github.com/numpy/numpy/pull/27636)) #### Changes - `numpy.fix` now won't perform casting to a floating data-type for integer and boolean data-type input arrays. ([gh-26766](https://github.com/numpy/numpy/pull/26766)) #### Contributors A total of 15 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Abhishek Kumar + - Austin + - Benjamin A. Beasley + - Charles Harris - Christian Lorentzen - Marcel Telka + - Matti Picus - Michael Davidsaver + - Nathan Goldbaum - Peter Hawkins - Raghuveer Devulapalli - Ralf Gommers - Sebastian Berg - dependabot\[bot] - kp2pml30 + #### Pull requests merged A total of 21 pull requests were merged for this release. - [#&#8203;27512](https://github.com/numpy/numpy/pull/27512): MAINT: prepare 2.1.x for further development - [#&#8203;27537](https://github.com/numpy/numpy/pull/27537): MAINT: Bump actions/cache from 4.0.2 to 4.1.1 - [#&#8203;27538](https://github.com/numpy/numpy/pull/27538): MAINT: Bump pypa/cibuildwheel from 2.21.2 to 2.21.3 - [#&#8203;27539](https://github.com/numpy/numpy/pull/27539): MAINT: MSVC does not support #warning directive - [#&#8203;27543](https://github.com/numpy/numpy/pull/27543): BUG: Fix user dtype can-cast with python scalar during promotion - [#&#8203;27561](https://github.com/numpy/numpy/pull/27561): DEV: bump `python` to 3.12 in environment.yml - [#&#8203;27562](https://github.com/numpy/numpy/pull/27562): BLD: update vendored Meson to 1.5.2 - [#&#8203;27563](https://github.com/numpy/numpy/pull/27563): BUG: weighted quantile for some zero weights ([#&#8203;27549](https://github.com/numpy/numpy/issues/27549)) - [#&#8203;27565](https://github.com/numpy/numpy/pull/27565): MAINT: Use miniforge for macos conda test. - [#&#8203;27566](https://github.com/numpy/numpy/pull/27566): BUILD: satisfy gcc-13 pendantic errors - [#&#8203;27569](https://github.com/numpy/numpy/pull/27569): BUG: handle possible error for PyTraceMallocTrack - [#&#8203;27570](https://github.com/numpy/numpy/pull/27570): BLD: start building Windows free-threaded wheels \[wheel build] - [#&#8203;27571](https://github.com/numpy/numpy/pull/27571): BUILD: vendor tempita from Cython - [#&#8203;27574](https://github.com/numpy/numpy/pull/27574): BUG: Fix warning "differs in levels of indirection" in npy_atomic.h... - [#&#8203;27592](https://github.com/numpy/numpy/pull/27592): MAINT: Update Highway to latest - [#&#8203;27593](https://github.com/numpy/numpy/pull/27593): BUG: Adjust numpy.i for SWIG 4.3 compatibility - [#&#8203;27616](https://github.com/numpy/numpy/pull/27616): BUG: Fix Linux QEMU CI workflow - [#&#8203;27668](https://github.com/numpy/numpy/pull/27668): BLD: Do not set \__STDC_VERSION\_\_ to zero during build - [#&#8203;27669](https://github.com/numpy/numpy/pull/27669): ENH: fix wasm32 runtime type error in numpy.\_core - [#&#8203;27672](https://github.com/numpy/numpy/pull/27672): BUG: Fix a reference count leak in npy_find_descr_for_scalar. - [#&#8203;27673](https://github.com/numpy/numpy/pull/27673): BUG: fixes for StringDType/unicode promoters #### Checksums ##### MD5 3f2f22827dd321ae86b5ab4fa888d0db numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl 13da2761d1abe71731a2806537369115 numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl 5aef4a78b69cd90d0f6fff8f88817991 numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl 12da7f09cd5707634878f85845c9de10 numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl 5b999693362815b56855533469aea0ca numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8c49f457127bfb4f167c91583e5167af numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f31c0e80b18afc0c04cada401cbe0358 numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl 2c0709812e27bcaf74d75ac8ed45614b numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl a65b28800e78942b9e60e03e96cfd0c0 numpy-2.1.3-cp310-cp310-win32.whl d8358545732fe4ee1ecf407b06567d81 numpy-2.1.3-cp310-cp310-win_amd64.whl 34942f9a1391532e2c3168043c0021d5 numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl 0d69ec06e303b5112788db68a8fdde1b numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl da1988c8d3a9db5947a2bd51290b8b95 numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl b5eba73c2abaf5a81535f4b1034fe8d2 numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl 63cc090209718aa1d0f0fbd3fd03bc0b numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 55f14ca7b55554d4a043369ae5f1837f numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4e58e0645d81ff84c0fb75311d2a97d6 numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl 30235088a5f86d1f343bfec458f6292d numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl c80a03952b2f4950f1eb9d1656413fec numpy-2.1.3-cp311-cp311-win32.whl d8c1a5a441b89591af8f09dfa0b2d4d5 numpy-2.1.3-cp311-cp311-win_amd64.whl 2cebcea71e71e8b09a25179b240ee240 numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl faf5df4bd35ca362795cda193da49591 numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl 573f195910fc3b3e9ac5379816280f89 numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl 900548b2acb82ed0e306943fb68de802 numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl 81cded28bb87c4987b1d975fe768c3a1 numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2b83cb346bca97475fa5e39e704c45f1 numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 06d8593cb7a2aae157e028c3d4cb3c96 numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl eea8b148a6a2fee37b87291043e00bda numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl d407b7c48457789914f28004f41d6ea2 numpy-2.1.3-cp312-cp312-win32.whl 117574ee1a645e63a6d69e20c8673665 numpy-2.1.3-cp312-cp312-win_amd64.whl 0c9ffd1f1f1e96186f30a578b85da653 numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl cd430b2caf09d21680616aef5d4a439d numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl b431935148221b79bda9490b1d069e3c numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl b3ff577c78097b187bd58f20b6e88642 numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl 8186f86f8d94a5505e6dcebe6c056ab7 numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2c5b2381a4a4e3d9865ccb346d44a7ed numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 85786d12388d60b904c02eb12df55b37 numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl da68282c0418a22730643906e5dd58a1 numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl fe47e181a70d3e865e5d6a27e5fa71cd numpy-2.1.3-cp313-cp313-win32.whl 8b7f290784c95cf620e0ac1af5470f1d numpy-2.1.3-cp313-cp313-win_amd64.whl 4f0c3f8c81cb6bd43a9f1f7bef7db82d numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl 133905fd003c9504fc5bb9ce71e4103b numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl 12fe4f265dbda251309f109cbcd46f07 numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl b60e418506b969e6df2c0d600bf3c6d4 numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl c2b7160b748f4c1c483a7954e5024250 numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8097ddb45c8c821085c19d940bcbe6de numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 209f55dc1ed6da23a5ea3e11ca962308 numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl 06a1792849b601c7bdd38e39bc5cb5f1 numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl 86630bf207e8cbe6933232cb2a47a6c0 numpy-2.1.3-cp313-cp313t-win32.whl 6af9109b82c0acdcf8b0e81dc0e4c517 numpy-2.1.3-cp313-cp313t-win_amd64.whl c7e821e086346afc0078acb237f30431 numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 5b938b2da78b1c84044df8cdb2e8e63a numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl ef251f3b6aa022b1c2fac14889d6d9d3 numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 356c7bb6067ae0dccc4a54efc1879e74 numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl 11096358375945114577a0c82b2c6038 numpy-2.1.3.tar.gz ##### SHA256 c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5 numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl 825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1 numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl 6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3 numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098 numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4 numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl 72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23 numpy-2.1.3-cp310-cp310-win32.whl ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0 numpy-2.1.3-cp310-cp310-win_amd64.whl 4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41 numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl 576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9 numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl 973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09 numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl 762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl 15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0 numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9 numpy-2.1.3-cp311-cp311-win32.whl d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2 numpy-2.1.3-cp311-cp311-win_amd64.whl f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl 13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958 numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8 numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl 0fa14563cc46422e99daef53d725d0c326e99e468a9320a240affffe87852564 numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl 8637dcd2caa676e475503d1f8fdb327bc495554e10838019651b76d17b98e512 numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2312b2aa89e1f43ecea6da6ea9a810d06aae08321609d8dc0d0eda6d946a541b numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a38c19106902bb19351b83802531fea19dee18e5b37b36454f27f11ff956f7fc numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl 02135ade8b8a84011cbb67dc44e07c58f28575cf9ecf8ab304e51c05528c19f0 numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl e6988e90fcf617da2b5c78902fe8e668361b43b4fe26dbf2d7b0f8034d4cafb9 numpy-2.1.3-cp312-cp312-win32.whl 0d30c543f02e84e92c4b1f415b7c6b5326cbe45ee7882b6b77db7195fb971e3a numpy-2.1.3-cp312-cp312-win_amd64.whl 96fe52fcdb9345b7cd82ecd34547fca4321f7656d500eca497eb7ea5a926692f numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl f653490b33e9c3a4c1c01d41bc2aef08f9475af51146e4a7710c450cf9761598 numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl dc258a761a16daa791081d026f0ed4399b582712e6fc887a95af09df10c5ca57 numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl 016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl c181ba05ce8299c7aa3125c27b9c2167bca4a4445b7ce73d5febc411ca692e43 numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56 numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ea4dedd6e394a9c180b33c2c872b92f7ce0f8e7ad93e9585312b0c5a04777a4a numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl b0df3635b9c8ef48bd3be5f862cf71b0a4716fa0e702155c45067c6b711ddcef numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl 50ca6aba6e163363f132b5c101ba078b8cbd3fa92c7865fd7d4d62d9779ac29f numpy-2.1.3-cp313-cp313-win32.whl 747641635d3d44bcb380d950679462fae44f54b131be347d5ec2bce47d3df9ed numpy-2.1.3-cp313-cp313-win_amd64.whl 996bb9399059c5b82f76b53ff8bb686069c05acc94656bb259b1d63d04a9506f numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl 45966d859916ad02b779706bb43b954281db43e185015df6eb3323120188f9e4 numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl baed7e8d7481bfe0874b566850cb0b85243e982388b7b23348c6db2ee2b2ae8e numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl a9f7f672a3388133335589cfca93ed468509cb7b93ba3105fce780d04a6576a0 numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl d7aac50327da5d208db2eec22eb11e491e3fe13d22653dce51b0f4109101b408 numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4394bc0dbd074b7f9b52024832d16e019decebf86caf909d94f6b3f77a8ee3b6 numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 50d18c4358a0a8a53f12a8ba9d772ab2d460321e6a93d6064fc22443d189853f numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl 14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17 numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl 08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48 numpy-2.1.3-cp313-cp313t-win32.whl 2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4 numpy-2.1.3-cp313-cp313t-win_amd64.whl 4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4 numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761 numpy-2.1.3.tar.gz ### [`v2.1.2`](https://github.com/numpy/numpy/releases/v2.1.2) [Compare Source](https://github.com/numpy/numpy/compare/v2.1.1...v2.1.2) ### NumPy 2.1.2 Release Notes NumPy 2.1.2 is a maintenance release that fixes bugs and regressions discovered after the 2.1.1 release. The Python versions supported by this release are 3.10-3.13. #### Contributors A total of 11 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Chris Sidebottom - Ishan Koradia + - João Eiras + - Katie Rust + - Marten van Kerkwijk - Matti Picus - Nathan Goldbaum - Peter Hawkins - Pieter Eendebak - Slava Gorloff + #### Pull requests merged A total of 14 pull requests were merged for this release. - [#&#8203;27333](https://github.com/numpy/numpy/pull/27333): MAINT: prepare 2.1.x for further development - [#&#8203;27400](https://github.com/numpy/numpy/pull/27400): BUG: apply critical sections around populating the dispatch cache - [#&#8203;27406](https://github.com/numpy/numpy/pull/27406): BUG: Stub out get_build_msvc_version if distutils.msvccompiler... - [#&#8203;27416](https://github.com/numpy/numpy/pull/27416): BUILD: fix missing include for std::ptrdiff_t for C++23 language... - [#&#8203;27433](https://github.com/numpy/numpy/pull/27433): BLD: pin setuptools to avoid breaking numpy.distutils - [#&#8203;27437](https://github.com/numpy/numpy/pull/27437): BUG: Allow unsigned shift argument for np.roll - [#&#8203;27439](https://github.com/numpy/numpy/pull/27439): BUG: Disable SVE VQSort - [#&#8203;27471](https://github.com/numpy/numpy/pull/27471): BUG: rfftn axis bug - [#&#8203;27479](https://github.com/numpy/numpy/pull/27479): BUG: Fix extra decref of PyArray_UInt8DType. - [#&#8203;27480](https://github.com/numpy/numpy/pull/27480): CI: use PyPI not scientific-python-nightly-wheels for CI doc... - [#&#8203;27481](https://github.com/numpy/numpy/pull/27481): MAINT: Check for SVE support on demand - [#&#8203;27484](https://github.com/numpy/numpy/pull/27484): BUG: initialize the promotion state to be weak - [#&#8203;27501](https://github.com/numpy/numpy/pull/27501): MAINT: Bump pypa/cibuildwheel from 2.20.0 to 2.21.2 - [#&#8203;27506](https://github.com/numpy/numpy/pull/27506): BUG: avoid segfault on bad arguments in ndarray.\__array_function\_\_ #### Checksums ##### MD5 4aae28b7919b126485c1aaccee37a6ba numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl 172614423a82ef73d8752ad8a59cbafc numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl 5ee5e7a8a892cbe96ee228ca5fe7546b numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl 9ce6f9222dfabd32e66b883f1fe015aa numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl 291da8bfeb7c9a3491ec35ecb2596335 numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9317d9b049f09c0193f074a6458cf79b numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1f2c121533715d8b099d6498e4498f81 numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl 2834df46e2cb2e81cbe4fd1ce9b96b4b numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl cbc3ae2c176324fe2a9c04ec0aff181f numpy-2.1.2-cp310-cp310-win32.whl e4d74f9d188dc3fe7a65adf8c01e98cc numpy-2.1.2-cp310-cp310-win_amd64.whl cbcece9c21ed1daf60f3729a37b32266 numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl 0e62474993ff6faca9c467f68cc16ceb numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl 8747e85e09b2000a0af5a8226740dc92 numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl 34e7f3591ce81926518a36c92038a056 numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl 0ec3e617161b42d643aaa4b8d3e477f5 numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e2a6a419b4672bfb4f3f6a98c0e575bb numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8c14b4d03fc8672e43eddd3ede89be09 numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl dc183e12b24317bf210fb093da598d29 numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl 4918f2c32ca3be20c7c5d8551e649757 numpy-2.1.2-cp311-cp311-win32.whl a8991919b6fae3c7a77c260f60a5e2e2 numpy-2.1.2-cp311-cp311-win_amd64.whl 879f307d16f9222c49508be5ea6491fc numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl fe9dfac7bee0cff178737e1706aee61a numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl 1f0c671db3294f4df8bffedc41a2e37f numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl d131c4bd6ba29b05a5b7fa74e87a0506 numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl 8f9cca33590be334d44cc026a3716966 numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3692a9290dd430e56e1b15387c25b7af numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3549439284dbb1a05785b535c3de60d9 numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl b9934410f20505e5c4b70974cd8fdc26 numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl 96759e3380e4893b9b88d5d498d856b2 numpy-2.1.2-cp312-cp312-win32.whl f94c7405ed72a136e374ab82400fefdc numpy-2.1.2-cp312-cp312-win_amd64.whl 2ea775cb4da02f39edf3089af60bddd5 numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl 354d0970154dd002573f4291e0e9de76 numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl bbfee75640b337e12f894d0b54727d66 numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl a443fff50571df87f687ad55c9060d25 numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl 9f8cd7de5b5aa5ad8ba52608a4b0a3b8 numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c198fe3deaa77fb94d15284b4e26b875 numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0a59171c983fc2d8ea599bdf382c3d6a numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl 5ba974cd59fb8c9fc94787c754a5f636 numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl 93d5c642606fe8abeff0e6db31ebe88f numpy-2.1.2-cp313-cp313-win32.whl f6455bb4311ddde071a5ea2e14016003 numpy-2.1.2-cp313-cp313-win_amd64.whl d2a21857c924d4b1b3c8ae8a9e9b9bb4 numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl cd6afcbd05835255750a2fba6012c565 numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl d2fab663ea84f1cfe13dfc00dae74fb6 numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl 9477b923000d63617324c487a4ce0e28 numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl 84b621a2c9a8c077bc9c471abd2b3933 numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b1c341c7192d03e8f0f5e7c4b9b6f894 numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b59750ea55cf274854f64109bf67a112 numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl 33f4d63f81ad85c1ea873197f2189d89 numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl f26a9ac42953c84c94f8203b2dbc61c0 numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl e7cf2857582d507dfa3e8644dd3562a6 numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 9e3d44cb302c629c00fde8f25809b04d numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3f97ee2d9962cf9d84624f725bdd2a8f numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl 3d92e07d34f60dbac6b82a0982a98757 numpy-2.1.2.tar.gz ##### SHA256 30d53720b726ec36a7f88dc873f0eec8447fbc93d93a8f079dfac2629598d6ee numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl e8d3ca0a72dd8846eb6f7dfe8f19088060fcb76931ed592d29128e0219652884 numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl fc44e3c68ff00fd991b59092a54350e6e4911152682b4782f68070985aa9e648 numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl 7c1c60328bd964b53f8b835df69ae8198659e2b9302ff9ebb7de4e5a5994db3d numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl 6cdb606a7478f9ad91c6283e238544451e3a95f30fb5467fbf715964341a8a86 numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d666cb72687559689e9906197e3bec7b736764df6a2e58ee265e360663e9baf7 numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c6eef7a2dbd0abfb0d9eaf78b73017dbfd0b54051102ff4e6a7b2980d5ac1a03 numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl 12edb90831ff481f7ef5f6bc6431a9d74dc0e5ff401559a71e5e4611d4f2d466 numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl a65acfdb9c6ebb8368490dbafe83c03c7e277b37e6857f0caeadbbc56e12f4fb numpy-2.1.2-cp310-cp310-win32.whl 860ec6e63e2c5c2ee5e9121808145c7bf86c96cca9ad396c0bd3e0f2798ccbe2 numpy-2.1.2-cp310-cp310-win_amd64.whl b42a1a511c81cc78cbc4539675713bbcf9d9c3913386243ceff0e9429ca892fe numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl faa88bc527d0f097abdc2c663cddf37c05a1c2f113716601555249805cf573f1 numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl c82af4b2ddd2ee72d1fc0c6695048d457e00b3582ccde72d8a1c991b808bb20f numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl 13602b3174432a35b16c4cfb5de9a12d229727c3dd47a6ce35111f2ebdf66ff4 numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl 1ebec5fd716c5a5b3d8dfcc439be82a8407b7b24b230d0ad28a81b61c2f4659a numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e2b49c3c0804e8ecb05d59af8386ec2f74877f7ca8fd9c1e00be2672e4d399b1 numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2cbba4b30bf31ddbe97f1c7205ef976909a93a66bb1583e983adbd155ba72ac2 numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl 8e00ea6fc82e8a804433d3e9cedaa1051a1422cb6e443011590c14d2dea59146 numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl 5006b13a06e0b38d561fab5ccc37581f23c9511879be7693bd33c7cd15ca227c numpy-2.1.2-cp311-cp311-win32.whl f1eb068ead09f4994dec71c24b2844f1e4e4e013b9629f812f292f04bd1510d9 numpy-2.1.2-cp311-cp311-win_amd64.whl d7bf0a4f9f15b32b5ba53147369e94296f5fffb783db5aacc1be15b4bf72f43b numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl b1d0fcae4f0949f215d4632be684a539859b295e2d0cb14f78ec231915d644db numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl f751ed0a2f250541e19dfca9f1eafa31a392c71c832b6bb9e113b10d050cb0f1 numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl bd33f82e95ba7ad632bc57837ee99dba3d7e006536200c4e9124089e1bf42426 numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl 1b8cde4f11f0a975d1fd59373b32e2f5a562ade7cde4f85b7137f3de8fbb29a0 numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6d95f286b8244b3649b477ac066c6906fbb2905f8ac19b170e2175d3d799f4df numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ab4754d432e3ac42d33a269c8567413bdb541689b02d93788af4131018cbf366 numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl e585c8ae871fd38ac50598f4763d73ec5497b0de9a0ab4ef5b69f01c6a046142 numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl 9c6c754df29ce6a89ed23afb25550d1c2d5fdb9901d9c67a16e0b16eaf7e2550 numpy-2.1.2-cp312-cp312-win32.whl 456e3b11cb79ac9946c822a56346ec80275eaf2950314b249b512896c0d2505e numpy-2.1.2-cp312-cp312-win_amd64.whl a84498e0d0a1174f2b3ed769b67b656aa5460c92c9554039e11f20a05650f00d numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl 4d6ec0d4222e8ffdab1744da2560f07856421b367928026fb540e1945f2eeeaf numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl 259ec80d54999cc34cd1eb8ded513cb053c3bf4829152a2e00de2371bd406f5e numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl 675c741d4739af2dc20cd6c6a5c4b7355c728167845e3c6b0e824e4e5d36a6c3 numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl 05b2d4e667895cc55e3ff2b56077e4c8a5604361fc21a042845ea3ad67465aa8 numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 43cca367bf94a14aca50b89e9bc2061683116cfe864e56740e083392f533ce7a numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 76322dcdb16fccf2ac56f99048af32259dcc488d9b7e25b51e5eca5147a3fb98 numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl 32e16a03138cabe0cb28e1007ee82264296ac0983714094380b408097a418cfe numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl 242b39d00e4944431a3cd2db2f5377e15b5785920421993770cddb89992c3f3a numpy-2.1.2-cp313-cp313-win32.whl f2ded8d9b6f68cc26f8425eda5d3877b47343e68ca23d0d0846f4d312ecaa445 numpy-2.1.2-cp313-cp313-win_amd64.whl 2ffef621c14ebb0188a8633348504a35c13680d6da93ab5cb86f4e54b7e922b5 numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl ad369ed238b1959dfbade9018a740fb9392c5ac4f9b5173f420bd4f37ba1f7a0 numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl d82075752f40c0ddf57e6e02673a17f6cb0f8eb3f587f63ca1eaab5594da5b17 numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl 1600068c262af1ca9580a527d43dc9d959b0b1d8e56f8a05d830eea39b7c8af6 numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl a26ae94658d3ba3781d5e103ac07a876b3e9b29db53f68ed7df432fd033358a8 numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 13311c2db4c5f7609b462bc0f43d3c465424d25c626d95040f073e30f7570e35 numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2abbf905a0b568706391ec6fa15161fad0fb5d8b68d73c461b3c1bab6064dd62 numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl ef444c57d664d35cac4e18c298c47d7b504c66b17c2ea91312e979fcfbdfb08a numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl bdd407c40483463898b84490770199d5714dcc9dd9b792f6c6caccc523c00952 numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl da65fb46d4cbb75cb417cddf6ba5e7582eb7bb0b47db4b99c9fe5787ce5d91f5 numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 1c193d0b0238638e6fc5f10f1b074a6993cb13b0b431f64079a509d63d3aa8b7 numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a7d80b2e904faa63068ead63107189164ca443b42dd1930299e0d1cb041cec2e numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl 13532a088217fa624c99b843eeb54640de23b3414b14aa66d023805eb731066c numpy-2.1.2.tar.gz ### [`v2.1.1`](https://github.com/numpy/numpy/releases/v2.1.1) [Compare Source](https://github.com/numpy/numpy/compare/v2.1.0...v2.1.1) ### NumPy 2.1.1 Release Notes NumPy 2.1.1 is a maintenance release that fixes bugs and regressions discovered after the 2.1.0 release. The Python versions supported by this release are 3.10-3.13. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Charles Harris - Mateusz Sokół - Maximilian Weigand + - Nathan Goldbaum - Pieter Eendebak - Sebastian Berg #### Pull requests merged A total of 10 pull requests were merged for this release. - [#&#8203;27236](https://github.com/numpy/numpy/pull/27236): REL: Prepare for the NumPy 2.1.0 release \[wheel build] - [#&#8203;27252](https://github.com/numpy/numpy/pull/27252): MAINT: prepare 2.1.x for further development - [#&#8203;27259](https://github.com/numpy/numpy/pull/27259): BUG: revert unintended change in the return value of set_printoptions - [#&#8203;27266](https://github.com/numpy/numpy/pull/27266): BUG: fix reference counting bug in \__array_interface\_\_ implementation... - [#&#8203;27267](https://github.com/numpy/numpy/pull/27267): TST: Add regression test for missing descr in array-interface - [#&#8203;27276](https://github.com/numpy/numpy/pull/27276): BUG: Fix [#&#8203;27256](https://github.com/numpy/numpy/issues/27256) and [#&#8203;27257](https://github.com/numpy/numpy/issues/27257) - [#&#8203;27278](https://github.com/numpy/numpy/pull/27278): BUG: Fix array_equal for numeric and non-numeric scalar types - [#&#8203;27287](https://github.com/numpy/numpy/pull/27287): MAINT: Update maintenance/2.1.x after the 2.0.2 release - [#&#8203;27303](https://github.com/numpy/numpy/pull/27303): BLD: cp311- macosx_arm64 wheels \[wheel build] - [#&#8203;27304](https://github.com/numpy/numpy/pull/27304): BUG: f2py: better handle filtering of public/private subroutines #### Checksums ##### MD5 3053a97400db800b7377749e691eb39e numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl 84b752a2220dce7c96ff89eef4f4aec3 numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl 47ed4f704a64261f07ca24ef2e674524 numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl b8a45caa870aee980c298053cf064d28 numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl e097ad5eee572b791b4a25eedad6df4a numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ae502c99315884cda7f0236a07c035c4 numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 841a859d975c55090c0b60b72aab93a3 numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl d51be2b17f5b87aac64ab80fdfafc85e numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl 1f8249bd725397c6233fe6a0e8ad18b1 numpy-2.1.1-cp310-cp310-win32.whl d38d6f06589c1ec104a6a31ff6035781 numpy-2.1.1-cp310-cp310-win_amd64.whl 6a18fe3029aae00986975250313bf16f numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl 5b0b3aa01fbd0b5a8b0f354bb878351e numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl 1c492dad399abe7b97274b4c6c12ae53 numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl 4d55d91e71b62eb5fa6561c606524f60 numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl 88e99ecd063c178f25bc08d20792a9bf numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f3c8b0e4fb059b9219e8ec86d9fda861 numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df632b5fed7eb78d39e7194d2475c19b numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl 65499daccdb178d26e322d9f359cf146 numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl eb97327fd7aa6027e2409d0dcca1129a numpy-2.1.1-cp311-cp311-win32.whl 9e4b05b38cbff22c2bdfead528b9d2bc numpy-2.1.1-cp311-cp311-win_amd64.whl 6b8a359bb865b5c624fd9ffc848393e1 numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl eaf8dce312efa2b0f17ad46612fb1681 numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl c861ff048b336284fe7c0791b1a6b0b4 numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl 7e1befccfe729dc5d6c450a5fb6b801c numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl ea0a401ef653a167221987a10cbef260 numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 97326ac792d26f2e536a519c82f2d6bc numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fdd2a82232c03d11bbc7cec0a8e01ab0 numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl 0d6716e9a7b2c0d6e5ace9c01b9bca01 numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl ba589ed2a79c88187c3b8574ae72a1c7 numpy-2.1.1-cp312-cp312-win32.whl 806ca7c1e2a2013b786edbb619f6da47 numpy-2.1.1-cp312-cp312-win_amd64.whl 647665353e5af5884df4e51610990c22 numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl bfd3b3c5c4616ef99d917bd94d39114a numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl cb989095f9c74e3b32250a984390faeb numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl 55ad7548e58f61b9a4f91749e36d237f numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl 5bc73d67dd1032524bfd36ef877b09e4 numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c7dfb09db8284cb75296f708c3f77ea3 numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7cf90ce1b844a97aeea1a5b8c71fb49b numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl 6ec8baeac5f979a3b98017679d457bbc numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl 1f198cb5210c76faae81359a83d58230 numpy-2.1.1-cp313-cp313-win32.whl 1766258213ad41f7e36f2209ee6d2a30 numpy-2.1.1-cp313-cp313-win_amd64.whl f0a7a0456308dbeb739ad886f1632f16 numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl 302c9cf7b4aa695974500ee1935a92c9 numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl f4aa7d784992abb9bd9fe9db09c01c06 numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl 3bb4ae9906499609769f1774438149a5 numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl ff6b9e1993d3d540074736014b1d13af numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 749489c091ee9c00abf1ad1ef822c3ca numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 32d2daf4064031f365ced5036757ad8b numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl 603dfe4ef56c01e1fc0dcc9d5e3090ed numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl 70fa2d3b78633bb6061c90e17364f27f numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 9a430be5d14b689ed051eccc540dfbdc numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 7291ff124e471d32c03464da18ff108d numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e56ce141724af119c7c647a8705827a5 numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl f63b4750618bfa5490f10cae37fde998 numpy-2.1.1.tar.gz ##### SHA256 c8a0e34993b510fc19b9a2ce7f31cb8e94ecf6e924a40c0c9dd4f62d0aac47d9 numpy-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl 7dd86dfaf7c900c0bbdcb8b16e2f6ddf1eb1fe39c6c8cca6e94844ed3152a8fd numpy-2.1.1-cp310-cp310-macosx_11_0_arm64.whl 5889dd24f03ca5a5b1e8a90a33b5a0846d8977565e4ae003a63d22ecddf6782f numpy-2.1.1-cp310-cp310-macosx_14_0_arm64.whl 59ca673ad11d4b84ceb385290ed0ebe60266e356641428c845b39cd9df6713ab numpy-2.1.1-cp310-cp310-macosx_14_0_x86_64.whl 13ce49a34c44b6de5241f0b38b07e44c1b2dcacd9e36c30f9c2fcb1bb5135db7 numpy-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 913cc1d311060b1d409e609947fa1b9753701dac96e6581b58afc36b7ee35af6 numpy-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl caf5d284ddea7462c32b8d4a6b8af030b6c9fd5332afb70e7414d7fdded4bfd0 numpy-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl 57eb525e7c2a8fdee02d731f647146ff54ea8c973364f3b850069ffb42799647 numpy-2.1.1-cp310-cp310-musllinux_1_2_aarch64.whl 9a8e06c7a980869ea67bbf551283bbed2856915f0a792dc32dd0f9dd2fb56728 numpy-2.1.1-cp310-cp310-win32.whl d10c39947a2d351d6d466b4ae83dad4c37cd6c3cdd6d5d0fa797da56f710a6ae numpy-2.1.1-cp310-cp310-win_amd64.whl 0d07841fd284718feffe7dd17a63a2e6c78679b2d386d3e82f44f0108c905550 numpy-2.1.1-cp311-cp311-macosx_10_9_x86_64.whl b5613cfeb1adfe791e8e681128f5f49f22f3fcaa942255a6124d58ca59d9528f numpy-2.1.1-cp311-cp311-macosx_11_0_arm64.whl 0b8cc2715a84b7c3b161f9ebbd942740aaed913584cae9cdc7f8ad5ad41943d0 numpy-2.1.1-cp311-cp311-macosx_14_0_arm64.whl b49742cdb85f1f81e4dc1b39dcf328244f4d8d1ded95dea725b316bd2cf18c95 numpy-2.1.1-cp311-cp311-macosx_14_0_x86_64.whl e8d5f8a8e3bc87334f025194c6193e408903d21ebaeb10952264943a985066ca numpy-2.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d51fc141ddbe3f919e91a096ec739f49d686df8af254b2053ba21a910ae518bf numpy-2.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 98ce7fb5b8063cfdd86596b9c762bf2b5e35a2cdd7e967494ab78a1fa7f8b86e numpy-2.1.1-cp311-cp311-musllinux_1_1_x86_64.whl 24c2ad697bd8593887b019817ddd9974a7f429c14a5469d7fad413f28340a6d2 numpy-2.1.1-cp311-cp311-musllinux_1_2_aarch64.whl 397bc5ce62d3fb73f304bec332171535c187e0643e176a6e9421a6e3eacef06d numpy-2.1.1-cp311-cp311-win32.whl ae8ce252404cdd4de56dcfce8b11eac3c594a9c16c231d081fb705cf23bd4d9e numpy-2.1.1-cp311-cp311-win_amd64.whl 7c803b7934a7f59563db459292e6aa078bb38b7ab1446ca38dd138646a38203e numpy-2.1.1-cp312-cp312-macosx_10_9_x86_64.whl 6435c48250c12f001920f0751fe50c0348f5f240852cfddc5e2f97e007544cbe numpy-2.1.1-cp312-cp312-macosx_11_0_arm64.whl 3269c9eb8745e8d975980b3a7411a98976824e1fdef11f0aacf76147f662b15f numpy-2.1.1-cp312-cp312-macosx_14_0_arm64.whl fac6e277a41163d27dfab5f4ec1f7a83fac94e170665a4a50191b545721c6521 numpy-2.1.1-cp312-cp312-macosx_14_0_x86_64.whl fcd8f556cdc8cfe35e70efb92463082b7f43dd7e547eb071ffc36abc0ca4699b numpy-2.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d2b9cd92c8f8e7b313b80e93cedc12c0112088541dcedd9197b5dee3738c1201 numpy-2.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl afd9c680df4de71cd58582b51e88a61feed4abcc7530bcd3d48483f20fc76f2a numpy-2.1.1-cp312-cp312-musllinux_1_1_x86_64.whl 8661c94e3aad18e1ea17a11f60f843a4933ccaf1a25a7c6a9182af70610b2313 numpy-2.1.1-cp312-cp312-musllinux_1_2_aarch64.whl 950802d17a33c07cba7fd7c3dcfa7d64705509206be1606f196d179e539111ed numpy-2.1.1-cp312-cp312-win32.whl 3fc5eabfc720db95d68e6646e88f8b399bfedd235994016351b1d9e062c4b270 numpy-2.1.1-cp312-cp312-win_amd64.whl 046356b19d7ad1890c751b99acad5e82dc4a02232013bd9a9a712fddf8eb60f5 numpy-2.1.1-cp313-cp313-macosx_10_13_x86_64.whl 6e5a9cb2be39350ae6c8f79410744e80154df658d5bea06e06e0ac5bb75480d5 numpy-2.1.1-cp313-cp313-macosx_11_0_arm64.whl d4c57b68c8ef5e1ebf47238e99bf27657511ec3f071c465f6b1bccbef12d4136 numpy-2.1.1-cp313-cp313-macosx_14_0_arm64.whl 8ae0fd135e0b157365ac7cc31fff27f07a5572bdfc38f9c2d43b2aff416cc8b0 numpy-2.1.1-cp313-cp313-macosx_14_0_x86_64.whl 981707f6b31b59c0c24bcda52e5605f9701cb46da4b86c2e8023656ad3e833cb numpy-2.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2ca4b53e1e0b279142113b8c5eb7d7a877e967c306edc34f3b58e9be12fda8df numpy-2.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e097507396c0be4e547ff15b13dc3866f45f3680f789c1a1301b07dadd3fbc78 numpy-2.1.1-cp313-cp313-musllinux_1_1_x86_64.whl f7506387e191fe8cdb267f912469a3cccc538ab108471291636a96a54e599556 numpy-2.1.1-cp313-cp313-musllinux_1_2_aarch64.whl 251105b7c42abe40e3a689881e1793370cc9724ad50d64b30b358bbb3a97553b numpy-2.1.1-cp313-cp313-win32.whl f212d4f46b67ff604d11fff7cc62d36b3e8714edf68e44e9760e19be38c03eb0 numpy-2.1.1-cp313-cp313-win_amd64.whl 920b0911bb2e4414c50e55bd658baeb78281a47feeb064ab40c2b66ecba85553 numpy-2.1.1-cp313-cp313t-macosx_10_13_x86_64.whl bab7c09454460a487e631ffc0c42057e3d8f2a9ddccd1e60c7bb8ed774992480 numpy-2.1.1-cp313-cp313t-macosx_11_0_arm64.whl cea427d1350f3fd0d2818ce7350095c1a2ee33e30961d2f0fef48576ddbbe90f numpy-2.1.1-cp313-cp313t-macosx_14_0_arm64.whl e30356d530528a42eeba51420ae8bf6c6c09559051887196599d96ee5f536468 numpy-2.1.1-cp313-cp313t-macosx_14_0_x86_64.whl e8dfa9e94fc127c40979c3eacbae1e61fda4fe71d84869cc129e2721973231ef numpy-2.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 910b47a6d0635ec1bd53b88f86120a52bf56dcc27b51f18c7b4a2e2224c29f0f numpy-2.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 13cc11c00000848702322af4de0147ced365c81d66053a67c2e962a485b3717c numpy-2.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl 53e27293b3a2b661c03f79aa51c3987492bd4641ef933e366e0f9f6c9bf257ec numpy-2.1.1-cp313-cp313t-musllinux_1_2_aarch64.whl 7be6a07520b88214ea85d8ac8b7d6d8a1839b0b5cb87412ac9f49fa934eb15d5 numpy-2.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 52ac2e48f5ad847cd43c4755520a2317f3380213493b9d8a4c5e37f3b87df504 numpy-2.1.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 50a95ca3560a6058d6ea91d4629a83a897ee27c00630aed9d933dff191f170cd numpy-2.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 99f4a9ee60eed1385a86e82288971a51e71df052ed0b2900ed30bc840c0f2e39 numpy-2.1.1-pp310-pypy310_pp73-win_amd64.whl d0cf7d55b1051387807405b3898efafa862997b4cba8aa5dbe657be794afeafd numpy-2.1.1.tar.gz ### [`v2.1.0`](https://github.com/numpy/numpy/releases/v2.1.0) [Compare Source](https://github.com/numpy/numpy/compare/v2.0.2...v2.1.0) ### NumPy 2.1.0 Release Notes NumPy 2.1.0 provides support for the upcoming Python 3.13 release and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get us back into our usual release cycle after the extended development of 2.0. The highlights for this release are: - Support for the array-api 2023.12 standard. - Support for Python 3.13. - Preliminary support for free threaded Python 3.13. Python versions 3.10-3.13 are supported in this release. #### New functions ##### New function `numpy.unstack` A new function `np.unstack(array, axis=...)` was added, which splits an array into a tuple of arrays along an axis. It serves as the inverse of \[numpy.stack]{.title-ref}. ([gh-26579](https://github.com/numpy/numpy/pull/26579)) #### Deprecations - The `fix_imports` keyword argument in `numpy.save` is deprecated. Since NumPy 1.17, `numpy.save` uses a pickle protocol that no longer supports Python 2, and ignored `fix_imports` keyword. This keyword is kept only for backward compatibility. It is now deprecated. ([gh-26452](https://github.com/numpy/numpy/pull/26452)) - Passing non-integer inputs as the first argument of \[bincount]{.title-ref} is now deprecated, because such inputs are silently cast to integers with no warning about loss of precision. ([gh-27076](https://github.com/numpy/numpy/pull/27076)) #### Expired deprecations - Scalars and 0D arrays are disallowed for `numpy.nonzero` and `numpy.ndarray.nonzero`. ([gh-26268](https://github.com/numpy/numpy/pull/26268)) - `set_string_function` internal function was removed and `PyArray_SetStringFunction` was stubbed out. ([gh-26611](https://github.com/numpy/numpy/pull/26611)) #### C API changes ##### API symbols now hidden but customizable NumPy now defaults to hide the API symbols it adds to allow all NumPy API usage. This means that by default you cannot dynamically fetch the NumPy API from another library (this was never possible on windows). If you are experiencing linking errors related to `PyArray_API` or `PyArray_RUNTIME_VERSION`, you can define the `NPY_API_SYMBOL_ATTRIBUTE` to opt-out of this change. If you are experiencing problems due to an upstream header including NumPy, the solution is to make sure you `#include "numpy/ndarrayobject.h"` before their header and import NumPy yourself based on `including-the-c-api`. ([gh-26103](https://github.com/numpy/numpy/pull/26103)) ##### Many shims removed from npy\_3kcompat.h Many of the old shims and helper functions were removed from `npy_3kcompat.h`. If you find yourself in need of these, vendor the previous version of the file into your codebase. ([gh-26842](https://github.com/numpy/numpy/pull/26842)) ##### New `PyUFuncObject` field `process_core_dims_func` The field `process_core_dims_func` was added to the structure `PyUFuncObject`. For generalized ufuncs, this field can be set to a function of type `PyUFunc_ProcessCoreDimsFunc` that will be called when the ufunc is called. It allows the ufunc author to check that core dimensions satisfy additional constraints, and to set output core dimension sizes if they have not been provided. ([gh-26908](https://github.com/numpy/numpy/pull/26908)) #### New Features ##### Preliminary Support for Free-Threaded CPython 3.13 CPython 3.13 will be available as an experimental free-threaded build. See <https://py-free-threading.github.io>, [PEP 703](https://peps.python.org/pep-0703/) and the [CPython 3.13 release notes](https://docs.python.org/3.13/whatsnew/3.13.html#free-threaded-cpython) for more detail about free-threaded Python. NumPy 2.1 has preliminary support for the free-threaded build of CPython 3.13. This support was enabled by fixing a number of C thread-safety issues in NumPy. Before NumPy 2.1, NumPy used a large number of C global static variables to store runtime caches and other state. We have either refactored to avoid the need for global state, converted the global state to thread-local state, or added locking. Support for free-threaded Python does not mean that NumPy is thread safe. Read-only shared access to ndarray should be safe. NumPy exposes shared mutable state and we have not added any locking to the array object itself to serialize access to shared state. Care must be taken in user code to avoid races if you would like to mutate the same array in multiple threads. It is certainly possible to crash NumPy by mutating an array simultaneously in multiple threads, for example by calling a ufunc and the `resize` method simultaneously. For now our guidance is: "don't do that". In the future we would like to provide stronger guarantees. Object arrays in particular need special care, since the GIL previously provided locking for object array access and no longer does. See [Issue #&#8203;27199](https://github.com/numpy/numpy/issues/27199) for more information about object arrays in the free-threaded build. If you are interested in free-threaded Python, for example because you have a multiprocessing-based workflow that you are interested in running with Python threads, we encourage testing and experimentation. If you run into problems that you suspect are because of NumPy, please [open an issue](https://github.com/numpy/numpy/issues/new/choose), checking first if the bug also occurs in the "regular" non-free-threaded CPython 3.13 build. Many threading bugs can also occur in code that releases the GIL; disabling the GIL only makes it easier to hit threading bugs. ([gh-26157](https://github.com/numpy/numpy/issues/26157#issuecomment-2233864940)) ##### `f2py` can generate freethreading-compatible C extensions Pass `--freethreading-compatible` to the f2py CLI tool to produce a C extension marked as compatible with the free threading CPython interpreter. Doing so prevents the interpreter from re-enabling the GIL at runtime when it imports the C extension. Note that `f2py` does not analyze fortran code for thread safety, so you must verify that the wrapped fortran code is thread safe before marking the extension as compatible. ([gh-26981](https://github.com/numpy/numpy/pull/26981)) - `numpy.reshape` and `numpy.ndarray.reshape` now support `shape` and `copy` arguments. ([gh-26292](https://github.com/numpy/numpy/pull/26292)) - NumPy now supports DLPack v1, support for older versions will be deprecated in the future. ([gh-26501](https://github.com/numpy/numpy/pull/26501)) - `numpy.asanyarray` now supports `copy` and `device` arguments, matching `numpy.asarray`. ([gh-26580](https://github.com/numpy/numpy/pull/26580)) - `numpy.printoptions`, `numpy.get_printoptions`, and `numpy.set_printoptions` now support a new option, `override_repr`, for defining custom `repr(array)` behavior. ([gh-26611](https://github.com/numpy/numpy/pull/26611)) - `numpy.cumulative_sum` and `numpy.cumulative_prod` were added as Array API compatible alternatives for `numpy.cumsum` and `numpy.cumprod`. The new functions can include a fixed initial (zeros for `sum` and ones for `prod`) in the result. ([gh-26724](https://github.com/numpy/numpy/pull/26724)) - `numpy.clip` now supports `max` and `min` keyword arguments which are meant to replace `a_min` and `a_max`. Also, for `np.clip(a)` or `np.clip(a, None, None)` a copy of the input array will be returned instead of raising an error. ([gh-26724](https://github.com/numpy/numpy/pull/26724)) - `numpy.astype` now supports `device` argument. ([gh-26724](https://github.com/numpy/numpy/pull/26724)) #### Improvements ##### `histogram` auto-binning now returns bin sizes >=1 for integer input data For integer input data, bin sizes smaller than 1 result in spurious empty bins. This is now avoided when the number of bins is computed using one of the algorithms provided by `histogram_bin_edges`. ([gh-12150](https://github.com/numpy/numpy/pull/12150)) ##### `ndarray` shape-type parameter is now covariant and bound to `tuple[int, ...]` Static typing for `ndarray` is a long-term effort that continues with this change. It is a generic type with type parameters for the shape and the data type. Previously, the shape type parameter could be any value. This change restricts it to a tuple of ints, as one would expect from using `ndarray.shape`. Further, the shape-type parameter has been changed from invariant to covariant. This change also applies to the subtypes of `ndarray`, e.g. `numpy.ma.MaskedArray`. See the [typing docs](https://typing.readthedocs.io/en/latest/reference/generics.html#variance-of-generic-types) for more information. ([gh-26081](https://github.com/numpy/numpy/pull/26081)) ##### `np.quantile` with method `closest_observation` chooses nearest even order statistic This changes the definition of nearest for border cases from the nearest odd order statistic to nearest even order statistic. The numpy implementation now matches other reference implementations. ([gh-26656](https://github.com/numpy/numpy/pull/26656)) ##### `lapack_lite` is now thread safe NumPy provides a minimal low-performance version of LAPACK named `lapack_lite` that can be used if no BLAS/LAPACK system is detected at build time. Until now, `lapack_lite` was not thread safe. Single-threaded use cases did not hit any issues, but running linear algebra operations in multiple threads could lead to errors, incorrect results, or segfaults due to data races. We have added a global lock, serializing access to `lapack_lite` in multiple threads. ([gh-26750](https://github.com/numpy/numpy/pull/26750)) ##### The `numpy.printoptions` context manager is now thread and async-safe In prior versions of NumPy, the printoptions were defined using a combination of Python and C global variables. We have refactored so the state is stored in a python `ContextVar`, making the context manager thread and async-safe. ([gh-26846](https://github.com/numpy/numpy/pull/26846)) ##### Type hinting `numpy.polynomial` Starting from the 2.1 release, PEP 484 type annotations have been included for the functions and convenience classes in `numpy.polynomial` and its sub-packages. ([gh-26897](https://github.com/numpy/numpy/pull/26897)) ##### Improved `numpy.dtypes` type hints The type annotations for `numpy.dtypes` are now a better reflection of the runtime: The `numpy.dtype` type-aliases have been replaced with specialized `dtype` *subtypes*, and the previously missing annotations for `numpy.dtypes.StringDType` have been added. ([gh-27008](https://github.com/numpy/numpy/pull/27008)) #### Performance improvements and changes - `numpy.save` now uses pickle protocol version 4 for saving arrays with object dtype, which allows for pickle objects larger than 4GB and improves saving speed by about 5% for large arrays. ([gh-26388](https://github.com/numpy/numpy/pull/26388)) - OpenBLAS on x86\_64 and i686 is built with fewer kernels. Based on benchmarking, there are 5 clusters of performance around these kernels: `PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX`. ([gh-27147](https://github.com/numpy/numpy/pull/27147)) - OpenBLAS on windows is linked without quadmath, simplifying licensing ([gh-27147](https://github.com/numpy/numpy/pull/27147)) - Due to a regression in OpenBLAS on windows, the performance improvements when using multiple threads for OpenBLAS 0.3.26 were reverted. ([gh-27147](https://github.com/numpy/numpy/pull/27147)) ##### `ma.cov` and `ma.corrcoef` are now significantly faster The private function has been refactored along with `ma.cov` and `ma.corrcoef`. They are now significantly faster, particularly on large, masked arrays. ([gh-26285](https://github.com/numpy/numpy/pull/26285)) #### Changes - As `numpy.vecdot` is now a ufunc it has a less precise signature. This is due to the limitations of ufunc's typing stub. ([gh-26313](https://github.com/numpy/numpy/pull/26313)) - `numpy.floor`, `numpy.ceil`, and `numpy.trunc` now won't perform casting to a floating dtype for integer and boolean dtype input arrays. ([gh-26766](https://github.com/numpy/numpy/pull/26766)) ##### `ma.corrcoef` may return a slightly different result A pairwise observation approach is currently used in `ma.corrcoef` to calculate the standard deviations for each pair of variables. This has been changed as it is being used to normalise the covariance, estimated using `ma.cov`, which does not consider the observations for each variable in a pairwise manner, rendering it unnecessary. The normalisation has been replaced by the more appropriate standard deviation for each variable, which significantly reduces the wall time, but will return slightly different estimates of the correlation coefficients in cases where the observations between a pair of variables are not aligned. However, it will return the same estimates in all other cases, including returning the same correlation matrix as `corrcoef` when using a masked array with no masked values. ([gh-26285](https://github.com/numpy/numpy/pull/26285)) ##### Cast-safety fixes in `copyto` and `full` `copyto` now uses NEP 50 correctly and applies this to its cast safety. Python integer to NumPy integer casts and Python float to NumPy float casts are now considered "safe" even if assignment may fail or precision may be lost. This means the following examples change slightly: - `np.copyto(int8_arr, 1000)` previously performed an unsafe/same-kind cast of the Python integer. It will now always raise, to achieve an unsafe cast you must pass an array or NumPy scalar. - `np.copyto(uint8_arr, 1000, casting="safe")` will raise an OverflowError rather than a TypeError due to same-kind casting. - `np.copyto(float32_arr, 1e300, casting="safe")` will overflow to `inf` (float32 cannot hold `1e300`) rather raising a TypeError. Further, only the dtype is used when assigning NumPy scalars (or 0-d arrays), meaning that the following behaves differently: - `np.copyto(float32_arr, np.float64(3.0), casting="safe")` raises. - `np.coptyo(int8_arr, np.int64(100), casting="safe")` raises. Previously, NumPy checked whether the 100 fits the `int8_arr`. This aligns `copyto`, `full`, and `full_like` with the correct NumPy 2 behavior. ([gh-27091](https://github.com/numpy/numpy/pull/27091)) #### Checksums ##### MD5 2323404663c0b2a86362319d7526eb80 numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl 3d4bca8d05eb1eba859e77ff8f91d843 numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl 9bd065f147dbf3f2d59ab57bff4f0074 numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl 47d177533511901cd6bf77f72cbd3d6e numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl 530b7f38f64216f1322b39bc50f36c0c numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d2a3161a10811a675a29a63e25636d83 numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4e9fb20b080f7931791da71708740b83 numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl 776eb610795d63217980a36eb23bf268 numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl 8328b9e2afa4013aaf3e4963349445e2 numpy-2.1.0-cp310-cp310-win32.whl e3184b9979192c8d7b80deb2af16d6bb numpy-2.1.0-cp310-cp310-win_amd64.whl 54571aef9d9081e35bebef10f8d64e75 numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl 841dac2386c1da870a384b64cd31e32b numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl 0fe85239ebe336d2baaddcb0ed001dc7 numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl 772a55a6c46f7b643af4640c2ca68d70 numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 64fefbc527229521cf2a516b778b8aa7 numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5cdb3d262d8c513b0f08cd1b6ba48512 numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl 16140f5de42e87d84b80c350fd014893 numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl 5e37df534d167af1966e099e0be9d94a numpy-2.1.0-cp311-cp311-win32.whl ee443aa000621bed8bb2d6a94afd89b5 numpy-2.1.0-cp311-cp311-win_amd64.whl d8c911fc34a8dad4ed821036563b5758 numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl ec25d637c43ae8229052e62a4f40f2d2 numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl 67c7abca3d0339f17a8543abc0e7bf11 numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl 0d36ec6a64cbef1d727eb608a236ad2c numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl 0eedab574a3b75ec237be910e9717153 numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 73dd2a5d0c85007bf5fdb4b7f66b8451 numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 94fb0cfbc647a34177c766570fad752b numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl de3efbbcd792a1f82d0e3e175ea02ca9 numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl 9a63ebbfb3c4c6eba77ef0723a5dc86f numpy-2.1.0-cp312-cp312-win32.whl c68bc27545ac68c54935a1d0278b18f6 numpy-2.1.0-cp312-cp312-win_amd64.whl f2795bb974af42e2723e32af9b14b66d numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl 2f7426b06a332ea7a20159f3c06d67d1 numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl fcef18e031fc8588227023bac55d9636 numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl cbb5ca4dc798ea397344c93a2549e73e numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl 573213bea3a67452a310355adc7c6aa1 numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 24f8c8a1235aeaedb8f154a984b3c78b numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b2ef762c0ebb02b58a339c1e38f032b2 numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl 50e68cbfeb330aff607969c30251632d numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl 21228342cd1b4ff8c7ec1aea45c07186 numpy-2.1.0-cp313-cp313-win32.whl 8d234b05f0c4faf7b9884a1f0f19c23d numpy-2.1.0-cp313-cp313-win_amd64.whl e0c19ca29fa8e8e051107cd36b978f05 numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl 98756f2ff9adc2cf374c28db77e28312 numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl 69786349d1f392dc6ac3fe00271e941b numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl 4d1481bcb17aaebfc785e005455da223 numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl 1d403eda14369ab023d5ae1c15dce25c numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cdeece2cd6508eeee5a4c3150b58ec59 numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 85347b754d8324c508f7aeb7de243feb numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl 6ff18d36d0940de6c1cc962a61b44bd5 numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl 2f7d60a99c236a8f909bd86b8ed1e3a4 numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl dc610133d9f09e5b3d396859e75c5593 numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 6a2883ee5b16ab5c031037cc63c20e9b numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c914ba2fe3fcdcd04c8fe6a8374ea5fb numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl 4cb2230ffa1cc41329ae29bd69ee08de numpy-2.1.0.tar.gz ##### SHA256 6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8 numpy-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl 0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911 numpy-2.1.0-cp310-cp310-macosx_11_0_arm64.whl 30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673 numpy-2.1.0-cp310-cp310-macosx_14_0_arm64.whl 899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b numpy-2.1.0-cp310-cp310-macosx_14_0_x86_64.whl 08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b numpy-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f numpy-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84 numpy-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl 10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33 numpy-2.1.0-cp310-cp310-musllinux_1_2_aarch64.whl f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211 numpy-2.1.0-cp310-cp310-win32.whl f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa numpy-2.1.0-cp310-cp310-win_amd64.whl 76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce numpy-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1 numpy-2.1.0-cp311-cp311-macosx_14_0_arm64.whl 9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e numpy-2.1.0-cp311-cp311-macosx_14_0_x86_64.whl 54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb numpy-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3 numpy-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36 numpy-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd numpy-2.1.0-cp311-cp311-musllinux_1_2_aarch64.whl ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e numpy-2.1.0-cp311-cp311-win32.whl 0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b numpy-2.1.0-cp311-cp311-win_amd64.whl fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736 numpy-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529 numpy-2.1.0-cp312-cp312-macosx_11_0_arm64.whl dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1 numpy-2.1.0-cp312-cp312-macosx_14_0_arm64.whl b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8 numpy-2.1.0-cp312-cp312-macosx_14_0_x86_64.whl a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745 numpy-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111 numpy-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0 numpy-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574 numpy-2.1.0-cp312-cp312-musllinux_1_2_aarch64.whl c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02 numpy-2.1.0-cp312-cp312-win32.whl a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc numpy-2.1.0-cp312-cp312-win_amd64.whl 8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667 numpy-2.1.0-cp313-cp313-macosx_10_13_x86_64.whl 442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e numpy-2.1.0-cp313-cp313-macosx_11_0_arm64.whl 848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33 numpy-2.1.0-cp313-cp313-macosx_14_0_arm64.whl 54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b numpy-2.1.0-cp313-cp313-macosx_14_0_x86_64.whl 652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195 numpy-2.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977 numpy-2.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1 numpy-2.1.0-cp313-cp313-musllinux_1_1_x86_64.whl 44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62 numpy-2.1.0-cp313-cp313-musllinux_1_2_aarch64.whl ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324 numpy-2.1.0-cp313-cp313-win32.whl de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5 numpy-2.1.0-cp313-cp313-win_amd64.whl 343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06 numpy-2.1.0-cp313-cp313t-macosx_10_13_x86_64.whl f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883 numpy-2.1.0-cp313-cp313t-macosx_11_0_arm64.whl 5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300 numpy-2.1.0-cp313-cp313t-macosx_14_0_arm64.whl 1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d numpy-2.1.0-cp313-cp313t-macosx_14_0_x86_64.whl 3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd numpy-2.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6 numpy-2.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a numpy-2.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl 624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb numpy-2.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl 15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b numpy-2.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d numpy-2.1.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575 numpy-2.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2 numpy-2.1.0-pp310-pypy310_pp73-win_amd64.whl 7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2 numpy-2.1.0.tar.gz ### [`v2.0.2`](https://github.com/numpy/numpy/releases/v2.0.2) [Compare Source](https://github.com/numpy/numpy/compare/v2.0.1...v2.0.2) ### NumPy 2.0.2 Release Notes NumPy 2.0.2 is a maintenance release that fixes bugs and regressions discovered after the 2.0.1 release. The Python versions supported by this release are 3.9-3.12. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bruno Oliveira + - Charles Harris - Chris Sidebottom - Christian Heimes + - Christopher Sidebottom - Mateusz Sokół - Matti Picus - Nathan Goldbaum - Pieter Eendebak - Raghuveer Devulapalli - Ralf Gommers - Sebastian Berg - Yair Chuchem + #### Pull requests merged A total of 19 pull requests were merged for this release. - [#&#8203;27000](https://github.com/numpy/numpy/pull/27000): REL: Prepare for the NumPy 2.0.1 release \[wheel build] - [#&#8203;27001](https://github.com/numpy/numpy/pull/27001): MAINT: prepare 2.0.x for further development - [#&#8203;27021](https://github.com/numpy/numpy/pull/27021): BUG: cfuncs.py: fix crash when sys.stderr is not available - [#&#8203;27022](https://github.com/numpy/numpy/pull/27022): DOC: Fix migration note for `alltrue` and `sometrue` - [#&#8203;27061](https://github.com/numpy/numpy/pull/27061): BUG: use proper input and output descriptor in array_assign_subscript... - [#&#8203;27073](https://github.com/numpy/numpy/pull/27073): BUG: Mirror VQSORT_ENABLED logic in Quicksort - [#&#8203;27074](https://github.com/numpy/numpy/pull/27074): BUG: Bump Highway to latest master - [#&#8203;27077](https://github.com/numpy/numpy/pull/27077): BUG: Off by one in memory overlap check - [#&#8203;27122](https://github.com/numpy/numpy/pull/27122): BUG: Use the new `npyv_loadable_stride_` functions for ldexp and... - [#&#8203;27126](https://github.com/numpy/numpy/pull/27126): BUG: Bump Highway to latest - [#&#8203;27128](https://github.com/numpy/numpy/pull/27128): BUG: add missing error handling in public_dtype_api.c - [#&#8203;27129](https://github.com/numpy/numpy/pull/27129): BUG: fix another cast setup in array_assign_subscript - [#&#8203;27130](https://github.com/numpy/numpy/pull/27130): BUG: Fix building NumPy in FIPS mode - [#&#8203;27131](https://github.com/numpy/numpy/pull/27131): BLD: update vendored Meson for cross-compilation patches - [#&#8203;27146](https://github.com/numpy/numpy/pull/27146): MAINT: Scipy openblas 0.3.27.44.4 - [#&#8203;27151](https://github.com/numpy/numpy/pull/27151): BUG: Do not accidentally store dtype metadata in `np.save` - [#&#8203;27195](https://github.com/numpy/numpy/pull/27195): REV: Revert undef I and document it - [#&#8203;27213](https://github.com/numpy/numpy/pull/27213): BUG: Fix NPY_RAVEL_AXIS on backwards compatible NumPy 2 builds - [#&#8203;27279](https://github.com/numpy/numpy/pull/27279): BUG: Fix array_equal for numeric and non-numeric scalar types #### Checksums ##### MD5 ae4bc199b56d20305984b7465d6fbdf1 numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl ecce0a682c2ccaaa14500b87ffb69f63 numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl a94f34bec8a62dab95ce9883a87a82a6 numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl a0a26dadf73264d31b7a6952b816d7c8 numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl 972f4366651a1a2ef00f630595104d15 numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6cffef937fe67a3879abefd3d2c40fb8 numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3717a5deda20f465720717a1a7a293a6 numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl e31136ecc97bb76b3cb7e86bfc9471ac numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl 9703a02ca6b63ca53f83660d089f4294 numpy-2.0.2-cp310-cp310-win32.whl 12c097ef2c7492282a5514b5c4b68784 numpy-2.0.2-cp310-cp310-win_amd64.whl f11d11bfa3aaf371d2e7fa0160e3208b numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl 86fc67666fc6e27740fde7dacb19c484 numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl 5fd12e0dd7162ea9599c49bbb6e6730e numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl a40f473db729ea10ae401ce71899120a numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl 36ea96e0be954896597543d726157eda numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cfa726b6d5445687020fc4d4f7191e42 numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl dfb9a7b7fe218e931b0dfb885a8250d6 numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl d8bf100186e6cd1b2f27eb617ba9e581 numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl 4fe937eba0fc4d28a65c0ba571c809fc numpy-2.0.2-cp311-cp311-win32.whl a9a0f8e1bc4d825272514896e3b17f15 numpy-2.0.2-cp311-cp311-win_amd64.whl 5ef80ec3b2db487d89c590eb301a7aa4 numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl 1bb398d93422bb9baf63c958ed1aa492 numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl cc8d990a1ad3f4d66d0143ea709ccc99 numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl 4fee57e854bc3e9a267e865740438d53 numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl c2c18eef5118607c0b023f6267ee9774 numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2928ed26d7153a488bfb126424d86c8f numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e32167073981b0a1a419aaaec741773e numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl 80a10803a3122472c1bf6c4617d0d1c5 numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl 39724e27a003b6ce9b1bcbf251e50b4b numpy-2.0.2-cp312-cp312-win32.whl 8319d0b3d23285d4698cbece73b23fde numpy-2.0.2-cp312-cp312-win_amd64.whl da0f655880bbcb53094816b77cd493d1 numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl 47347c028f6ccf47d6a22724111fc96f numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl 26a5c8dec993258522fcef84ef0c040e numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl fe447af86983ef2262e605a941bd46af numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl 96477b8563e6d4e2db710f4915a4c5e0 numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4e8255cdff60de62944aed1f4235ff68 numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 05d8465b87ca983eee044b66bc725391 numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl dcf448ef80720bae7de6724f92499754 numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl 71557f67f24d39db709cc4ccb85ae5b5 numpy-2.0.2-cp39-cp39-win32.whl f5dc31c5530037c4d1d990696b1d041c numpy-2.0.2-cp39-cp39-win_amd64.whl a8f814da1a4509724346c14cd838b5dc numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 918f072481d014229dd5f0f5ba75306f numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl fcbe2e38506fbbbeda509a89063563d3 numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b99eff795ca26f8a513aace76a45a356 numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl d517a3be706295c4a4c8f75f5ee7b261 numpy-2.0.2.tar.gz ##### SHA256 51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04 numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl 8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66 numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl 2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318 numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8 numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326 numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl 984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97 numpy-2.0.2-cp310-cp310-win32.whl c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131 numpy-2.0.2-cp310-cp310-win_amd64.whl 49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448 numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl 11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195 numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl 807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57 numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl 8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669 numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951 numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9 numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15 numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4 numpy-2.0.2-cp311-cp311-win32.whl 286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc numpy-2.0.2-cp311-cp311-win_amd64.whl df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl 8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl 9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692 numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl 671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5 numpy-2.0.2-cp312-cp312-win32.whl cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a numpy-2.0.2-cp312-cp312-win_amd64.whl 9059e10581ce4093f735ed23f3b9d283b9d517ff46009ddd485f1747eb22653c numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl 423e89b23490805d2a5a96fe40ec507407b8ee786d66f7328be214f9679df6dd numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl 2b2955fa6f11907cf7a70dab0d0755159bca87755e831e47932367fc8f2f2d0b numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl 97032a27bd9d8988b9a97a8c4d2c9f2c15a81f61e2f21404d7e8ef00cb5be729 numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl 1e795a8be3ddbac43274f18588329c72939870a16cae810c2b73461c40718ab1 numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f26b258c385842546006213344c50655ff1555a9338e2e5e02a0756dc3e803dd numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5fec9451a7789926bcf7c2b8d187292c9f93ea30284802a0ab3f5be8ab36865d numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl 9189427407d88ff25ecf8f12469d4d39d35bee1db5d39fc5c168c6f088a6956d numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl 905d16e0c60200656500c95b6b8dca5d109e23cb24abc701d41c02d74c6b3afa numpy-2.0.2-cp39-cp39-win32.whl a3f4ab0caa7f053f6797fcd4e1e25caee367db3112ef2b6ef82d749530768c73 numpy-2.0.2-cp39-cp39-win_amd64.whl 7f0a0c6f12e07fa94133c8a67404322845220c06a9e80e85999afe727f7438b8 numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 312950fdd060354350ed123c0e25a71327d3711584beaef30cdaa93320c392d4 numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl 26df23238872200f63518dd2aa984cfca675d82469535dc7162dc2ee52d9dd5c numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385 numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl 883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78 numpy-2.0.2.tar.gz ### [`v2.0.1`](https://github.com/numpy/numpy/releases/v2.0.1) [Compare Source](https://github.com/numpy/numpy/compare/v2.0.0...v2.0.1) ### NumPy 2.0.1 Release Notes NumPy 2.0.1 is a maintenance release that fixes bugs and regressions discovered after the 2.0.0 release. NumPy 2.0.1 is the last planned release in the 2.0.x series, 2.1.0rc1 should be out shortly. The Python versions supported by this release are 3.9-3.12. ***NOTE:*** Do not use the GitHub generated "Source code" files listed in the "Assets", they are garbage. #### Improvements ##### `np.quantile` with method `closest_observation` chooses nearest even order statistic This changes the definition of nearest for border cases from the nearest odd order statistic to nearest even order statistic. The numpy implementation now matches other reference implementations. ([gh-26656](https://github.com/numpy/numpy/pull/26656)) #### Contributors A total of 15 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;vahidmech](https://github.com/vahidmech) + - Alex Herbert + - Charles Harris - Giovanni Del Monte + - Leo Singer - Lysandros Nikolaou - Matti Picus - Nathan Goldbaum - Patrick J. Roddy + - Raghuveer Devulapalli - Ralf Gommers - Rostan Tabet + - Sebastian Berg - Tyler Reddy - Yannik Wicke + #### Pull requests merged A total of 24 pull requests were merged for this release. - [#&#8203;26711](https://github.com/numpy/numpy/pull/26711): MAINT: prepare 2.0.x for further development - [#&#8203;26792](https://github.com/numpy/numpy/pull/26792): TYP: fix incorrect import in `ma/extras.pyi` stub - [#&#8203;26793](https://github.com/numpy/numpy/pull/26793): DOC: Mention '1.25' legacy printing mode in `set_printoptions` - [#&#8203;26794](https://github.com/numpy/numpy/pull/26794): DOC: Remove mention of NaN and NAN aliases from constants - [#&#8203;26821](https://github.com/numpy/numpy/pull/26821): BLD: Fix x86-simd-sort build failure on openBSD - [#&#8203;26822](https://github.com/numpy/numpy/pull/26822): BUG: Ensure output order follows input in numpy.fft - [#&#8203;26823](https://github.com/numpy/numpy/pull/26823): TYP: fix missing sys import in numeric.pyi - [#&#8203;26832](https://github.com/numpy/numpy/pull/26832): DOC: remove hack to override \_add_newdocs_scalars - [#&#8203;26835](https://github.com/numpy/numpy/pull/26835): BUG: avoid side-effect of 'include complex.h' - [#&#8203;26836](https://github.com/numpy/numpy/pull/26836): BUG: fix max_rows and chunked string/datetime reading in `loadtxt` - [#&#8203;26837](https://github.com/numpy/numpy/pull/26837): BUG: fix PyArray_ImportNumPyAPI under -Werror=strict-prototypes - [#&#8203;26856](https://github.com/numpy/numpy/pull/26856): DOC: Update some documentation - [#&#8203;26868](https://github.com/numpy/numpy/pull/26868): BUG: fancy indexing copy - [#&#8203;26869](https://github.com/numpy/numpy/pull/26869): BUG: Mismatched allocation domains in `PyArray_FillWithScalar` - [#&#8203;26870](https://github.com/numpy/numpy/pull/26870): BUG: Handle --f77flags and --f90flags for meson \[wheel build] - [#&#8203;26887](https://github.com/numpy/numpy/pull/26887): BUG: Fix new DTypes and new string promotion when signature is... - [#&#8203;26888](https://github.com/numpy/numpy/pull/26888): BUG: remove numpy.f2py from excludedimports - [#&#8203;26959](https://github.com/numpy/numpy/pull/26959): BUG: Quantile closest_observation to round to nearest even order - [#&#8203;26960](https://github.com/numpy/numpy/pull/26960): BUG: Fix off-by-one error in amount of characters in strip - [#&#8203;26961](https://github.com/numpy/numpy/pull/26961): API: Partially revert unique with return_inverse - [#&#8203;26962](https://github.com/numpy/numpy/pull/26962): BUG,MAINT: Fix utf-8 character stripping memory access - [#&#8203;26963](https://github.com/numpy/numpy/pull/26963): BUG: Fix out-of-bound minimum offset for in1d table method - [#&#8203;26971](https://github.com/numpy/numpy/pull/26971): BUG: fix f2py tests to work with v2 API - [#&#8203;26995](https://github.com/numpy/numpy/pull/26995): BUG: Add object cast to avoid warning with limited API #### Checksums ##### MD5 a3e7d0f361ee7302448cae3c10844dd3 numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl cff8546b69e43ae7b5050f05bdc25df2 numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl 1713d23342528f4f8f4027970f010068 numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl 20020d28606ea58f986a262daa6018f1 numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl db22154ea943a707917aebc79e449bc5 numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fe86cd85f240216f64eb076a62a229d2 numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e0ca08f85150af3cc6050d64e8c0bd27 numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl b76f432906f62e31f0e09c41f3f08b4c numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl 28e8109e4ef524fa5c272d6faec870ae numpy-2.0.1-cp310-cp310-win32.whl 874beffaefdc73da42300ce691c2419c numpy-2.0.1-cp310-cp310-win_amd64.whl 7bbe029f650c924e952da117842d456d numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl 6d3d6ae26c520e93cef7f11ba3951f57 numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl de6082d719437eb7468ae31c407c503e numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl d15a8d95661f8a1dfcc4eb089f9b46e8 numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl c181105e074ee575ccf2c992e40f947a numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 00d22b299343fcdc78fbb0716ead6243 numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d9c4f49dbedb3f3d0158f00db459bd25 numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl 63caa03e0625327ad3a756e01c83a6ca numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl 99d01d768a115d448ca2b4680de15191 numpy-2.0.1-cp311-cp311-win32.whl 8d1a31eccc8b9f077312095b11f62cb2 numpy-2.0.1-cp311-cp311-win_amd64.whl 6cc86f7761a33941d8c1c552186e774b numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl 67c48f352afff5f41108f1b9561d1d5c numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl 1068d4eadcac6a869e0e457853b7e611 numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl dfb667450315fddcf84381fc8ef16892 numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl 69822bbbbb65d8a7d00ae32b435f61cc numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 883ed6c41395fb2def6cc0d64dcb817f numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4b1e9fd464821a7d1de3a8ddf911311e numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl 79e6557f40b8ed8f5973b404d98eab3d numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl 85596f15d4cf85c2f78b4cc12c2cad1e numpy-2.0.1-cp312-cp312-win32.whl 487c7c2944306f62b3770576ce903a91 numpy-2.0.1-cp312-cp312-win_amd64.whl 491093641afa21e65d6e629eb70571fc numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl 5008b16c20f3d7e5a0c7764712f8908e numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl 14633b898f863ea797c40ba1cf226c29 numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl 9054ecb69d21b364e59e94aab24247cb numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl be028cf4bb691921943939de17593dd7 numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9c440ad02ff0a954f696637de37aab2d numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 27aec0d286eabe26d8e9149f4572dba1 numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl b02eda82ee511ee27185c8a4073ea35c numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl cf579b902325e023b2dc444692eb5991 numpy-2.0.1-cp39-cp39-win32.whl 302c8c3118a5f55d9ef35ed8e517f6b1 numpy-2.0.1-cp39-cp39-win_amd64.whl 34c17fe980accfb76c6f348f85b3cfef numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 02676eb84379b0a223288d6fd9d76942 numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl b5300e6fe110bf69e1a8901c5c09e3f8 numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 204a3ea7fb851e08d166c74f73f9b8a3 numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl 5df3c50fc124c3167404d396115898d0 numpy-2.0.1.tar.gz ##### SHA256 0fbb536eac80e27a2793ffd787895242b7f18ef792563d742c2d673bfcb75134 numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl 69ff563d43c69b1baba77af455dd0a839df8d25e8590e79c90fcbe1499ebde42 numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl 1b902ce0e0a5bb7704556a217c4f63a7974f8f43e090aff03fcf262e0b135e02 numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl f1659887361a7151f89e79b276ed8dff3d75877df906328f14d8bb40bb4f5101 numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl 4658c398d65d1b25e1760de3157011a80375da861709abd7cef3bad65d6543f9 numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4127d4303b9ac9f94ca0441138acead39928938660ca58329fe156f84b9f3015 numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e5eeca8067ad04bc8a2a8731183d51d7cbaac66d86085d5f4766ee6bf19c7f87 numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl 9adbd9bb520c866e1bfd7e10e1880a1f7749f1f6e5017686a5fbb9b72cf69f82 numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl 7b9853803278db3bdcc6cd5beca37815b133e9e77ff3d4733c247414e78eb8d1 numpy-2.0.1-cp310-cp310-win32.whl 81b0893a39bc5b865b8bf89e9ad7807e16717f19868e9d234bdaf9b1f1393868 numpy-2.0.1-cp310-cp310-win_amd64.whl 75b4e316c5902d8163ef9d423b1c3f2f6252226d1aa5cd8a0a03a7d01ffc6268 numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl 6e4eeb6eb2fced786e32e6d8df9e755ce5be920d17f7ce00bc38fcde8ccdbf9e numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl a1e01dcaab205fbece13c1410253a9eea1b1c9b61d237b6fa59bcc46e8e89343 numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl a8fc2de81ad835d999113ddf87d1ea2b0f4704cbd947c948d2f5513deafe5a7b numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl 5a3d94942c331dd4e0e1147f7a8699a4aa47dffc11bf8a1523c12af8b2e91bbe numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 15eb4eca47d36ec3f78cde0a3a2ee24cf05ca7396ef808dda2c0ddad7c2bde67 numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b83e16a5511d1b1f8a88cbabb1a6f6a499f82c062a4251892d9ad5d609863fb7 numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl 1f87fec1f9bc1efd23f4227becff04bd0e979e23ca50cc92ec88b38489db3b55 numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl 36d3a9405fd7c511804dc56fc32974fa5533bdeb3cd1604d6b8ff1d292b819c4 numpy-2.0.1-cp311-cp311-win32.whl 08458fbf403bff5e2b45f08eda195d4b0c9b35682311da5a5a0a0925b11b9bd8 numpy-2.0.1-cp311-cp311-win_amd64.whl 6bf4e6f4a2a2e26655717a1983ef6324f2664d7011f6ef7482e8c0b3d51e82ac numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl 7d6fddc5fe258d3328cd8e3d7d3e02234c5d70e01ebe377a6ab92adb14039cb4 numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl 5daab361be6ddeb299a918a7c0864fa8618af66019138263247af405018b04e1 numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl ea2326a4dca88e4a274ba3a4405eb6c6467d3ffbd8c7d38632502eaae3820587 numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl 529af13c5f4b7a932fb0e1911d3a75da204eff023ee5e0e79c1751564221a5c8 numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6790654cb13eab303d8402354fabd47472b24635700f631f041bd0b65e37298a numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cbab9fc9c391700e3e1287666dfd82d8666d10e69a6c4a09ab97574c0b7ee0a7 numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl 99d0d92a5e3613c33a5f01db206a33f8fdf3d71f2912b0de1739894668b7a93b numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl 173a00b9995f73b79eb0191129f2455f1e34c203f559dd118636858cc452a1bf numpy-2.0.1-cp312-cp312-win32.whl bb2124fdc6e62baae159ebcfa368708867eb56806804d005860b6007388df171 numpy-2.0.1-cp312-cp312-win_amd64.whl bfc085b28d62ff4009364e7ca34b80a9a080cbd97c2c0630bb5f7f770dae9414 numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl 8fae4ebbf95a179c1156fab0b142b74e4ba4204c87bde8d3d8b6f9c34c5825ef numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl 72dc22e9ec8f6eaa206deb1b1355eb2e253899d7347f5e2fae5f0af613741d06 numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl ec87f5f8aca726117a1c9b7083e7656a9d0d606eec7299cc067bb83d26f16e0c numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl 1f682ea61a88479d9498bf2091fdcd722b090724b08b31d63e022adc063bad59 numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8efc84f01c1cd7e34b3fb310183e72fcdf55293ee736d679b6d35b35d80bba26 numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3fdabe3e2a52bc4eff8dc7a5044342f8bd9f11ef0934fcd3289a788c0eb10018 numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl 24a0e1befbfa14615b49ba9659d3d8818a0f4d8a1c5822af8696706fbda7310c numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl f9cf5ea551aec449206954b075db819f52adc1638d46a6738253a712d553c7b4 numpy-2.0.1-cp39-cp39-win32.whl e9e81fa9017eaa416c056e5d9e71be93d05e2c3c2ab308d23307a8bc4443c368 numpy-2.0.1-cp39-cp39-win_amd64.whl 61728fba1e464f789b11deb78a57805c70b2ed02343560456190d0501ba37b0f numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 12f5d865d60fb9734e60a60f1d5afa6d962d8d4467c120a1c0cda6eb2964437d numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl eacf3291e263d5a67d8c1a581a8ebbcfd6447204ef58828caf69a5e3e8c75990 numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2c3a346ae20cfd80b6cfd3e60dc179963ef2ea58da5ec074fd3d9e7a1e7ba97f numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl 485b87235796410c3519a699cfe1faab097e509e90ebb05dcd098db2ae87e7b3 numpy-2.0.1.tar.gz ### [`v2.0.0`](https://github.com/numpy/numpy/releases/v2.0.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.4...v2.0.0) ### NumPy 2.0.0 Release Notes NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. This major release includes breaking changes that could not happen in a regular minor (feature) release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0, in addition to these release notes, include: - The [numpy-2-migration-guide](https://numpy.org/devdocs/numpy\_2\_0\_migration_guide.html) - The Numpy 2.0-specific advice in [for downstream package authors](https://numpy.org/devdocs/dev/depending_on_numpy.html) #### Highlights Highlights of this release include: - New features: - A new variable-length string dtype, `numpy.dtypes.StringDType` and a new `numpy.strings` namespace with performant ufuncs for string operations, - Support for `float32` and `longdouble` in all `numpy.fft` functions, - Support for the array API standard in the main `numpy` namespace. - Performance improvements: - Sorting functions `sort`, `argsort`, `partition`, `argpartition` have been accelerated through the use of the Intel x86-simd-sort and Google Highway libraries, and may see large (hardware-specific) speedups, - macOS Accelerate support and binary wheels for macOS >=14, with significant performance improvements for linear algebra operations on macOS, and wheels that are about 3 times smaller, - `numpy.char` fixed-length string operations have been accelerated by implementing ufuncs that also support `numpy.dtypes.StringDType` in addition to the fixed-length string dtypes, - A new tracing and introspection API, `numpy.lib.introspect.opt_func_info`, to determine which hardware-specific kernels are available and will be dispatched to. - `numpy.save` now uses pickle protocol version 4 for saving arrays with object dtype, which allows for pickle objects larger than 4GB and improves saving speed by about 5% for large arrays. - Python API improvements: - A clear split between public and private API, with a new module structure and each public function now available in a single place. - Many removals of non-recommended functions and aliases. This should make it easier to learn and use NumPy. The number of objects in the main namespace decreased by ~10% and in `numpy.lib` by ~80%. - ` Canonical dtype names and a new `numpy.isdtype\` introspection function, - C API improvements: - A new public C API for creating custom dtypes, - Many outdated functions and macros removed, and private internals hidden to ease future extensibility, - New, easier to use, initialization functions: `PyArray_ImportNumPyAPI` and `PyUFunc_ImportUFuncAPI`. - Improved behavior: - Improvements to type promotion behavior was changed by adopting NEP 50. This fixes many user surprises about promotions which previously often depended on data values of input arrays rather than only their dtypes. Please see the NEP and the numpy-2-migration-guide for details as this change can lead to changes in output dtypes and lower precision results for mixed-dtype operations. - The default integer type on Windows is now `int64` rather than `int32`, matching the behavior on other platforms, - The maximum number of array dimensions is changed from 32 to 64 - Documentation: - The reference guide navigation was significantly improved, and there is now documentation on NumPy's module structure, - The building from source documentation was completely rewritten, Furthermore there are many changes to NumPy internals, including continuing to migrate code from C to C++, that will make it easier to improve and maintain NumPy in the future. The "no free lunch" theorem dictates that there is a price to pay for all these API and behavior improvements and better future extensibility. This price is: 1. Backwards compatibility. There are a significant number of breaking changes to both the Python and C APIs. In the majority of cases, there are clear error messages that will inform the user how to adapt their code. However, there are also changes in behavior for which it was not possible to give such an error message - these cases are all covered in the Deprecation and Compatibility sections below, and in the numpy-2-migration-guide. Note that there is a `ruff` mode to auto-fix many things in Python code. 2. Breaking changes to the NumPy ABI. As a result, binaries of packages that use the NumPy C API and were built against a NumPy 1.xx release will not work with NumPy 2.0. On import, such packages will see an `ImportError` with a message about binary incompatibility. It is possible to build binaries against NumPy 2.0 that will work at runtime with both NumPy 2.0 and 1.x. See numpy-2-abi-handling for more details. **All downstream packages that depend on the NumPy ABI are advised to do a new release built against NumPy 2.0 and verify that that release works with both 2.0 and 1.26 - ideally in the period between 2.0.0rc1 (which will be ABI-stable) and the final 2.0.0 release to avoid problems for their users.** The Python versions supported by this release are 3.9-3.12. #### NumPy 2.0 Python API removals - `np.geterrobj`, `np.seterrobj` and the related ufunc keyword argument `extobj=` have been removed. The preferred replacement for all of these is using the context manager `with np.errstate():`. ([gh-23922](https://github.com/numpy/numpy/pull/23922)) - `np.cast` has been removed. The literal replacement for `np.cast[dtype](arg)` is `np.asarray(arg, dtype=dtype)`. - `np.source` has been removed. The preferred replacement is `inspect.getsource`. - `np.lookfor` has been removed. ([gh-24144](https://github.com/numpy/numpy/pull/24144)) - `numpy.who` has been removed. As an alternative for the removed functionality, one can use a variable explorer that is available in IDEs such as Spyder or Jupyter Notebook. ([gh-24321](https://github.com/numpy/numpy/pull/24321)) - Warnings and exceptions present in `numpy.exceptions`, e.g, `numpy.exceptions.ComplexWarning`, `numpy.exceptions.VisibleDeprecationWarning`, are no longer exposed in the main namespace. - Multiple niche enums, expired members and functions have been removed from the main namespace, such as: `ERR_*`, `SHIFT_*`, `np.fastCopyAndTranspose`, `np.kernel_version`, `np.numarray`, `np.oldnumeric` and `np.set_numeric_ops`. ([gh-24316](https://github.com/numpy/numpy/pull/24316)) - Replaced `from ... import *` in the `numpy/__init__.py` with explicit imports. As a result, these main namespace members got removed: `np.FLOATING_POINT_SUPPORT`, `np.FPE_*`, `np.NINF`, `np.PINF`, `np.NZERO`, `np.PZERO`, `np.CLIP`, `np.WRAP`, `np.WRAP`, `np.RAISE`, `np.BUFSIZE`, `np.UFUNC_BUFSIZE_DEFAULT`, `np.UFUNC_PYVALS_NAME`, `np.ALLOW_THREADS`, `np.MAXDIMS`, `np.MAY_SHARE_EXACT`, `np.MAY_SHARE_BOUNDS`, `add_newdoc`, `np.add_docstring` and `np.add_newdoc_ufunc`. ([gh-24357](https://github.com/numpy/numpy/pull/24357)) - Alias `np.float_` has been removed. Use `np.float64` instead. - Alias `np.complex_` has been removed. Use `np.complex128` instead. - Alias `np.longfloat` has been removed. Use `np.longdouble` instead. - Alias `np.singlecomplex` has been removed. Use `np.complex64` instead. - Alias `np.cfloat` has been removed. Use `np.complex128` instead. - Alias `np.longcomplex` has been removed. Use `np.clongdouble` instead. - Alias `np.clongfloat` has been removed. Use `np.clongdouble` instead. - Alias `np.string_` has been removed. Use `np.bytes_` instead. - Alias `np.unicode_` has been removed. Use `np.str_` instead. - Alias `np.Inf` has been removed. Use `np.inf` instead. - Alias `np.Infinity` has been removed. Use `np.inf` instead. - Alias `np.NaN` has been removed. Use `np.nan` instead. - Alias `np.infty` has been removed. Use `np.inf` instead. - Alias `np.mat` has been removed. Use `np.asmatrix` instead. - `np.issubclass_` has been removed. Use the `issubclass` builtin instead. - `np.asfarray` has been removed. Use `np.asarray` with a proper dtype instead. - `np.set_string_function` has been removed. Use `np.set_printoptions` instead with a formatter for custom printing of NumPy objects. - `np.tracemalloc_domain` is now only available from `np.lib`. - `np.recfromcsv` and `recfromtxt` are now only available from `np.lib.npyio`. - `np.issctype`, `np.maximum_sctype`, `np.obj2sctype`, `np.sctype2char`, `np.sctypes`, `np.issubsctype` were all removed from the main namespace without replacement, as they where niche members. - Deprecated `np.deprecate` and `np.deprecate_with_doc` has been removed from the main namespace. Use `DeprecationWarning` instead. - Deprecated `np.safe_eval` has been removed from the main namespace. Use `ast.literal_eval` instead. ([gh-24376](https://github.com/numpy/numpy/pull/24376)) - `np.find_common_type` has been removed. Use `numpy.promote_types` or `numpy.result_type` instead. To achieve semantics for the `scalar_types` argument, use `numpy.result_type` and pass `0`, `0.0`, or `0j` as a Python scalar instead. - `np.round_` has been removed. Use `np.round` instead. - `np.nbytes` has been removed. Use `np.dtype(<dtype>).itemsize` instead. ([gh-24477](https://github.com/numpy/numpy/pull/24477)) - `np.compare_chararrays` has been removed from the main namespace. Use `np.char.compare_chararrays` instead. - The `charrarray` in the main namespace has been deprecated. It can be imported without a deprecation warning from `np.char.chararray` for now, but we are planning to fully deprecate and remove `chararray` in the future. - `np.format_parser` has been removed from the main namespace. Use `np.rec.format_parser` instead. ([gh-24587](https://github.com/numpy/numpy/pull/24587)) - Support for seven data type string aliases has been removed from `np.dtype`: `int0`, `uint0`, `void0`, `object0`, `str0`, `bytes0` and `bool8`. ([gh-24807](https://github.com/numpy/numpy/pull/24807)) - The experimental `numpy.array_api` submodule has been removed. Use the main `numpy` namespace for regular usage instead, or the separate `array-api-strict` package for the compliance testing use case for which `numpy.array_api` was mostly used. ([gh-25911](https://github.com/numpy/numpy/pull/25911)) ##### `__array_prepare__` is removed UFuncs called `__array_prepare__` before running computations for normal ufunc calls (not generalized ufuncs, reductions, etc.). The function was also called instead of `__array_wrap__` on the results of some linear algebra functions. It is now removed. If you use it, migrate to `__array_ufunc__` or rely on `__array_wrap__` which is called with a context in all cases, although only after the result array is filled. In those code paths, `__array_wrap__` will now be passed a base class, rather than a subclass array. ([gh-25105](https://github.com/numpy/numpy/pull/25105)) #### Deprecations - `np.compat` has been deprecated, as Python 2 is no longer supported. - `numpy.int8` and similar classes will no longer support conversion of out of bounds python integers to integer arrays. For example, conversion of 255 to int8 will not return -1. `numpy.iinfo(dtype)` can be used to check the machine limits for data types. For example, `np.iinfo(np.uint16)` returns min = 0 and max = 65535. `np.array(value).astype(dtype)` will give the desired result. - `np.safe_eval` has been deprecated. `ast.literal_eval` should be used instead. ([gh-23830](https://github.com/numpy/numpy/pull/23830)) - `np.recfromcsv`, `np.recfromtxt`, `np.disp`, `np.get_array_wrap`, `np.maximum_sctype`, `np.deprecate` and `np.deprecate_with_doc` have been deprecated. ([gh-24154](https://github.com/numpy/numpy/pull/24154)) - `np.trapz` has been deprecated. Use `np.trapezoid` or a `scipy.integrate` function instead. - `np.in1d` has been deprecated. Use `np.isin` instead. - Alias `np.row_stack` has been deprecated. Use `np.vstack` directly. ([gh-24445](https://github.com/numpy/numpy/pull/24445)) - `__array_wrap__` is now passed `arr, context, return_scalar` and support for implementations not accepting all three are deprecated. Its signature should be `__array_wrap__(self, arr, context=None, return_scalar=False)` ([gh-25409](https://github.com/numpy/numpy/pull/25409)) - Arrays of 2-dimensional vectors for `np.cross` have been deprecated. Use arrays of 3-dimensional vectors instead. ([gh-24818](https://github.com/numpy/numpy/pull/24818)) - `np.dtype("a")` alias for `np.dtype(np.bytes_)` was deprecated. Use `np.dtype("S")` alias instead. ([gh-24854](https://github.com/numpy/numpy/pull/24854)) - Use of keyword arguments `x` and `y` with functions `assert_array_equal` and `assert_array_almost_equal` has been deprecated. Pass the first two arguments as positional arguments instead. ([gh-24978](https://github.com/numpy/numpy/pull/24978)) ##### `numpy.fft` deprecations for n-D transforms with None values in arguments Using `fftn`, `ifftn`, `rfftn`, `irfftn`, `fft2`, `ifft2`, `rfft2` or `irfft2` with the `s` parameter set to a value that is not `None` and the `axes` parameter set to `None` has been deprecated, in line with the array API standard. To retain current behaviour, pass a sequence \[0, ..., k-1] to `axes` for an array of dimension k. Furthermore, passing an array to `s` which contains `None` values is deprecated as the parameter is documented to accept a sequence of integers in both the NumPy docs and the array API specification. To use the default behaviour of the corresponding 1-D transform, pass the value matching the default for its `n` parameter. To use the default behaviour for every axis, the `s` argument can be omitted. ([gh-25495](https://github.com/numpy/numpy/pull/25495)) ##### `np.linalg.lstsq` now defaults to a new `rcond` value `numpy.linalg.lstsq` now uses the new rcond value of the machine precision times `max(M, N)`. Previously, the machine precision was used but a FutureWarning was given to notify that this change will happen eventually. That old behavior can still be achieved by passing `rcond=-1`. ([gh-25721](https://github.com/numpy/numpy/pull/25721)) #### Expired deprecations - The `np.core.umath_tests` submodule has been removed from the public API. (Deprecated in NumPy 1.15) ([gh-23809](https://github.com/numpy/numpy/pull/23809)) - The `PyDataMem_SetEventHook` deprecation has expired and it is removed. Use `tracemalloc` and the `np.lib.tracemalloc_domain` domain. (Deprecated in NumPy 1.23) ([gh-23921](https://github.com/numpy/numpy/pull/23921)) - The deprecation of `set_numeric_ops` and the C functions `PyArray_SetNumericOps` and `PyArray_GetNumericOps` has been expired and the functions removed. (Deprecated in NumPy 1.16) ([gh-23998](https://github.com/numpy/numpy/pull/23998)) - The `fasttake`, `fastclip`, and `fastputmask` `ArrFuncs` deprecation is now finalized. - The deprecated function `fastCopyAndTranspose` and its C counterpart are now removed. - The deprecation of `PyArray_ScalarFromObject` is now finalized. ([gh-24312](https://github.com/numpy/numpy/pull/24312)) - `np.msort` has been removed. For a replacement, `np.sort(a, axis=0)` should be used instead. ([gh-24494](https://github.com/numpy/numpy/pull/24494)) - `np.dtype(("f8", 1)` will now return a shape 1 subarray dtype rather than a non-subarray one. ([gh-25761](https://github.com/numpy/numpy/pull/25761)) - Assigning to the `.data` attribute of an ndarray is disallowed and will raise. - `np.binary_repr(a, width)` will raise if width is too small. - Using `NPY_CHAR` in `PyArray_DescrFromType()` will raise, use `NPY_STRING` `NPY_UNICODE`, or `NPY_VSTRING` instead. ([gh-25794](https://github.com/numpy/numpy/pull/25794)) #### Compatibility notes ##### `loadtxt` and `genfromtxt` default encoding changed `loadtxt` and `genfromtxt` now both default to `encoding=None` which may mainly modify how `converters` work. These will now be passed `str` rather than `bytes`. Pass the encoding explicitly to always get the new or old behavior. For `genfromtxt` the change also means that returned values will now be unicode strings rather than bytes. ([gh-25158](https://github.com/numpy/numpy/pull/25158)) ##### `f2py` compatibility notes - `f2py` will no longer accept ambiguous `-m` and `.pyf` CLI combinations. When more than one `.pyf` file is passed, an error is raised. When both `-m` and a `.pyf` is passed, a warning is emitted and the `-m` provided name is ignored. ([gh-25181](https://github.com/numpy/numpy/pull/25181)) - The `f2py.compile()` helper has been removed because it leaked memory, has been marked as experimental for several years now, and was implemented as a thin `subprocess.run` wrapper. It was also one of the test bottlenecks. See [gh-25122](https://github.com/numpy/numpy/issues/25122) for the full rationale. It also used several `np.distutils` features which are too fragile to be ported to work with `meson`. - Users are urged to replace calls to `f2py.compile` with calls to `subprocess.run("python", "-m", "numpy.f2py",...` instead, and to use environment variables to interact with `meson`. [Native files](https://mesonbuild.com/Machine-files.html) are also an option. ([gh-25193](https://github.com/numpy/numpy/pull/25193)) ##### Minor changes in behavior of sorting functions Due to algorithmic changes and use of SIMD code, sorting functions with methods that aren't stable may return slightly different results in 2.0.0 compared to 1.26.x. This includes the default method of `numpy.argsort` and `numpy.argpartition`. ##### Removed ambiguity when broadcasting in `np.solve` The broadcasting rules for `np.solve(a, b)` were ambiguous when `b` had 1 fewer dimensions than `a`. This has been resolved in a backward-incompatible way and is now compliant with the Array API. The old behaviour can be reconstructed by using `np.solve(a, b[..., None])[..., 0]`. ([gh-25914](https://github.com/numpy/numpy/pull/25914)) ##### Modified representation for `Polynomial` The representation method for `numpy.polynomial.polynomial.Polynomial` was updated to include the domain in the representation. The plain text and latex representations are now consistent. For example the output of `str(np.polynomial.Polynomial([1, 1], domain=[.1, .2]))` used to be `1.0 + 1.0 x`, but now is `1.0 + 1.0 (-3.0000000000000004 + 20.0 x)`. ([gh-21760](https://github.com/numpy/numpy/pull/21760)) #### C API changes - The `PyArray_CGT`, `PyArray_CLT`, `PyArray_CGE`, `PyArray_CLE`, `PyArray_CEQ`, `PyArray_CNE` macros have been removed. - `PyArray_MIN` and `PyArray_MAX` have been moved from `ndarraytypes.h` to `npy_math.h`. ([gh-24258](https://github.com/numpy/numpy/pull/24258)) - A C API for working with `numpy.dtypes.StringDType` arrays has been exposed. This includes functions for acquiring and releasing mutexes which lock access to the string data, as well as packing and unpacking UTF-8 bytestreams from array entries. - `NPY_NTYPES` has been renamed to `NPY_NTYPES_LEGACY` as it does not include new NumPy built-in DTypes. In particular the new string DType will likely not work correctly with code that handles legacy DTypes. ([gh-25347](https://github.com/numpy/numpy/pull/25347)) - The C-API now only exports the static inline function versions of the array accessors (previously this depended on using "deprecated API"). While we discourage it, the struct fields can still be used directly. ([gh-25789](https://github.com/numpy/numpy/pull/25789)) - NumPy now defines `PyArray_Pack` to set an individual memory address. Unlike `PyArray_SETITEM` this function is equivalent to setting an individual array item and does not require a NumPy array input. ([gh-25954](https://github.com/numpy/numpy/pull/25954)) - The `->f` slot has been removed from `PyArray_Descr`. If you use this slot, replace accessing it with `PyDataType_GetArrFuncs` (see its documentation and the `numpy-2-migration-guide`). In some cases using other functions like `PyArray_GETITEM` may be an alternatives. - `PyArray_GETITEM` and `PyArray_SETITEM` now require the import of the NumPy API table to be used and are no longer defined in `ndarraytypes.h`. ([gh-25812](https://github.com/numpy/numpy/pull/25812)) - Due to runtime dependencies, the definition for functionality accessing the dtype flags was moved from `numpy/ndarraytypes.h` and is only available after including `numpy/ndarrayobject.h` as it requires `import_array()`. This includes `PyDataType_FLAGCHK`, `PyDataType_REFCHK` and `NPY_BEGIN_THREADS_DESCR`. - The dtype flags on `PyArray_Descr` must now be accessed through the `PyDataType_FLAGS` inline function to be compatible with both 1.x and 2.x. This function is defined in `npy_2_compat.h` to allow backporting. Most or all users should use `PyDataType_FLAGCHK` which is available on 1.x and does not require backporting. Cython users should use Cython 3. Otherwise access will go through Python unless they use `PyDataType_FLAGCHK` instead. ([gh-25816](https://github.com/numpy/numpy/pull/25816)) ##### Datetime functionality exposed in the C API and Cython bindings The functions `NpyDatetime_ConvertDatetime64ToDatetimeStruct`, `NpyDatetime_ConvertDatetimeStructToDatetime64`, `NpyDatetime_ConvertPyDateTimeToDatetimeStruct`, `NpyDatetime_GetDatetimeISO8601StrLen`, `NpyDatetime_MakeISO8601Datetime`, and `NpyDatetime_ParseISO8601Datetime` have been added to the C API to facilitate converting between strings, Python datetimes, and NumPy datetimes in external libraries. ([gh-21199](https://github.com/numpy/numpy/pull/21199)) ##### Const correctness for the generalized ufunc C API The NumPy C API's functions for constructing generalized ufuncs (`PyUFunc_FromFuncAndData`, `PyUFunc_FromFuncAndDataAndSignature`, `PyUFunc_FromFuncAndDataAndSignatureAndIdentity`) take `types` and `data` arguments that are not modified by NumPy's internals. Like the `name` and `doc` arguments, third-party Python extension modules are likely to supply these arguments from static constants. The `types` and `data` arguments are now const-correct: they are declared as `const char *types` and `void *const *data`, respectively. C code should not be affected, but C++ code may be. ([gh-23847](https://github.com/numpy/numpy/pull/23847)) ##### Larger `NPY_MAXDIMS` and `NPY_MAXARGS`, `NPY_RAVEL_AXIS` introduced `NPY_MAXDIMS` is now 64, you may want to review its use. This is usually used in a stack allocation, where the increase should be safe. However, we do encourage generally to remove any use of `NPY_MAXDIMS` and `NPY_MAXARGS` to eventually allow removing the constraint completely. For the conversion helper and C-API functions mirroring Python ones such as `take`, `NPY_MAXDIMS` was used to mean `axis=None`. Such usage must be replaced with `NPY_RAVEL_AXIS`. See also `migration_maxdims`. ([gh-25149](https://github.com/numpy/numpy/pull/25149)) ##### `NPY_MAXARGS` not constant and `PyArrayMultiIterObject` size change Since `NPY_MAXARGS` was increased, it is now a runtime constant and not compile-time constant anymore. We expect almost no users to notice this. But if used for stack allocations it now must be replaced with a custom constant using `NPY_MAXARGS` as an additional runtime check. The `sizeof(PyArrayMultiIterObject)` no longer includes the full size of the object. We expect nobody to notice this change. It was necessary to avoid issues with Cython. ([gh-25271](https://github.com/numpy/numpy/pull/25271)) ##### Required changes for custom legacy user dtypes In order to improve our DTypes it is unfortunately necessary to break the ABI, which requires some changes for dtypes registered with `PyArray_RegisterDataType`. Please see the documentation of `PyArray_RegisterDataType` for how to adapt your code and achieve compatibility with both 1.x and 2.x. ([gh-25792](https://github.com/numpy/numpy/pull/25792)) ##### New Public DType API The C implementation of the NEP 42 DType API is now public. While the DType API has shipped in NumPy for a few versions, it was only usable in sessions with a special environment variable set. It is now possible to write custom DTypes outside of NumPy using the new DType API and the normal `import_array()` mechanism for importing the numpy C API. See `dtype-api` for more details about the API. As always with a new feature, please report any bugs you run into implementing or using a new DType. It is likely that downstream C code that works with dtypes will need to be updated to work correctly with new DTypes. ([gh-25754](https://github.com/numpy/numpy/pull/25754)) ##### New C-API import functions We have now added `PyArray_ImportNumPyAPI` and `PyUFunc_ImportUFuncAPI` as static inline functions to import the NumPy C-API tables. The new functions have two advantages over `import_array` and `import_ufunc`: - They check whether the import was already performed and are light-weight if not, allowing to add them judiciously (although this is not preferable in most cases). - The old mechanisms were macros rather than functions which included a `return` statement. The `PyArray_ImportNumPyAPI()` function is included in `npy_2_compat.h` for simpler backporting. ([gh-25866](https://github.com/numpy/numpy/pull/25866)) ##### Structured dtype information access through functions The dtype structures fields `c_metadata`, `names`, `fields`, and `subarray` must now be accessed through new functions following the same names, such as `PyDataType_NAMES`. Direct access of the fields is not valid as they do not exist for all `PyArray_Descr` instances. The `metadata` field is kept, but the macro version should also be preferred. ([gh-25802](https://github.com/numpy/numpy/pull/25802)) ##### Descriptor `elsize` and `alignment` access Unless compiling only with NumPy 2 support, the `elsize` and `aligment` fields must now be accessed via `PyDataType_ELSIZE`, `PyDataType_SET_ELSIZE`, and `PyDataType_ALIGNMENT`. In cases where the descriptor is attached to an array, we advise using `PyArray_ITEMSIZE` as it exists on all NumPy versions. Please see `migration_c_descr` for more information. ([gh-25943](https://github.com/numpy/numpy/pull/25943)) #### NumPy 2.0 C API removals - `npy_interrupt.h` and the corresponding macros like `NPY_SIGINT_ON` have been removed. We recommend querying `PyErr_CheckSignals()` or `PyOS_InterruptOccurred()` periodically (these do currently require holding the GIL though). - The `noprefix.h` header has been removed. Replace missing symbols with their prefixed counterparts (usually an added `NPY_` or `npy_`). ([gh-23919](https://github.com/numpy/numpy/pull/23919)) - `PyUFunc_GetPyVals`, `PyUFunc_handlefperr`, and `PyUFunc_checkfperr` have been removed. If needed, a new backwards compatible function to raise floating point errors could be restored. Reason for removal: there are no known users and the functions would have made `with np.errstate()` fixes much more difficult). ([gh-23922](https://github.com/numpy/numpy/pull/23922)) - The `numpy/old_defines.h` which was part of the API deprecated since NumPy 1.7 has been removed. This removes macros of the form `PyArray_CONSTANT`. The [replace_old_macros.sed](https://github.com/numpy/numpy/blob/main/tools/replace_old_macros.sed) script may be useful to convert them to the `NPY_CONSTANT` version. ([gh-24011](https://github.com/numpy/numpy/pull/24011)) - The `legacy_inner_loop_selector` member of the ufunc struct is removed to simplify improvements to the dispatching system. There are no known users overriding or directly accessing this member. ([gh-24271](https://github.com/numpy/numpy/pull/24271)) - `NPY_INTPLTR` has been removed to avoid confusion (see `intp` redefinition). ([gh-24888](https://github.com/numpy/numpy/pull/24888)) - The advanced indexing `MapIter` and related API has been removed. The (truly) public part of it was not well tested and had only one known user (Theano). Making it private will simplify improvements to speed up `ufunc.at`, make advanced indexing more maintainable, and was important for increasing the maximum number of dimensions of arrays to 64. Please let us know if this API is important to you so we can find a solution together. ([gh-25138](https://github.com/numpy/numpy/pull/25138)) - The `NPY_MAX_ELSIZE` macro has been removed, as it only ever reflected builtin numeric types and served no internal purpose. ([gh-25149](https://github.com/numpy/numpy/pull/25149)) - `PyArray_REFCNT` and `NPY_REFCOUNT` are removed. Use `Py_REFCNT` instead. ([gh-25156](https://github.com/numpy/numpy/pull/25156)) - `PyArrayFlags_Type` and `PyArray_NewFlagsObject` as well as `PyArrayFlagsObject` are private now. There is no known use-case; use the Python API if needed. - `PyArray_MoveInto`, `PyArray_CastTo`, `PyArray_CastAnyTo` are removed use `PyArray_CopyInto` and if absolutely needed `PyArray_CopyAnyInto` (the latter does a flat copy). - `PyArray_FillObjectArray` is removed, its only true use was for implementing `np.empty`. Create a new empty array or use `PyArray_FillWithScalar()` (decrefs existing objects). - `PyArray_CompareUCS4` and `PyArray_CompareString` are removed. Use the standard C string comparison functions. - `PyArray_ISPYTHON` is removed as it is misleading, has no known use-cases, and is easy to replace. - `PyArray_FieldNames` is removed, as it is unclear what it would be useful for. It also has incorrect semantics in some possible use-cases. - `PyArray_TypestrConvert` is removed, since it seems a misnomer and unlikely to be used by anyone. If you know the size or are limited to few types, just use it explicitly, otherwise go via Python strings. ([gh-25292](https://github.com/numpy/numpy/pull/25292)) - `PyDataType_GetDatetimeMetaData` is removed, it did not actually do anything since at least NumPy 1.7. ([gh-25802](https://github.com/numpy/numpy/pull/25802)) - `PyArray_GetCastFunc` is removed. Note that custom legacy user dtypes can still provide a castfunc as their implementation, but any access to them is now removed. The reason for this is that NumPy never used these internally for many years. If you use simple numeric types, please just use C casts directly. In case you require an alternative, please let us know so we can create new API such as `PyArray_CastBuffer()` which could use old or new cast functions depending on the NumPy version. ([gh-25161](https://github.com/numpy/numpy/pull/25161)) #### New Features ##### `np.add` was extended to work with `unicode` and `bytes` dtypes. > ([gh-24858](https://github.com/numpy/numpy/pull/24858)) ##### A new `bitwise_count` function This new function counts the number of 1-bits in a number. `numpy.bitwise_count` works on all the numpy integer types and integer-like objects. ```python >>> a = np.array([2**i - 1 for i in range(16)]) >>> np.bitwise_count(a) array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=uint8) ``` ([gh-19355](https://github.com/numpy/numpy/pull/19355)) ##### macOS Accelerate support, including the ILP64 Support for the updated Accelerate BLAS/LAPACK library, including ILP64 (64-bit integer) support, in macOS 13.3 has been added. This brings arm64 support, and significant performance improvements of up to 10x for commonly used linear algebra operations. When Accelerate is selected at build time, or if no explicit BLAS library selection is done, the 13.3+ version will automatically be used if available. ([gh-24053](https://github.com/numpy/numpy/pull/24053)) Binary wheels are also available. On macOS >=14.0, users who install NumPy from PyPI will get wheels built against Accelerate rather than OpenBLAS. ([gh-25255](https://github.com/numpy/numpy/pull/25255)) ##### Option to use weights for quantile and percentile functions A `weights` keyword is now available for `numpy.quantile`, `numpy.percentile`, `numpy.nanquantile` and `numpy.nanpercentile`. Only `method="inverted_cdf"` supports weights. ([gh-24254](https://github.com/numpy/numpy/pull/24254)) ##### Improved CPU optimization tracking A new tracer mechanism is available which enables tracking of the enabled targets for each optimized function (i.e., that uses hardware-specific SIMD instructions) in the NumPy library. With this enhancement, it becomes possible to precisely monitor the enabled CPU dispatch targets for the dispatched functions. A new function named `opt_func_info` has been added to the new namespace `numpy.lib.introspect`, offering this tracing capability. This function allows you to retrieve information about the enabled targets based on function names and data type signatures. ([gh-24420](https://github.com/numpy/numpy/pull/24420)) ##### A new Meson backend for `f2py` `f2py` in compile mode (i.e. `f2py -c`) now accepts the `--backend meson` option. This is the default option for Python >=3.12. For older Python versions, `f2py` will still default to `--backend distutils`. To support this in realistic use-cases, in compile mode `f2py` takes a `--dep` flag one or many times which maps to `dependency()` calls in the `meson` backend, and does nothing in the `distutils` backend. There are no changes for users of `f2py` only as a code generator, i.e. without `-c`. ([gh-24532](https://github.com/numpy/numpy/pull/24532)) ##### `bind(c)` support for `f2py` Both functions and subroutines can be annotated with `bind(c)`. `f2py` will handle both the correct type mapping, and preserve the unique label for other C interfaces. **Note:** `bind(c, name = 'routine_name_other_than_fortran_routine')` is not honored by the `f2py` bindings by design, since `bind(c)` with the `name` is meant to guarantee only the same name in C and Fortran, not in Python and Fortran. ([gh-24555](https://github.com/numpy/numpy/pull/24555)) ##### A new `strict` option for several testing functions The `strict` keyword is now available for `numpy.testing.assert_allclose`, `numpy.testing.assert_equal`, and `numpy.testing.assert_array_less`. Setting `strict=True` will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type. ([gh-24680](https://github.com/numpy/numpy/pull/24680), [gh-24770](https://github.com/numpy/numpy/pull/24770), [gh-24775](https://github.com/numpy/numpy/pull/24775)) ##### Add `np.core.umath.find` and `np.core.umath.rfind` UFuncs Add two `find` and `rfind` UFuncs that operate on unicode or byte strings and are used in `np.char`. They operate similar to `str.find` and `str.rfind`. ([gh-24868](https://github.com/numpy/numpy/pull/24868)) ##### `diagonal` and `trace` for `numpy.linalg` `numpy.linalg.diagonal` and `numpy.linalg.trace` have been added, which are array API standard-compatible variants of `numpy.diagonal` and `numpy.trace`. They differ in the default axis selection which define 2-D sub-arrays. ([gh-24887](https://github.com/numpy/numpy/pull/24887)) ##### New `long` and `ulong` dtypes `numpy.long` and `numpy.ulong` have been added as NumPy integers mapping to C's `long` and `unsigned long`. Prior to NumPy 1.24, `numpy.long` was an alias to Python's `int`. ([gh-24922](https://github.com/numpy/numpy/pull/24922)) ##### `svdvals` for `numpy.linalg` `numpy.linalg.svdvals` has been added. It computes singular values for (a stack of) matrices. Executing `np.svdvals(x)` is the same as calling `np.svd(x, compute_uv=False, hermitian=False)`. This function is compatible with the array API standard. ([gh-24940](https://github.com/numpy/numpy/pull/24940)) ##### A new `isdtype` function `numpy.isdtype` was added to provide a canonical way to classify NumPy's dtypes in compliance with the array API standard. ([gh-25054](https://github.com/numpy/numpy/pull/25054)) ##### A new `astype` function `numpy.astype` was added to provide an array API standard-compatible alternative to the `numpy.ndarray.astype` method. ([gh-25079](https://github.com/numpy/numpy/pull/25079)) ##### Array API compatible functions' aliases 13 aliases for existing functions were added to improve compatibility with the array API standard: - Trigonometry: `acos`, `acosh`, `asin`, `asinh`, `atan`, `atanh`, `atan2`. - Bitwise: `bitwise_left_shift`, `bitwise_invert`, `bitwise_right_shift`. - Misc: `concat`, `permute_dims`, `pow`. - In `numpy.linalg`: `tensordot`, `matmul`. ([gh-25086](https://github.com/numpy/numpy/pull/25086)) ##### New `unique_*` functions The `numpy.unique_all`, `numpy.unique_counts`, `numpy.unique_inverse`, and `numpy.unique_values` functions have been added. They provide functionality of `numpy.unique` with different sets of flags. They are array API standard-compatible, and because the number of arrays they return does not depend on the values of input arguments, they are easier to target for JIT compilation. ([gh-25088](https://github.com/numpy/numpy/pull/25088)) ##### Matrix transpose support for ndarrays NumPy now offers support for calculating the matrix transpose of an array (or stack of arrays). The matrix transpose is equivalent to swapping the last two axes of an array. Both `np.ndarray` and `np.ma.MaskedArray` now expose a `.mT` attribute, and there is a matching new `numpy.matrix_transpose` function. ([gh-23762](https://github.com/numpy/numpy/pull/23762)) ##### Array API compatible functions for `numpy.linalg` Six new functions and two aliases were added to improve compatibility with the Array API standard for \`numpy.linalg\`: - `numpy.linalg.matrix_norm` - Computes the matrix norm of a matrix (or a stack of matrices). - `numpy.linalg.vector_norm` - Computes the vector norm of a vector (or batch of vectors). - `numpy.vecdot` - Computes the (vector) dot product of two arrays. - `numpy.linalg.vecdot` - An alias for `numpy.vecdot`. - `numpy.linalg.matrix_transpose` - An alias for `numpy.matrix_transpose`. ([gh-25155](https://github.com/numpy/numpy/pull/25155)) - `numpy.linalg.outer` has been added. It computes the outer product of two vectors. It differs from `numpy.outer` by accepting one-dimensional arrays only. This function is compatible with the array API standard. ([gh-25101](https://github.com/numpy/numpy/pull/25101)) - `numpy.linalg.cross` has been added. It computes the cross product of two (arrays of) 3-dimensional vectors. It differs from `numpy.cross` by accepting three-dimensional vectors only. This function is compatible with the array API standard. ([gh-25145](https://github.com/numpy/numpy/pull/25145)) ##### A `correction` argument for `var` and `std` A `correction` argument was added to `numpy.var` and `numpy.std`, which is an array API standard compatible alternative to `ddof`. As both arguments serve a similar purpose, only one of them can be provided at the same time. ([gh-25169](https://github.com/numpy/numpy/pull/25169)) ##### `ndarray.device` and `ndarray.to_device` An `ndarray.device` attribute and `ndarray.to_device` method were added to `numpy.ndarray` for array API standard compatibility. Additionally, `device` keyword-only arguments were added to: `numpy.asarray`, `numpy.arange`, `numpy.empty`, `numpy.empty_like`, `numpy.eye`, `numpy.full`, `numpy.full_like`, `numpy.linspace`, `numpy.ones`, `numpy.ones_like`, `numpy.zeros`, and `numpy.zeros_like`. For all these new arguments, only `device="cpu"` is supported. ([gh-25233](https://github.com/numpy/numpy/pull/25233)) ##### StringDType has been added to NumPy We have added a new variable-width UTF-8 encoded string data type, implementing a "NumPy array of Python strings", including support for a user-provided missing data sentinel. It is intended as a drop-in replacement for arrays of Python strings and missing data sentinels using the object dtype. See [NEP 55](https://numpy.org/neps/nep-0055-string_dtype.html) and the documentation of stringdtype for more details. ([gh-25347](https://github.com/numpy/numpy/pull/25347)) ##### New keywords for `cholesky` and `pinv` The `upper` and `rtol` keywords were added to `numpy.linalg.cholesky` and `numpy.linalg.pinv`, respectively, to improve array API standard compatibility. For `numpy.linalg.pinv`, if neither `rcond` nor `rtol` is specified, the `rcond`'s default is used. We plan to deprecate and remove `rcond` in the future. ([gh-25388](https://github.com/numpy/numpy/pull/25388)) ##### New keywords for `sort`, `argsort` and `linalg.matrix_rank` New keyword parameters were added to improve array API standard compatibility: - `rtol` was added to `numpy.linalg.matrix_rank`. - `stable` was added to `numpy.sort` and `numpy.argsort`. ([gh-25437](https://github.com/numpy/numpy/pull/25437)) ##### New `numpy.strings` namespace for string ufuncs NumPy now implements some string operations as ufuncs. The old `np.char` namespace is still available, and where possible the string manipulation functions in that namespace have been updated to use the new ufuncs, substantially improving their performance. Where possible, we suggest updating code to use functions in `np.strings` instead of `np.char`. In the future we may deprecate `np.char` in favor of `np.strings`. ([gh-25463](https://github.com/numpy/numpy/pull/25463)) ##### `numpy.fft` support for different precisions and in-place calculations The various FFT routines in `numpy.fft` now do their calculations natively in float, double, or long double precision, depending on the input precision, instead of always calculating in double precision. Hence, the calculation will now be less precise for single and more precise for long double precision. The data type of the output array will now be adjusted accordingly. Furthermore, all FFT routines have gained an `out` argument that can be used for in-place calculations. ([gh-25536](https://github.com/numpy/numpy/pull/25536)) ##### configtool and pkg-config support A new `numpy-config` CLI script is available that can be queried for the NumPy version and for compile flags needed to use the NumPy C API. This will allow build systems to better support the use of NumPy as a dependency. Also, a `numpy.pc` pkg-config file is now included with Numpy. In order to find its location for use with `PKG_CONFIG_PATH`, use `numpy-config --pkgconfigdir`. ([gh-25730](https://github.com/numpy/numpy/pull/25730)) ##### Array API standard support in the main namespace The main `numpy` namespace now supports the array API standard. See `array-api-standard-compatibility` for details. ([gh-25911](https://github.com/numpy/numpy/pull/25911)) #### Improvements ##### Strings are now supported by `any`, `all`, and the logical ufuncs. > ([gh-25651](https://github.com/numpy/numpy/pull/25651)) ##### Integer sequences as the shape argument for `memmap` `numpy.memmap` can now be created with any integer sequence as the `shape` argument, such as a list or numpy array of integers. Previously, only the types of tuple and int could be used without raising an error. ([gh-23729](https://github.com/numpy/numpy/pull/23729)) ##### `errstate` is now faster and context safe The `numpy.errstate` context manager/decorator is now faster and safer. Previously, it was not context safe and had (rare) issues with thread-safety. ([gh-23936](https://github.com/numpy/numpy/pull/23936)) ##### AArch64 quicksort speed improved by using Highway's VQSort The first introduction of the Google Highway library, using VQSort on AArch64. Execution time is improved by up to 16x in some cases, see the PR for benchmark results. Extensions to other platforms will be done in the future. ([gh-24018](https://github.com/numpy/numpy/pull/24018)) ##### Complex types - underlying C type changes - The underlying C types for all of NumPy's complex types have been changed to use C99 complex types. - While this change does not affect the memory layout of complex types, it changes the API to be used to directly retrieve or write the real or complex part of the complex number, since direct field access (as in `c.real` or `c.imag`) is no longer an option. You can now use utilities provided in `numpy/npy_math.h` to do these operations, like this: ```c npy_cdouble c; npy_csetreal(&c, 1.0); npy_csetimag(&c, 0.0); printf("%d + %di\n", npy_creal(c), npy_cimag(c)); ``` - To ease cross-version compatibility, equivalent macros and a compatibility layer have been added which can be used by downstream packages to continue to support both NumPy 1.x and 2.x. See `complex-numbers` for more info. - `numpy/npy_common.h` now includes `complex.h`, which means that `complex` is now a reserved keyword. ([gh-24085](https://github.com/numpy/numpy/pull/24085)) ##### `iso_c_binding` support and improved common blocks for `f2py` Previously, users would have to define their own custom `f2cmap` file to use type mappings defined by the Fortran2003 `iso_c_binding` intrinsic module. These type maps are now natively supported by `f2py` ([gh-24555](https://github.com/numpy/numpy/pull/24555)) `f2py` now handles `common` blocks which have `kind` specifications from modules. This further expands the usability of intrinsics like `iso_fortran_env` and `iso_c_binding`. ([gh-25186](https://github.com/numpy/numpy/pull/25186)) ##### Call `str` automatically on third argument to functions like `assert_equal` The third argument to functions like `numpy.testing.assert_equal` now has `str` called on it automatically. This way it mimics the built-in `assert` statement, where `assert_equal(a, b, obj)` works like `assert a == b, obj`. ([gh-24877](https://github.com/numpy/numpy/pull/24877)) ##### Support for array-like `atol`/`rtol` in `isclose`, `allclose` The keywords `atol` and `rtol` in `numpy.isclose` and `numpy.allclose` now accept both scalars and arrays. An array, if given, must broadcast to the shapes of the first two array arguments. ([gh-24878](https://github.com/numpy/numpy/pull/24878)) ##### Consistent failure messages in test functions Previously, some `numpy.testing` assertions printed messages that referred to the actual and desired results as `x` and `y`. Now, these values are consistently referred to as `ACTUAL` and `DESIRED`. ([gh-24931](https://github.com/numpy/numpy/pull/24931)) ##### n-D FFT transforms allow `s[i] == -1` The `numpy.fft.fftn`, `numpy.fft.ifftn`, `numpy.fft.rfftn`, `numpy.fft.irfftn`, `numpy.fft.fft2`, `numpy.fft.ifft2`, `numpy.fft.rfft2` and `numpy.fft.irfft2` functions now use the whole input array along the axis `i` if `s[i] == -1`, in line with the array API standard. ([gh-25495](https://github.com/numpy/numpy/pull/25495)) ##### Guard PyArrayScalar_VAL and PyUnicodeScalarObject for the limited API `PyUnicodeScalarObject` holds a `PyUnicodeObject`, which is not available when using `Py_LIMITED_API`. Add guards to hide it and consequently also make the `PyArrayScalar_VAL` macro hidden. ([gh-25531](https://github.com/numpy/numpy/pull/25531)) #### Changes - `np.gradient()` now returns a tuple rather than a list making the return value immutable. ([gh-23861](https://github.com/numpy/numpy/pull/23861)) - Being fully context and thread-safe, `np.errstate` can only be entered once now. - `np.setbufsize` is now tied to `np.errstate()`: leaving an `np.errstate` context will also reset the `bufsize`. ([gh-23936](https://github.com/numpy/numpy/pull/23936)) - A new public `np.lib.array_utils` submodule has been introduced and it currently contains three functions: `byte_bounds` (moved from `np.lib.utils`), `normalize_axis_tuple` and `normalize_axis_index`. ([gh-24540](https://github.com/numpy/numpy/pull/24540)) - Introduce `numpy.bool` as the new canonical name for NumPy's boolean dtype, and make `numpy.bool\_` an alias to it. Note that until NumPy 1.24, `np.bool` was an alias to Python's builtin `bool`. The new name helps with array API standard compatibility and is a more intuitive name. ([gh-25080](https://github.com/numpy/numpy/pull/25080)) - The `dtype.flags` value was previously stored as a signed integer. This means that the aligned dtype struct flag lead to negative flags being set (-128 rather than 128). This flag is now stored unsigned (positive). Code which checks flags manually may need to adapt. This may include code compiled with Cython 0.29.x. ([gh-25816](https://github.com/numpy/numpy/pull/25816)) ##### Representation of NumPy scalars changed As per NEP 51, the scalar representation has been updated to include the type information to avoid confusion with Python scalars. Scalars are now printed as `np.float64(3.0)` rather than just `3.0`. This may disrupt workflows that store representations of numbers (e.g., to files) making it harder to read them. They should be stored as explicit strings, for example by using `str()` or `f"{scalar!s}"`. For the time being, affected users can use `np.set_printoptions(legacy="1.25")` to get the old behavior (with possibly a few exceptions). Documentation of downstream projects may require larger updates, if code snippets are tested. We are working on tooling for [doctest-plus](https://github.com/scientific-python/pytest-doctestplus/issues/107) to facilitate updates. ([gh-22449](https://github.com/numpy/numpy/pull/22449)) ##### Truthiness of NumPy strings changed NumPy strings previously were inconsistent about how they defined if the string is `True` or `False` and the definition did not match the one used by Python. Strings are now considered `True` when they are non-empty and `False` when they are empty. This changes the following distinct cases: - Casts from string to boolean were previously roughly equivalent to `string_array.astype(np.int64).astype(bool)`, meaning that only valid integers could be cast. Now a string of `"0"` will be considered `True` since it is not empty. If you need the old behavior, you may use the above step (casting to integer first) or `string_array == "0"` (if the input is only ever `0` or `1`). To get the new result on old NumPy versions use `string_array != ""`. - `np.nonzero(string_array)` previously ignored whitespace so that a string only containing whitespace was considered `False`. Whitespace is now considered `True`. This change does not affect `np.loadtxt`, `np.fromstring`, or `np.genfromtxt`. The first two still use the integer definition, while `genfromtxt` continues to match for `"true"` (ignoring case). However, if `np.bool_` is used as a converter the result will change. The change does affect `np.fromregex` as it uses direct assignments. ([gh-23871](https://github.com/numpy/numpy/pull/23871)) ##### A `mean` keyword was added to var and std function Often when the standard deviation is needed the mean is also needed. The same holds for the variance and the mean. Until now the mean is then calculated twice, the change introduced here for the `numpy.var` and `numpy.std` functions allows for passing in a precalculated mean as an keyword argument. See the docstrings for details and an example illustrating the speed-up. ([gh-24126](https://github.com/numpy/numpy/pull/24126)) ##### Remove datetime64 deprecation warning when constructing with timezone The `numpy.datetime64` method now issues a UserWarning rather than a DeprecationWarning whenever a timezone is included in the datetime string that is provided. ([gh-24193](https://github.com/numpy/numpy/pull/24193)) ##### Default integer dtype is now 64-bit on 64-bit Windows The default NumPy integer is now 64-bit on all 64-bit systems as the historic 32-bit default on Windows was a common source of issues. Most users should not notice this. The main issues may occur with code interfacing with libraries written in a compiled language like C. For more information see `migration_windows_int64`. ([gh-24224](https://github.com/numpy/numpy/pull/24224)) ##### Renamed `numpy.core` to `numpy._core` Accessing `numpy.core` now emits a DeprecationWarning. In practice we have found that most downstream usage of `numpy.core` was to access functionality that is available in the main `numpy` namespace. If for some reason you are using functionality in `numpy.core` that is not available in the main `numpy` namespace, this means you are likely using private NumPy internals. You can still access these internals via `numpy._core` without a deprecation warning but we do not provide any backward compatibility guarantees for NumPy internals. Please open an issue if you think a mistake was made and something needs to be made public. ([gh-24634](https://github.com/numpy/numpy/pull/24634)) The "relaxed strides" debug build option, which was previously enabled through the `NPY_RELAXED_STRIDES_DEBUG` environment variable or the `-Drelaxed-strides-debug` config-settings flag has been removed. ([gh-24717](https://github.com/numpy/numpy/pull/24717)) ##### Redefinition of `np.intp`/`np.uintp` (almost never a change) Due to the actual use of these types almost always matching the use of `size_t`/`Py_ssize_t` this is now the definition in C. Previously, it matched `intptr_t` and `uintptr_t` which would often have been subtly incorrect. This has no effect on the vast majority of machines since the size of these types only differ on extremely niche platforms. However, it means that: - Pointers may not necessarily fit into an `intp` typed array anymore. The `p` and `P` character codes can still be used, however. - Creating `intptr_t` or `uintptr_t` typed arrays in C remains possible in a cross-platform way via `PyArray_DescrFromType('p')`. - The new character codes `nN` were introduced. - It is now correct to use the Python C-API functions when parsing to `npy_intp` typed arguments. ([gh-24888](https://github.com/numpy/numpy/pull/24888)) ##### `numpy.fft.helper` made private `numpy.fft.helper` was renamed to `numpy.fft._helper` to indicate that it is a private submodule. All public functions exported by it should be accessed from `numpy.fft`. ([gh-24945](https://github.com/numpy/numpy/pull/24945)) ##### `numpy.linalg.linalg` made private `numpy.linalg.linalg` was renamed to `numpy.linalg._linalg` to indicate that it is a private submodule. All public functions exported by it should be accessed from `numpy.linalg`. ([gh-24946](https://github.com/numpy/numpy/pull/24946)) ##### Out-of-bound axis not the same as `axis=None` In some cases `axis=32` or for concatenate any large value was the same as `axis=None`. Except for `concatenate` this was deprecate. Any out of bound axis value will now error, make sure to use `axis=None`. ([gh-25149](https://github.com/numpy/numpy/pull/25149)) ##### New `copy` keyword meaning for `array` and `asarray` constructors Now `numpy.array` and `numpy.asarray` support three values for `copy` parameter: - `None` - A copy will only be made if it is necessary. - `True` - Always make a copy. - `False` - Never make a copy. If a copy is required a `ValueError` is raised. The meaning of `False` changed as it now raises an exception if a copy is needed. ([gh-25168](https://github.com/numpy/numpy/pull/25168)) ##### The `__array__` special method now takes a `copy` keyword argument. NumPy will pass `copy` to the `__array__` special method in situations where it would be set to a non-default value (e.g. in a call to `np.asarray(some_object, copy=False)`). Currently, if an unexpected keyword argument error is raised after this, NumPy will print a warning and re-try without the `copy` keyword argument. Implementations of objects implementing the `__array__` protocol should accept a `copy` keyword argument with the same meaning as when passed to `numpy.array` or `numpy.asarray`. ([gh-25168](https://github.com/numpy/numpy/pull/25168)) ##### Cleanup of initialization of `numpy.dtype` with strings with commas The interpretation of strings with commas is changed slightly, in that a trailing comma will now always create a structured dtype. E.g., where previously `np.dtype("i")` and `np.dtype("i,")` were treated as identical, now `np.dtype("i,")` will create a structured dtype, with a single field. This is analogous to `np.dtype("i,i")` creating a structured dtype with two fields, and makes the behaviour consistent with that expected of tuples. At the same time, the use of single number surrounded by parenthesis to indicate a sub-array shape, like in `np.dtype("(2)i,")`, is deprecated. Instead; one should use `np.dtype("(2,)i")` or `np.dtype("2i")`. Eventually, using a number in parentheses will raise an exception, like is the case for initializations without a comma, like `np.dtype("(2)i")`. ([gh-25434](https://github.com/numpy/numpy/pull/25434)) ##### Change in how complex sign is calculated Following the array API standard, the complex sign is now calculated as `z / |z|` (instead of the rather less logical case where the sign of the real part was taken, unless the real part was zero, in which case the sign of the imaginary part was returned). Like for real numbers, zero is returned if `z==0`. ([gh-25441](https://github.com/numpy/numpy/pull/25441)) ##### Return types of functions that returned a list of arrays Functions that returned a list of ndarrays have been changed to return a tuple of ndarrays instead. Returning tuples consistently whenever a sequence of arrays is returned makes it easier for JIT compilers like Numba, as well as for static type checkers in some cases, to support these functions. Changed functions are: `numpy.atleast_1d`, `numpy.atleast_2d`, `numpy.atleast_3d`, `numpy.broadcast_arrays`, `numpy.meshgrid`, `numpy.ogrid`, `numpy.histogramdd`. ##### `np.unique` `return_inverse` shape for multi-dimensional inputs When multi-dimensional inputs are passed to `np.unique` with `return_inverse=True`, the `unique_inverse` output is now shaped such that the input can be reconstructed directly using `np.take(unique, unique_inverse)` when `axis=None`, and `np.take_along_axis(unique, unique_inverse, axis=axis)` otherwise. ([gh-25553](https://github.com/numpy/numpy/pull/25553), [gh-25570](https://github.com/numpy/numpy/pull/25570)) ##### `any` and `all` return booleans for object arrays The `any` and `all` functions and methods now return booleans also for object arrays. Previously, they did a reduction which behaved like the Python `or` and `and` operators which evaluates to one of the arguments. You can use `np.logical_or.reduce` and `np.logical_and.reduce` to achieve the previous behavior. ([gh-25712](https://github.com/numpy/numpy/pull/25712)) ##### `np.can_cast` cannot be called on Python int, float, or complex `np.can_cast` cannot be called with Python int, float, or complex instances anymore. This is because NEP 50 means that the result of `can_cast` must not depend on the value passed in. Unfortunately, for Python scalars whether a cast should be considered `"same_kind"` or `"safe"` may depend on the context and value so that this is currently not implemented. In some cases, this means you may have to add a specific path for: `if type(obj) in (int, float, complex): ...`. ([gh-26393](https://github.com/numpy/numpy/pull/26393)) #### Checksums ##### MD5 fcda027f9735771088e607161c913094 numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl 1c381a5af3e6b945c6937ab3c6e2de09 numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl 6258de3c0599f8e3674e11898f2dd71c numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl aa4d28b404566dc9f5c34a31c6cd7b23 numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl 6b83ba81bdc750ef9924e3dc6f7c93be numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3d129fe67d99e0aad451742abb963ffa numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 24a060577965bd2a573ed87cbd207b4c numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl b00832f558669aacf855c4f5e9cf31d1 numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl cfe7420d294c583b90cfe07b730136dc numpy-2.0.0-cp310-cp310-win32.whl cff9da6b9fe5ad3b05dd3526dff00ac2 numpy-2.0.0-cp310-cp310-win_amd64.whl f390e03564df5ea37a97ac10cf0cbb00 numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl a006b081decba286a321de67a1abe246 numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl 6aea3e8589e33349b8170524af5a2e44 numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl eea8146c5dc2a306333bfea1f01f7a37 numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl e96c2af477c970c8ff50ecb5d1cf754f numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d065256e02a1d410d0db2577bb8fd9a4 numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 98c570b79459342c219590c5af38d527 numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl dc435751cb926f53a9fc457f35146527 numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl aaa4b435d29022ceacb4e3dcbd43d11a numpy-2.0.0-cp311-cp311-win32.whl 9ff8be4f581d86b2f181fe905491b19b numpy-2.0.0-cp311-cp311-win_amd64.whl 1c9519c5e6a0c5a99715e51ac3b7c932 numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl b0f26e8728523d716f5165953b35244f numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl 029703d0ff0e96c603c91f611926ef17 numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl 2231ecbb380c70ddf462e9671d06612c numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl 4153b50c1a3647ca58f1084fcaf3e4c6 numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 82cba3915234f8018fd754ffc45e95b0 numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 249047dd7255a5fcf5c45614ba211e10 numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl f7581ebfe0c9d4ae4f3b6ea09c19eea7 numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl 8a0dbcd919d1d959f1846a00ebb05162 numpy-2.0.0-cp312-cp312-win32.whl 22aabdfd85ed34f02a7cdacff399c5d9 numpy-2.0.0-cp312-cp312-win_amd64.whl 1fce84122c393e05b69e2ec53ecd1137 numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl 81e4c1152274d85813bf14814ad4d359 numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl 5eab1a2b427b590d2bc9d8ecd330fc21 numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl ab967929693baf2d2bfb00c53413ad2b numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl 85d2971cd78800663766f46ba312d356 numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7e831fcf9cff5317429786a3bd123671 numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 03a6426ca86ad53567e3ef61bc766013 numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl b30af2d2b99468538f45e6769f9fee2b numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl cc9a8db8d131fb5a387e2c1342ab0065 numpy-2.0.0-cp39-cp39-win32.whl 9843951308fa31c5e36c4c6a0b090308 numpy-2.0.0-cp39-cp39-win_amd64.whl 5021eb5e225bff3e05a38a565daf8852 numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 99186fe49ac7931d3e92e8993c2faa92 numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl c39f0ab6e07d42708550899951b852b8 numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cbf151633948e90c93dd988777750961 numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl a180aaba9982c6e15da6db62dab5eb4e numpy-2.0.0.tar.gz ##### SHA256 04494f6ec467ccb5369d1808570ae55f6ed9b5809d7f035059000a37b8d7e86f numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl 2635dbd200c2d6faf2ef9a0d04f0ecc6b13b3cad54f7c67c61155138835515d2 numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl 0a43f0974d501842866cc83471bdb0116ba0dffdbaac33ec05e6afed5b615238 numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl 8d83bb187fb647643bd56e1ae43f273c7f4dbcdf94550d7938cfc32566756514 numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl 79e843d186c8fb1b102bef3e2bc35ef81160ffef3194646a7fdd6a73c6b97196 numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6d7696c615765091cc5093f76fd1fa069870304beaccfd58b5dcc69e55ef49c1 numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b4c76e3d4c56f145d41b7b6751255feefae92edbc9a61e1758a98204200f30fc numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl acd3a644e4807e73b4e1867b769fbf1ce8c5d80e7caaef0d90dcdc640dfc9787 numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl cee6cc0584f71adefe2c908856ccc98702baf95ff80092e4ca46061538a2ba98 numpy-2.0.0-cp310-cp310-win32.whl ed08d2703b5972ec736451b818c2eb9da80d66c3e84aed1deeb0c345fefe461b numpy-2.0.0-cp310-cp310-win_amd64.whl ad0c86f3455fbd0de6c31a3056eb822fc939f81b1618f10ff3406971893b62a5 numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl e7f387600d424f91576af20518334df3d97bc76a300a755f9a8d6e4f5cadd289 numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl 34f003cb88b1ba38cb9a9a4a3161c1604973d7f9d5552c38bc2f04f829536609 numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl b6f6a8f45d0313db07d6d1d37bd0b112f887e1369758a5419c0370ba915b3871 numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl 5f64641b42b2429f56ee08b4f427a4d2daf916ec59686061de751a55aafa22e4 numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a7039a136017eaa92c1848152827e1424701532ca8e8967fe480fe1569dae581 numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 46e161722e0f619749d1cd892167039015b2c2817296104487cd03ed4a955995 numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl 0e50842b2295ba8414c8c1d9d957083d5dfe9e16828b37de883f51fc53c4016f numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl 2ce46fd0b8a0c947ae047d222f7136fc4d55538741373107574271bc00e20e8f numpy-2.0.0-cp311-cp311-win32.whl fbd6acc766814ea6443628f4e6751d0da6593dae29c08c0b2606164db026970c numpy-2.0.0-cp311-cp311-win_amd64.whl 354f373279768fa5a584bac997de6a6c9bc535c482592d7a813bb0c09be6c76f numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl 4d2f62e55a4cd9c58c1d9a1c9edaedcd857a73cb6fda875bf79093f9d9086f85 numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl 1e72728e7501a450288fc8e1f9ebc73d90cfd4671ebbd631f3e7857c39bd16f2 numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl 84554fc53daa8f6abf8e8a66e076aff6ece62de68523d9f665f32d2fc50fd66e numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl c73aafd1afca80afecb22718f8700b40ac7cab927b8abab3c3e337d70e10e5a2 numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 49d9f7d256fbc804391a7f72d4a617302b1afac1112fac19b6c6cec63fe7fe8a numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0ec84b9ba0654f3b962802edc91424331f423dcf5d5f926676e0150789cb3d95 numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl feff59f27338135776f6d4e2ec7aeeac5d5f7a08a83e80869121ef8164b74af9 numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl c5a59996dc61835133b56a32ebe4ef3740ea5bc19b3983ac60cc32be5a665d54 numpy-2.0.0-cp312-cp312-win32.whl a356364941fb0593bb899a1076b92dfa2029f6f5b8ba88a14fd0984aaf76d0df numpy-2.0.0-cp312-cp312-win_amd64.whl e61155fae27570692ad1d327e81c6cf27d535a5d7ef97648a17d922224b216de numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl 4554eb96f0fd263041baf16cf0881b3f5dafae7a59b1049acb9540c4d57bc8cb numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl 903703372d46bce88b6920a0cd86c3ad82dae2dbef157b5fc01b70ea1cfc430f numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl 3e8e01233d57639b2e30966c63d36fcea099d17c53bf424d77f088b0f4babd86 numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl 1cde1753efe513705a0c6d28f5884e22bdc30438bf0085c5c486cdaff40cd67a numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 821eedb7165ead9eebdb569986968b541f9908979c2da8a4967ecac4439bae3d numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9a1712c015831da583b21c5bfe15e8684137097969c6d22e8316ba66b5baabe4 numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl 9c27f0946a3536403efb0e1c28def1ae6730a72cd0d5878db38824855e3afc44 numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl 63b92c512d9dbcc37f9d81b123dec99fdb318ba38c8059afc78086fe73820275 numpy-2.0.0-cp39-cp39-win32.whl 3f6bed7f840d44c08ebdb73b1825282b801799e325bcbdfa6bc5c370e5aecc65 numpy-2.0.0-cp39-cp39-win_amd64.whl 9416a5c2e92ace094e9f0082c5fd473502c91651fb896bc17690d6fc475128d6 numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 17067d097ed036636fa79f6a869ac26df7db1ba22039d962422506640314933a numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl 38ecb5b0582cd125f67a629072fed6f83562d9dd04d7e03256c9829bdec027ad numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cef04d068f5fb0518a77857953193b6bb94809a806bd0a14983a8f12ada060c9 numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl cf5d1c9e6837f8af9f92b6bd3e86d513cdc11f60fd62185cc49ec7d1aba34864 numpy-2.0.0.tar.gz ### [`v1.26.4`](https://github.com/numpy/numpy/releases/v1.26.4) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.3...v1.26.4) ### NumPy 1.26.4 Release Notes NumPy 1.26.4 is a maintenance release that fixes bugs and regressions discovered after the 1.26.3 release. The Python versions supported by this release are 3.9-3.12. This is the last planned release in the 1.26.x series. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Elliott Sales de Andrade - Lucas Colley + - Mark Ryan + - Matti Picus - Nathan Goldbaum - Ola x Nilsson + - Pieter Eendebak - Ralf Gommers - Sayed Adel - Sebastian Berg - Stefan van der Walt - Stefano Rivera #### Pull requests merged A total of 19 pull requests were merged for this release. - [#&#8203;25323](https://github.com/numpy/numpy/pull/25323): BUG: Restore missing asstr import - [#&#8203;25523](https://github.com/numpy/numpy/pull/25523): MAINT: prepare 1.26.x for further development - [#&#8203;25539](https://github.com/numpy/numpy/pull/25539): BUG: `numpy.array_api`: fix `linalg.cholesky` upper decomp... - [#&#8203;25584](https://github.com/numpy/numpy/pull/25584): CI: Bump azure pipeline timeout to 120 minutes - [#&#8203;25585](https://github.com/numpy/numpy/pull/25585): MAINT, BLD: Fix unused inline functions warnings on clang - [#&#8203;25599](https://github.com/numpy/numpy/pull/25599): BLD: include fix for MinGW platform detection - [#&#8203;25618](https://github.com/numpy/numpy/pull/25618): TST: Fix test_numeric on riscv64 - [#&#8203;25619](https://github.com/numpy/numpy/pull/25619): BLD: fix building for windows ARM64 - [#&#8203;25620](https://github.com/numpy/numpy/pull/25620): MAINT: add `newaxis` to `__all__` in `numpy.array_api` - [#&#8203;25630](https://github.com/numpy/numpy/pull/25630): BUG: Use large file fallocate on 32 bit linux platforms - [#&#8203;25643](https://github.com/numpy/numpy/pull/25643): TST: Fix test_warning_calls on Python 3.12 - [#&#8203;25645](https://github.com/numpy/numpy/pull/25645): TST: Bump pytz to 2023.3.post1 - [#&#8203;25658](https://github.com/numpy/numpy/pull/25658): BUG: Fix AVX512 build flags on Intel Classic Compiler - [#&#8203;25670](https://github.com/numpy/numpy/pull/25670): BLD: fix potential issue with escape sequences in `__config__.py` - [#&#8203;25718](https://github.com/numpy/numpy/pull/25718): CI: pin cygwin python to 3.9.16-1 and fix typing tests \[skip... - [#&#8203;25720](https://github.com/numpy/numpy/pull/25720): MAINT: Bump cibuildwheel to v2.16.4 - [#&#8203;25748](https://github.com/numpy/numpy/pull/25748): BLD: unvendor meson-python on 1.26.x and upgrade to meson-python... - [#&#8203;25755](https://github.com/numpy/numpy/pull/25755): MAINT: Include header defining backtrace - [#&#8203;25756](https://github.com/numpy/numpy/pull/25756): BUG: Fix np.quantile(\[Fraction(2,1)], 0.5) ([#&#8203;24711](https://github.com/numpy/numpy/issues/24711)) #### Checksums ##### MD5 90f33cdd8934cd07192d6ede114d8d4d numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl 63ac60767f6724490e587f6010bd6839 numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl ad4e82b225aaaf5898ea9798b50978d8 numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d428e3da2df4fa359313348302cf003a numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 89937c3bb596193f8ca9eae2ff84181e numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl de4f9da0a4e6dfd4cec39c7ad5139803 numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl 2c1f73fd9b3acf4b9b0c23e985cdd38f numpy-1.26.4-cp310-cp310-win32.whl 920ad1f50e478b1a877fe7b7a46cc520 numpy-1.26.4-cp310-cp310-win_amd64.whl 719d1ff12db38903dcfd6749078fb11d numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl eb601e80194d2e1c00d8daedd8dc68c4 numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl 71a7ab11996fa370dc28e28731bd5c32 numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl eb0cdd03e1ee2eb45c57c7340c98cf48 numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9d4ae1b0b27a625400f81ed1846a5667 numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl 1b6771350d2f496157430437a895ba4b numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl 1e4a18612ee4d0e54e0833574ebc6d25 numpy-1.26.4-cp311-cp311-win32.whl 5fd325dd8704023c1110835d7a1b095a numpy-1.26.4-cp311-cp311-win_amd64.whl d95ce582923d24dbddbc108aa5fd2128 numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl 6f16f3d70e0d95ce2b032167c546cc95 numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl 5369536d4c45fbe384147ff23185b48a numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1ceb224096686831ad731e472b65e96a numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cd8d3c00bbc89f9bc07e2df762f9e2ae numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl 5bd81ce840bb2e42befe01efb0402b79 numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl 2cc3b0757228078395da3efa3dc99f23 numpy-1.26.4-cp312-cp312-win32.whl 305155bd5ae879344c58968879584ed1 numpy-1.26.4-cp312-cp312-win_amd64.whl ec2310f67215743e9c5d16b6c9fb87b6 numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl 406aea6081c1affbebdb6ad56b5deaf4 numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl fee12f0a3cbac7bbf1a1c2d82d3b02a9 numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl baf4b7143c7b9ce170e62b33380fb573 numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 376ff29f90b7840ae19ecd59ad1ddf53 numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl 86785b3a7cd156c08c2ebc26f7816fb3 numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl ab8a9ab69f16b7005f238cda76bc0bac numpy-1.26.4-cp39-cp39-win32.whl fafa4453e820c7ff40907e5dc79d8199 numpy-1.26.4-cp39-cp39-win_amd64.whl 7f13e2f07bd3e4a439ade0e4d27905c6 numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 928954b41c1cd0e856f1a31d41722661 numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 57bbd5c0b3848d804c416cbcab4a0ae8 numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl 19550cbe7bedd96a928da9d4ad69509d numpy-1.26.4.tar.gz ##### SHA256 9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0 numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl 2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4 numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2 numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07 numpy-1.26.4-cp310-cp310-win32.whl b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5 numpy-1.26.4-cp310-cp310-win_amd64.whl 4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71 numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl 7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5 numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl 60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl 1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20 numpy-1.26.4-cp311-cp311-win32.whl cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2 numpy-1.26.4-cp311-cp311-win_amd64.whl b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218 numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl 03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl 9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl 1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0 numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl 50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110 numpy-1.26.4-cp312-cp312-win32.whl 08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818 numpy-1.26.4-cp312-cp312-win_amd64.whl 7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl 52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764 numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3 numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl 47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6 numpy-1.26.4-cp39-cp39-win32.whl 3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea numpy-1.26.4-cp39-cp39-win_amd64.whl afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30 numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0 numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl 2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010 numpy-1.26.4.tar.gz ### [`v1.26.3`](https://github.com/numpy/numpy/releases/v1.26.3) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.2...v1.26.3) ### NumPy 1.26.3 Release Notes NumPy 1.26.3 is a maintenance release that fixes bugs and regressions discovered after the 1.26.2 release. The most notable changes are the f2py bug fixes. The Python versions supported by this release are 3.9-3.12. #### Compatibility `f2py` will no longer accept ambiguous `-m` and `.pyf` CLI combinations. When more than one `.pyf` file is passed, an error is raised. When both `-m` and a `.pyf` is passed, a warning is emitted and the `-m` provided name is ignored. #### Improvements `f2py` now handles `common` blocks which have `kind` specifications from modules. This further expands the usability of intrinsics like `iso_fortran_env` and `iso_c_binding`. #### Contributors A total of 18 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;DWesl](https://github.com/DWesl) - [@&#8203;Illviljan](https://github.com/Illviljan) - Alexander Grund - Andrea Bianchi + - Charles Harris - Daniel Vanzo - Johann Rohwer + - Matti Picus - Nathan Goldbaum - Peter Hawkins - Raghuveer Devulapalli - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg - Stefano Rivera + - Thomas A Caswell - matoro #### Pull requests merged A total of 42 pull requests were merged for this release. - [#&#8203;25130](https://github.com/numpy/numpy/pull/25130): MAINT: prepare 1.26.x for further development - [#&#8203;25188](https://github.com/numpy/numpy/pull/25188): TYP: add None to `__getitem__` in `numpy.array_api` - [#&#8203;25189](https://github.com/numpy/numpy/pull/25189): BLD,BUG: quadmath required where available \[f2py] - [#&#8203;25190](https://github.com/numpy/numpy/pull/25190): BUG: alpha doesn't use REAL(10) - [#&#8203;25191](https://github.com/numpy/numpy/pull/25191): BUG: Fix FP overflow error in division when the divisor is scalar - [#&#8203;25192](https://github.com/numpy/numpy/pull/25192): MAINT: Pin scipy-openblas version. - [#&#8203;25201](https://github.com/numpy/numpy/pull/25201): BUG: Fix f2py to enable use of string optional inout argument - [#&#8203;25202](https://github.com/numpy/numpy/pull/25202): BUG: Fix -fsanitize=alignment issue in numpy/\_core/src/multiarray/arraytypes.c.src - [#&#8203;25203](https://github.com/numpy/numpy/pull/25203): TST: Explicitly pass NumPy path to cython during tests (also... - [#&#8203;25204](https://github.com/numpy/numpy/pull/25204): BUG: fix issues with `newaxis` and `linalg.solve` in `numpy.array_api` - [#&#8203;25205](https://github.com/numpy/numpy/pull/25205): BUG: Disallow shadowed modulenames - [#&#8203;25217](https://github.com/numpy/numpy/pull/25217): BUG: Handle common blocks with kind specifications from modules - [#&#8203;25218](https://github.com/numpy/numpy/pull/25218): BUG: Fix moving compiled executable to root with f2py -c on Windows - [#&#8203;25219](https://github.com/numpy/numpy/pull/25219): BUG: Fix single to half-precision conversion on PPC64/VSX3 - [#&#8203;25227](https://github.com/numpy/numpy/pull/25227): TST: f2py: fix issue in test skip condition - [#&#8203;25240](https://github.com/numpy/numpy/pull/25240): Revert "MAINT: Pin scipy-openblas version." - [#&#8203;25249](https://github.com/numpy/numpy/pull/25249): MAINT: do not use `long` type - [#&#8203;25377](https://github.com/numpy/numpy/pull/25377): TST: PyPy needs another gc.collect on latest versions - [#&#8203;25378](https://github.com/numpy/numpy/pull/25378): CI: Install Lapack runtime on Cygwin. - [#&#8203;25379](https://github.com/numpy/numpy/pull/25379): MAINT: Bump conda-incubator/setup-miniconda from 2.2.0 to 3.0.1 - [#&#8203;25380](https://github.com/numpy/numpy/pull/25380): BLD: update vendored Meson for AIX shared library fix - [#&#8203;25419](https://github.com/numpy/numpy/pull/25419): MAINT: Init `base` in cpu_avx512\_kn - [#&#8203;25420](https://github.com/numpy/numpy/pull/25420): BUG: Fix failing test_features on SapphireRapids - [#&#8203;25422](https://github.com/numpy/numpy/pull/25422): BUG: Fix non-contiguous memory load when ARM/Neon is enabled - [#&#8203;25428](https://github.com/numpy/numpy/pull/25428): MAINT,BUG: Never import distutils above 3.12 \[f2py] - [#&#8203;25452](https://github.com/numpy/numpy/pull/25452): MAINT: make the import-time check for old Accelerate more specific - [#&#8203;25458](https://github.com/numpy/numpy/pull/25458): BUG: fix macOS version checks for Accelerate support - [#&#8203;25465](https://github.com/numpy/numpy/pull/25465): MAINT: Bump actions/setup-node and larsoner/circleci-artifacts-redirector-action - [#&#8203;25466](https://github.com/numpy/numpy/pull/25466): BUG: avoid seg fault from OOB access in RandomState.set_state() - [#&#8203;25467](https://github.com/numpy/numpy/pull/25467): BUG: Fix two errors related to not checking for failed allocations - [#&#8203;25468](https://github.com/numpy/numpy/pull/25468): BUG: Fix regression with `f2py` wrappers when modules and subroutines... - [#&#8203;25475](https://github.com/numpy/numpy/pull/25475): BUG: Fix build issues on SPR - [#&#8203;25478](https://github.com/numpy/numpy/pull/25478): BLD: fix uninitialized variable warnings from simd/neon/memory.h - [#&#8203;25480](https://github.com/numpy/numpy/pull/25480): BUG: Handle `iso_c_type` mappings more consistently - [#&#8203;25481](https://github.com/numpy/numpy/pull/25481): BUG: Fix module name bug in signature files \[urgent] \[f2py] - [#&#8203;25482](https://github.com/numpy/numpy/pull/25482): BUG: Handle .pyf.src and fix SciPy \[urgent] - [#&#8203;25483](https://github.com/numpy/numpy/pull/25483): DOC: `f2py` rewrite with `meson` details - [#&#8203;25485](https://github.com/numpy/numpy/pull/25485): BUG: Add external library handling for meson \[f2py] - [#&#8203;25486](https://github.com/numpy/numpy/pull/25486): MAINT: Run f2py's meson backend with the same python that ran... - [#&#8203;25489](https://github.com/numpy/numpy/pull/25489): MAINT: Update `numpy/f2py/_backends` from main. - [#&#8203;25490](https://github.com/numpy/numpy/pull/25490): MAINT: Easy updates of `f2py/*.py` from main. - [#&#8203;25491](https://github.com/numpy/numpy/pull/25491): MAINT: Update crackfortran.py and f2py2e.py from main #### Checksums ##### MD5 7660db27715df261948e7f0f13634f16 numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl 98d5b98c822de4bed0cf1b0b8f367192 numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl b71cd0710cec5460292a97a02fa349cd numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0f98a05c92598f849b1be2595f4a52a8 numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b866c6aea8070c0753b776d2b521e875 numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl cfdde5868e469fb27655ea73b0b9593b numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl 2655440d61671b5e32b049d30397c58f numpy-1.26.3-cp310-cp310-win32.whl 7718a5d33344784ca7821f3bdd467550 numpy-1.26.3-cp310-cp310-win_amd64.whl 28e4b2ed9192c392f792d88b3c246d1c numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl fb1ae72749463e2c82f0127699728364 numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl 304dec822b508a1d495917610e7562bf numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2cc0d8b073dfd55946a60ba8ed4369f6 numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c99962375c599501820899c8ccab6960 numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl 47ed42d067ce4863bbf1f40da61ba7d1 numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl 3ab3757255feb54ca3793fb9db226586 numpy-1.26.3-cp311-cp311-win32.whl c33f2a4518bae535645357a08a93be1a numpy-1.26.3-cp311-cp311-win_amd64.whl bea43600aaff3a4d9978611ccfa44198 numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl c678d909ebe737fdabf215d8622ce2a3 numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl 9f21f1875c92425cec1060564b3abb1c numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c44a1998965d45ec136078ee09d880f2 numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9274f5c51fa4f3c8fac5efa3d78acd63 numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl 07c9f8f86f45077febc46c87ebc0b644 numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl a4857b2f7b6a23bca41178bd344bb28a numpy-1.26.3-cp312-cp312-win32.whl 495d9534961d7b10f16fec4515a3d72b numpy-1.26.3-cp312-cp312-win_amd64.whl 6494f2d94fd1f184923a33e634692b5e numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl 515a7314a0ff6aaba8d53a7a1aaa73ab numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl c856adc6a6a78773c43e9c738d662ed5 numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 09848456158a01feff28f88c6106aef1 numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl adec00ea2bc98580a436f82e188c0e2f numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl 718bd35dd0431a6434bb30bf8d91d77d numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl e813aa59cb807efb4a8fee52a6dd41ba numpy-1.26.3-cp39-cp39-win32.whl 08e1b0973d0ae5976b38563eaec1253f numpy-1.26.3-cp39-cp39-win_amd64.whl e8887a14750161709636e9fb87df4f36 numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 0bdb19040525451553fb5758b65caf4c numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b931c14d06cc37d85d63ed1ddd88e875 numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl 1c915dc6c36dd4c674d9379e9470ff8b numpy-1.26.3.tar.gz ##### SHA256 806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl 02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl 6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6 numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178 numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485 numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl 21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3 numpy-1.26.3-cp310-cp310-win32.whl 9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce numpy-1.26.3-cp310-cp310-win_amd64.whl b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374 numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl 9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6 numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl 8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2 numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl 51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00 numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl 7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b numpy-1.26.3-cp311-cp311-win32.whl 39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4 numpy-1.26.3-cp311-cp311-win_amd64.whl a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13 numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl 12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl 7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3 numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419 numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166 numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl 8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36 numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511 numpy-1.26.3-cp312-cp312-win32.whl da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b numpy-1.26.3-cp312-cp312-win_amd64.whl 1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl 18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl 0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137 numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58 numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl 9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03 numpy-1.26.3-cp39-cp39-win32.whl 867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2 numpy-1.26.3-cp39-cp39-win_amd64.whl 3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0 numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5 numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl 697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4 numpy-1.26.3.tar.gz ### [`v1.26.2`](https://github.com/numpy/numpy/releases/v1.26.2) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.1...v1.26.2) ### NumPy 1.26.2 Release Notes NumPy 1.26.2 is a maintenance release that fixes bugs and regressions discovered after the 1.26.1 release. The 1.26.release series is the last planned minor release series before NumPy 2.0. The Python versions supported by this release are 3.9-3.12. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;stefan6419846](https://github.com/stefan6419846) - [@&#8203;thalassemia](https://github.com/thalassemia) + - Andrew Nelson - Charles Bousseau + - Charles Harris - Marcel Bargull + - Mark Mentovai + - Matti Picus - Nathan Goldbaum - Ralf Gommers - Sayed Adel - Sebastian Berg - William Ayd + #### Pull requests merged A total of 25 pull requests were merged for this release. - [#&#8203;24814](https://github.com/numpy/numpy/pull/24814): MAINT: align test_dispatcher s390x targets with \_umath_tests_mtargets - [#&#8203;24929](https://github.com/numpy/numpy/pull/24929): MAINT: prepare 1.26.x for further development - [#&#8203;24955](https://github.com/numpy/numpy/pull/24955): ENH: Add Cython enumeration for NPY_FR_GENERIC - [#&#8203;24962](https://github.com/numpy/numpy/pull/24962): REL: Remove Python upper version from the release branch - [#&#8203;24971](https://github.com/numpy/numpy/pull/24971): BLD: Use the correct Python interpreter when running tempita.py - [#&#8203;24972](https://github.com/numpy/numpy/pull/24972): MAINT: Remove unhelpful error replacements from `import_array()` - [#&#8203;24977](https://github.com/numpy/numpy/pull/24977): BLD: use classic linker on macOS, the new one in XCode 15 has... - [#&#8203;25003](https://github.com/numpy/numpy/pull/25003): BLD: musllinux_aarch64 \[wheel build] - [#&#8203;25043](https://github.com/numpy/numpy/pull/25043): MAINT: Update mailmap - [#&#8203;25049](https://github.com/numpy/numpy/pull/25049): MAINT: Update meson build infrastructure. - [#&#8203;25071](https://github.com/numpy/numpy/pull/25071): MAINT: Split up .github/workflows to match main - [#&#8203;25083](https://github.com/numpy/numpy/pull/25083): BUG: Backport fix build on ppc64 when the baseline set to Power9... - [#&#8203;25093](https://github.com/numpy/numpy/pull/25093): BLD: Fix features.h detection for Meson builds \[1.26.x Backport] - [#&#8203;25095](https://github.com/numpy/numpy/pull/25095): BUG: Avoid intp conversion regression in Cython 3 (backport) - [#&#8203;25107](https://github.com/numpy/numpy/pull/25107): CI: remove obsolete jobs, and move macOS and conda Azure jobs... - [#&#8203;25108](https://github.com/numpy/numpy/pull/25108): CI: Add linux_qemu action and remove travis testing. - [#&#8203;25112](https://github.com/numpy/numpy/pull/25112): MAINT: Update .spin/cmds.py from main. - [#&#8203;25113](https://github.com/numpy/numpy/pull/25113): DOC: Visually divide main license and bundled licenses in wheels - [#&#8203;25115](https://github.com/numpy/numpy/pull/25115): MAINT: Add missing `noexcept` to shuffle helpers - [#&#8203;25116](https://github.com/numpy/numpy/pull/25116): DOC: Fix license identifier for OpenBLAS - [#&#8203;25117](https://github.com/numpy/numpy/pull/25117): BLD: improve detection of Netlib libblas/libcblas/liblapack - [#&#8203;25118](https://github.com/numpy/numpy/pull/25118): MAINT: Make bitfield integers unsigned - [#&#8203;25119](https://github.com/numpy/numpy/pull/25119): BUG: Make n a long int for np.random.multinomial - [#&#8203;25120](https://github.com/numpy/numpy/pull/25120): BLD: change default of the `allow-noblas` option to true. - [#&#8203;25121](https://github.com/numpy/numpy/pull/25121): BUG: ensure passing `np.dtype` to itself doesn't crash #### Checksums ##### MD5 1a5dc6b5b3bf11ad40a59eedb3b69fa1 numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl 4b741c6dfe4e6e22e34e9c5c788d4f04 numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl 2953687fb26e1dd8a2d1bb7109551fcd numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ea9127a3a03f27fd101c62425c661d8d numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7a6be7c6c1cc3e1ff73f64052fe30677 numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl 4f45d3f69f54fd1638609fde34c33a5c numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl f22f5ea26c86eb126ff502fff75d6c21 numpy-1.26.2-cp310-cp310-win32.whl 49871452488e1a55d15ab54c6f3e546e numpy-1.26.2-cp310-cp310-win_amd64.whl 676740bf60fb1c8f5a6b31e00b9a4e9b numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl 7170545dcc2a38a1c2386a6081043b64 numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl feae1190c73d811e2e7ebcad4baf6edf numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 03131896abade61b77e0f6e53abb988a numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f160632f128a3fd46787aa02d8731fbb numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl 014250db593d589b5533ef7127839c46 numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl fb437346dac24d0cb23f5314db043c8b numpy-1.26.2-cp311-cp311-win32.whl 7359adc233874898ea768cd4aec28bb3 numpy-1.26.2-cp311-cp311-win_amd64.whl 207a678bea75227428e7fb84d4dc457a numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl 302ff6cc047a408cdf21981bd7b26056 numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl 7526faaea58c76aed395c7128dd6e14d numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 28d3b1943d3a8ad4bbb2ae9da0a77cb9 numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d91f5b2bb2c931e41ae7c80ec7509a31 numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl b2504d4239419f012c08fa1eab12f940 numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl 57944ba30adc07f33e83a9b45f5c625a numpy-1.26.2-cp312-cp312-win32.whl fe38cd95bbee405ce0cf51c8753a2676 numpy-1.26.2-cp312-cp312-win_amd64.whl 28e1bc3efaf89cf6f0a2b616c0e16401 numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl 9932ccff54855f12ee24f60528279bf1 numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl b52c1e987074dad100ad234122a397b9 numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1d1bd7e0d2a89ce795a9566a38ed9bb5 numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 01d2abfe8e9b35415efb791ac6c5865e numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl 5a6d6ac287ebd93a221e59590329e202 numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl 4e4e4d8cf661a8d2838ee700fabae87e numpy-1.26.2-cp39-cp39-win32.whl b8e52ecac110471502686abbdf774b78 numpy-1.26.2-cp39-cp39-win_amd64.whl aed2d2914be293f60fedda360b64abf8 numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 6bd88e0f33933445d0e18c1a850f60e0 numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 010aeb2a50af0af1f7ef56f76f8cf463 numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl 8f6446a32e47953a03f8fe8533e21e98 numpy-1.26.2.tar.gz ##### SHA256 3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440 numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl 36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75 numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00 numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523 numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl 22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9 numpy-1.26.2-cp310-cp310-win32.whl 26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919 numpy-1.26.2-cp310-cp310-win_amd64.whl b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841 numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1 numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl 06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7 numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8 numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186 numpy-1.26.2-cp311-cp311-win32.whl 2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d numpy-1.26.2-cp311-cp311-win_amd64.whl a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0 numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl 5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75 numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl 6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7 numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6 numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6 numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl 4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167 numpy-1.26.2-cp312-cp312-win32.whl b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e numpy-1.26.2-cp312-cp312-win_amd64.whl 4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl 1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2 numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl 64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3 numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818 numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210 numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36 numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80 numpy-1.26.2-cp39-cp39-win32.whl 2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060 numpy-1.26.2-cp39-cp39-win_amd64.whl 1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79 numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841 numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea numpy-1.26.2.tar.gz ### [`v1.26.1`](https://github.com/numpy/numpy/releases/v1.26.1) [Compare Source](https://github.com/numpy/numpy/compare/v1.26.0...v1.26.1) ### NumPy 1.26.1 Release Notes NumPy 1.26.1 is a maintenance release that fixes bugs and regressions discovered after the 1.26.0 release. In addition, it adds new functionality for detecting BLAS and LAPACK when building from source. Highlights are: - Improved detection of BLAS and LAPACK libraries for meson builds - Pickle compatibility with the upcoming NumPy 2.0. The 1.26.release series is the last planned minor release series before NumPy 2.0. The Python versions supported by this release are 3.9-3.12. #### Build system changes ##### Improved BLAS/LAPACK detection and control Auto-detection for a number of BLAS and LAPACK is now implemented for Meson. By default, the build system will try to detect MKL, Accelerate (on macOS >=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK. Support for MKL was significantly improved, and support for FlexiBLAS was added. New command-line flags are available to further control the selection of the BLAS and LAPACK libraries to build against. To select a specific library, use the config-settings interface via `pip` or `pypa/build`. E.g., to select `libblas`/`liblapack`, use: $ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack $ # OR $ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack This works not only for the libraries named above, but for any library that Meson is able to detect with the given name through `pkg-config` or CMake. Besides `-Dblas` and `-Dlapack`, a number of other new flags are available to control BLAS/LAPACK selection and behavior: - `-Dblas-order` and `-Dlapack-order`: a list of library names to search for in order, overriding the default search order. - `-Duse-ilp64`: if set to `true`, use ILP64 (64-bit integer) BLAS and LAPACK. Note that with this release, ILP64 support has been extended to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported in previous releases. - `-Dallow-noblas`: if set to `true`, allow NumPy to build with its internal (very slow) fallback routines instead of linking against an external BLAS/LAPACK library. *The default for this flag may be changed to \`\`true\`\` in a future 1.26.x release, however for 1.26.1 we'd prefer to keep it as \`\`false\`\` because if failures to detect an installed library are happening, we'd like a bug report for that, so we can quickly assess whether the new auto-detection machinery needs further improvements.* - `-Dmkl-threading`: to select the threading layer for MKL. There are four options: `seq`, `iomp`, `gomp` and `tbb`. The default is `auto`, which selects from those four as appropriate given the version of MKL selected. - `-Dblas-symbol-suffix`: manually select the symbol suffix to use for the library - should only be needed for linking against libraries built in a non-standard way. #### New features ##### `numpy._core` submodule stubs `numpy._core` submodule stubs were added to provide compatibility with pickled arrays created using NumPy 2.0 when running Numpy 1.26. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Anton Prosekin + - Charles Harris - Chongyun Lee + - Ivan A. Melnikov + - Jake Lishman + - Mahder Gebremedhin + - Mateusz Sokół - Matti Picus - Munira Alduraibi + - Ralf Gommers - Rohit Goswami - Sayed Adel #### Pull requests merged A total of 20 pull requests were merged for this release. - [#&#8203;24742](https://github.com/numpy/numpy/pull/24742): MAINT: Update cibuildwheel version - [#&#8203;24748](https://github.com/numpy/numpy/pull/24748): MAINT: fix version string in wheels built with setup.py - [#&#8203;24771](https://github.com/numpy/numpy/pull/24771): BLD, BUG: Fix build failure for host flags e.g. `-march=native`... - [#&#8203;24773](https://github.com/numpy/numpy/pull/24773): DOC: Updated the f2py docs to remove a note on -fimplicit-none - [#&#8203;24776](https://github.com/numpy/numpy/pull/24776): BUG: Fix SIMD f32 trunc test on s390x when baseline is none - [#&#8203;24785](https://github.com/numpy/numpy/pull/24785): BLD: add libquadmath to licences and other tweaks ([#&#8203;24753](https://github.com/numpy/numpy/issues/24753)) - [#&#8203;24786](https://github.com/numpy/numpy/pull/24786): MAINT: Activate `use-compute-credits` for Cirrus. - [#&#8203;24803](https://github.com/numpy/numpy/pull/24803): BLD: updated vendored-meson/meson for mips64 fix - [#&#8203;24804](https://github.com/numpy/numpy/pull/24804): MAINT: fix licence path win - [#&#8203;24813](https://github.com/numpy/numpy/pull/24813): BUG: Fix order of Windows OS detection macros. - [#&#8203;24831](https://github.com/numpy/numpy/pull/24831): BUG, SIMD: use scalar cmul on bad Apple clang x86\_64 ([#&#8203;24828](https://github.com/numpy/numpy/issues/24828)) - [#&#8203;24840](https://github.com/numpy/numpy/pull/24840): BUG: Fix DATA statements for f2py - [#&#8203;24870](https://github.com/numpy/numpy/pull/24870): API: Add `NumpyUnpickler` for backporting - [#&#8203;24872](https://github.com/numpy/numpy/pull/24872): MAINT: Xfail test failing on PyPy. - [#&#8203;24879](https://github.com/numpy/numpy/pull/24879): BLD: fix math func feature checks, fix FreeBSD build, add CI... - [#&#8203;24899](https://github.com/numpy/numpy/pull/24899): ENH: meson: implement BLAS/LAPACK auto-detection and many CI... - [#&#8203;24902](https://github.com/numpy/numpy/pull/24902): DOC: add a 1.26.1 release notes section for BLAS/LAPACK build... - [#&#8203;24906](https://github.com/numpy/numpy/pull/24906): MAINT: Backport `numpy._core` stubs. Remove `NumpyUnpickler` - [#&#8203;24911](https://github.com/numpy/numpy/pull/24911): MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2 - [#&#8203;24912](https://github.com/numpy/numpy/pull/24912): BUG: loongarch doesn't use REAL(10) #### Checksums ##### MD5 bda38de1a047dd9fdddae16c0d9fb358 numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl 196d2e39047da64ab28e177760c95461 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl 9d25010a7bf50e624d2fed742790afbd numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9b22fa3d030807f0708007d9c0659f65 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl eea626b8b930acb4b32302a9e95714f5 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl 3c40ef068f50d2ac2913c5b9fa1233fa numpy-1.26.1-cp310-cp310-win32.whl 315c251d2f284af25761a37ce6dd4d10 numpy-1.26.1-cp310-cp310-win_amd64.whl ebdd5046937df50e9f54a6d38c5775dd numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl 682f9beebe8547f205d6cdc8ff96a984 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl e86da9b6040ea88b3835c4d8f8578658 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ebcb6cf7f64454215e29d8a89829c8e1 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a8c89e13dc9a63712104e2fb06fb63a6 numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl 339795930404988dbc664ff4cc72b399 numpy-1.26.1-cp311-cp311-win32.whl 4ef5e1bdd7726c19615843f5ac72e618 numpy-1.26.1-cp311-cp311-win_amd64.whl 3aad6bc72db50e9cc88aa5813e8f35bd numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl fd62f65ae7798dbda9a3f7af7aa5c8db numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl 104d939e080f1baf0a56aed1de0e79e3 numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c44b56c96097f910bbec1420abcf3db5 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1dce230368ae5fc47dd0fe8de8ff771d numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl d93338e7d60e1d294ca326450e99806b numpy-1.26.1-cp312-cp312-win32.whl a1832f46521335c1ee4c56dbf12e600b numpy-1.26.1-cp312-cp312-win_amd64.whl 946fbb0b6caca9258985495532d3f9ab numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl 78c2ab13d395d67d90bcd6583a6f61a8 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl 0a9d80d8b646abf4ffe51fff3e075d10 numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0229ba8145d4f58500873b540a55d60e numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9179fc57c03260374c86e18867c24463 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl 246a3103fdbe5d891d7a8aee28875a26 numpy-1.26.1-cp39-cp39-win32.whl 4589dcb7f754fade6ea3946416bee638 numpy-1.26.1-cp39-cp39-win_amd64.whl 3af340d5487a6c045f00fe5eb889957c numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 28aece4f1ceb92ec463aa353d4a91c8b numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bbd0461a1e31017b05509e9971b3478e numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl 2d770f4c281d405b690c4bcb3dbe99e2 numpy-1.26.1.tar.gz ##### SHA256 82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244 numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297 numpy-1.26.1-cp310-cp310-win32.whl d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab numpy-1.26.1-cp310-cp310-win_amd64.whl cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl 1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b numpy-1.26.1-cp311-cp311-win32.whl 3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53 numpy-1.26.1-cp311-cp311-win_amd64.whl 1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24 numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66 numpy-1.26.1-cp312-cp312-win32.whl 9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7 numpy-1.26.1-cp312-cp312-win_amd64.whl bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl 9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908 numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104 numpy-1.26.1-cp39-cp39-win32.whl 59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2 numpy-1.26.1-cp39-cp39-win_amd64.whl 06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668 numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42 numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe numpy-1.26.1.tar.gz ### [`v1.26.0`](https://github.com/numpy/numpy/releases/v1.26.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.25.2...v1.26.0) ### NumPy 1.26.0 Release Notes The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle with the addition of Python 3.12.0 support. Python 3.12 dropped distutils, consequently supporting it required finding a replacement for the setup.py/distutils based build system NumPy was using. We have chosen to use the Meson build system instead, and this is the first NumPy release supporting it. This is also the first release that supports Cython 3.0 in addition to retaining 0.29.X compatibility. Supporting those two upgrades was a large project, over 100 files have been touched in this release. The changelog doesn't capture the full extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan van der Walt, and Matti Picus who did much of the work in the main development branch. The highlights of this release are: - Python 3.12.0 support. - Cython 3.0.0 compatibility. - Use of the Meson build system - Updated SIMD support - f2py fixes, meson and bind(x) support - Support for the updated Accelerate BLAS/LAPACK library The Python versions supported in this release are 3.9-3.12. #### New Features ##### Array API v2022.12 support in `numpy.array_api` `numpy.array_api` now full supports the [v2022.12 version](https://data-apis.org/array-api/2022.12) of the array API standard. Note that this does not yet include the optional `fft` extension in the standard. ([gh-23789](https://github.com/numpy/numpy/pull/23789)) ##### Support for the updated Accelerate BLAS/LAPACK library Support for the updated Accelerate BLAS/LAPACK library, including ILP64 (64-bit integer) support, in macOS 13.3 has been added. This brings arm64 support, and significant performance improvements of up to 10x for commonly used linear algebra operations. When Accelerate is selected at build time, the 13.3+ version will automatically be used if available. ([gh-24053](https://github.com/numpy/numpy/pull/24053)) ##### `meson` backend for `f2py` `f2py` in compile mode (i.e. `f2py -c`) now accepts the `--backend meson` option. This is the default option for Python `3.12` on-wards. Older versions will still default to `--backend distutils`. To support this in realistic use-cases, in compile mode `f2py` takes a `--dep` flag one or many times which maps to `dependency()` calls in the `meson` backend, and does nothing in the `distutils` backend. There are no changes for users of `f2py` only as a code generator, i.e. without `-c`. ([gh-24532](https://github.com/numpy/numpy/pull/24532)) ##### `bind(c)` support for `f2py` Both functions and subroutines can be annotated with `bind(c)`. `f2py` will handle both the correct type mapping, and preserve the unique label for other `C` interfaces. **Note:** `bind(c, name = 'routine_name_other_than_fortran_routine')` is not honored by the `f2py` bindings by design, since `bind(c)` with the `name` is meant to guarantee only the same name in `C` and `Fortran`, not in `Python` and `Fortran`. ([gh-24555](https://github.com/numpy/numpy/pull/24555)) #### Improvements ##### `iso_c_binding` support for `f2py` Previously, users would have to define their own custom `f2cmap` file to use type mappings defined by the Fortran2003 `iso_c_binding` intrinsic module. These type maps are now natively supported by `f2py` ([gh-24555](https://github.com/numpy/numpy/pull/24555)) #### Build system changes In this release, NumPy has switched to Meson as the build system and meson-python as the build backend. Installing NumPy or building a wheel can be done with standard tools like `pip` and `pypa/build`. The following are supported: - Regular installs: `pip install numpy` or (in a cloned repo) `pip install .` - Building a wheel: `python -m build` (preferred), or `pip wheel .` - Editable installs: `pip install -e . --no-build-isolation` - Development builds through the custom CLI implemented with [spin](https://github.com/scientific-python/spin): `spin build`. All the regular `pip` and `pypa/build` flags (e.g., `--no-build-isolation`) should work as expected. ##### NumPy-specific build customization Many of the NumPy-specific ways of customizing builds have changed. The `NPY_*` environment variables which control BLAS/LAPACK, SIMD, threading, and other such options are no longer supported, nor is a `site.cfg` file to select BLAS and LAPACK. Instead, there are command-line flags that can be passed to the build via `pip`/`build`'s config-settings interface. These flags are all listed in the `meson_options.txt` file in the root of the repo. Detailed documented will be available before the final 1.26.0 release; for now please see [the SciPy "building from source" docs](http://scipy.github.io/devdocs/building/index.html) since most build customization works in an almost identical way in SciPy as it does in NumPy. ##### Build dependencies While the runtime dependencies of NumPy have not changed, the build dependencies have. Because we temporarily vendor Meson and meson-python, there are several new dependencies - please see the `[build-system]` section of `pyproject.toml` for details. ##### Troubleshooting This build system change is quite large. In case of unexpected issues, it is still possible to use a `setup.py`-based build as a temporary workaround (on Python 3.9-3.11, not 3.12), by copying `pyproject.toml.setuppy` to `pyproject.toml`. However, please open an issue with details on the NumPy issue tracker. We aim to phase out `setup.py` builds as soon as possible, and therefore would like to see all potential blockers surfaced early on in the 1.26.0 release cycle. #### Contributors A total of 20 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;DWesl](https://github.com/DWesl) - Albert Steppi + - Bas van Beek - Charles Harris - Developer-Ecosystem-Engineering - Filipe Laíns + - Jake Vanderplas - Liang Yan + - Marten van Kerkwijk - Matti Picus - Melissa Weber Mendonça - Namami Shanker - Nathan Goldbaum - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg - Stefan van der Walt - Tyler Reddy - Warren Weckesser #### Pull requests merged A total of 59 pull requests were merged for this release. - [#&#8203;24305](https://github.com/numpy/numpy/pull/24305): MAINT: Prepare 1.26.x branch for development - [#&#8203;24308](https://github.com/numpy/numpy/pull/24308): MAINT: Massive update of files from main for numpy 1.26 - [#&#8203;24322](https://github.com/numpy/numpy/pull/24322): CI: fix wheel builds on the 1.26.x branch - [#&#8203;24326](https://github.com/numpy/numpy/pull/24326): BLD: update openblas to newer version - [#&#8203;24327](https://github.com/numpy/numpy/pull/24327): TYP: Trim down the `_NestedSequence.__getitem__` signature - [#&#8203;24328](https://github.com/numpy/numpy/pull/24328): BUG: fix choose refcount leak - [#&#8203;24337](https://github.com/numpy/numpy/pull/24337): TST: fix running the test suite in builds without BLAS/LAPACK - [#&#8203;24338](https://github.com/numpy/numpy/pull/24338): BUG: random: Fix generation of nan by dirichlet. - [#&#8203;24340](https://github.com/numpy/numpy/pull/24340): MAINT: Dependabot updates from main - [#&#8203;24342](https://github.com/numpy/numpy/pull/24342): MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1 - [#&#8203;24353](https://github.com/numpy/numpy/pull/24353): MAINT: Update `extbuild.py` from main. - [#&#8203;24356](https://github.com/numpy/numpy/pull/24356): TST: fix distutils tests for deprecations in recent setuptools... - [#&#8203;24375](https://github.com/numpy/numpy/pull/24375): MAINT: Update cibuildwheel to version 2.15.0 - [#&#8203;24381](https://github.com/numpy/numpy/pull/24381): MAINT: Fix codespaces setup.sh script - [#&#8203;24403](https://github.com/numpy/numpy/pull/24403): ENH: Vendor meson for multi-target build support - [#&#8203;24404](https://github.com/numpy/numpy/pull/24404): BLD: vendor meson-python to make the Windows builds with SIMD... - [#&#8203;24405](https://github.com/numpy/numpy/pull/24405): BLD, SIMD: The meson CPU dispatcher implementation - [#&#8203;24406](https://github.com/numpy/numpy/pull/24406): MAINT: Remove versioneer - [#&#8203;24409](https://github.com/numpy/numpy/pull/24409): REL: Prepare for the NumPy 1.26.0b1 release. - [#&#8203;24453](https://github.com/numpy/numpy/pull/24453): MAINT: Pin upper version of sphinx. - [#&#8203;24455](https://github.com/numpy/numpy/pull/24455): ENH: Add prefix to \_ALIGN Macro - [#&#8203;24456](https://github.com/numpy/numpy/pull/24456): BUG: cleanup warnings - [#&#8203;24460](https://github.com/numpy/numpy/pull/24460): MAINT: Upgrade to spin 0.5 - [#&#8203;24495](https://github.com/numpy/numpy/pull/24495): BUG: `asv dev` has been removed, use `asv run`. - [#&#8203;24496](https://github.com/numpy/numpy/pull/24496): BUG: Fix meson build failure due to unchanged inplace auto-generated... - [#&#8203;24521](https://github.com/numpy/numpy/pull/24521): BUG: fix issue with git-version script, needs a shebang to run - [#&#8203;24522](https://github.com/numpy/numpy/pull/24522): BUG: Use a default assignment for git_hash - [#&#8203;24524](https://github.com/numpy/numpy/pull/24524): BUG: fix NPY_cast_info error handling in choose - [#&#8203;24526](https://github.com/numpy/numpy/pull/24526): BUG: Fix common block handling in f2py - [#&#8203;24541](https://github.com/numpy/numpy/pull/24541): CI,TYP: Bump mypy to 1.4.1 - [#&#8203;24542](https://github.com/numpy/numpy/pull/24542): BUG: Fix assumed length f2py regression - [#&#8203;24544](https://github.com/numpy/numpy/pull/24544): MAINT: Harmonize fortranobject - [#&#8203;24545](https://github.com/numpy/numpy/pull/24545): TYP: add kind argument to numpy.isin type specification - [#&#8203;24561](https://github.com/numpy/numpy/pull/24561): BUG: fix comparisons between masked and unmasked structured arrays - [#&#8203;24590](https://github.com/numpy/numpy/pull/24590): CI: Exclude import libraries from list of DLLs on Cygwin. - [#&#8203;24591](https://github.com/numpy/numpy/pull/24591): BLD: fix `_umath_linalg` dependencies - [#&#8203;24594](https://github.com/numpy/numpy/pull/24594): MAINT: Stop testing on ppc64le. - [#&#8203;24602](https://github.com/numpy/numpy/pull/24602): BLD: meson-cpu: fix SIMD support on platforms with no features - [#&#8203;24606](https://github.com/numpy/numpy/pull/24606): BUG: Change Cython `binding` directive to "False". - [#&#8203;24613](https://github.com/numpy/numpy/pull/24613): ENH: Adopt new macOS Accelerate BLAS/LAPACK Interfaces, including... - [#&#8203;24614](https://github.com/numpy/numpy/pull/24614): DOC: Update building docs to use Meson - [#&#8203;24615](https://github.com/numpy/numpy/pull/24615): TYP: Add the missing `casting` keyword to `np.clip` - [#&#8203;24616](https://github.com/numpy/numpy/pull/24616): TST: convert cython test from setup.py to meson - [#&#8203;24617](https://github.com/numpy/numpy/pull/24617): MAINT: Fixup `fromnumeric.pyi` - [#&#8203;24622](https://github.com/numpy/numpy/pull/24622): BUG, ENH: Fix `iso_c_binding` type maps and fix `bind(c)`... - [#&#8203;24629](https://github.com/numpy/numpy/pull/24629): TYP: Allow `binary_repr` to accept any object implementing... - [#&#8203;24630](https://github.com/numpy/numpy/pull/24630): TYP: Explicitly declare `dtype` and `generic` hashable - [#&#8203;24637](https://github.com/numpy/numpy/pull/24637): ENH: Refactor the typing "reveal" tests using `typing.assert_type` - [#&#8203;24638](https://github.com/numpy/numpy/pull/24638): MAINT: Bump actions/checkout from 3.6.0 to 4.0.0 - [#&#8203;24647](https://github.com/numpy/numpy/pull/24647): ENH: `meson` backend for `f2py` - [#&#8203;24648](https://github.com/numpy/numpy/pull/24648): MAINT: Refactor partial load Workaround for Clang - [#&#8203;24653](https://github.com/numpy/numpy/pull/24653): REL: Prepare for the NumPy 1.26.0rc1 release. - [#&#8203;24659](https://github.com/numpy/numpy/pull/24659): BLD: allow specifying the long double format to avoid the runtime... - [#&#8203;24665](https://github.com/numpy/numpy/pull/24665): BLD: fix bug in random.mtrand extension, don't link libnpyrandom - [#&#8203;24675](https://github.com/numpy/numpy/pull/24675): BLD: build wheels for 32-bit Python on Windows, using MSVC - [#&#8203;24700](https://github.com/numpy/numpy/pull/24700): BLD: fix issue with compiler selection during cross compilation - [#&#8203;24701](https://github.com/numpy/numpy/pull/24701): BUG: Fix data stmt handling for complex values in f2py - [#&#8203;24707](https://github.com/numpy/numpy/pull/24707): TYP: Add annotations for the py3.12 buffer protocol - [#&#8203;24718](https://github.com/numpy/numpy/pull/24718): DOC: fix a few doc build issues on 1.26.x and update `spin docs`... #### Checksums ##### MD5 052d84a2aaad4d5a455b64f5ff3f160b numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl 874567083be194080e97bea39ea7befd numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl 1a5fa023e05e050b95549d355890fbb6 numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2af03fbadd96360b26b993975709d072 numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 32717dd51a915e9aee4dcca72acb00d0 numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl 3f101e51b3b5f8c3f01256da645a1962 numpy-1.26.0-cp310-cp310-win32.whl d523a40f0a5f5ba94f09679adbabf825 numpy-1.26.0-cp310-cp310-win_amd64.whl 6115698fdf5fb8cf895540a57d12bfb9 numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl 207603ee822d8af4542f239b8c0a7a67 numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl 0cc5f95c4aebab0ca4f9f66463981016 numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a4654b46bc10738825f37a1797e1eba5 numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3b037dc746499f2a19bb58b55fdd0bfb numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl 7bfb0c44e95f765e7fc5a7a86968a56c numpy-1.26.0-cp311-cp311-win32.whl 3355b510410cb20bacfb3c87632a731a numpy-1.26.0-cp311-cp311-win_amd64.whl 9624a97f1df9f64054409d274c1502f3 numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl 53429b1349542c38b2f3822c7f2904d5 numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl 66a21bf4d8a6372cc3c4c89a67b96279 numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cb9abc312090046563eae619c0b68210 numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 49e3498e0e0ec5c1f6314fb86d7f006e numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl f4a31765889478341597a7140044db85 numpy-1.26.0-cp312-cp312-win32.whl e7d7ded11f89baf760e5ba69249606e4 numpy-1.26.0-cp312-cp312-win_amd64.whl 19698f330ae322c4813eed6e790a04d5 numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl a3628f551d851fbcde6551adb8fcfe2b numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl b34af2ddf43b28207ec7e2c837cbe35f numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3d888129c86357ccfb779d9f0c1256f5 numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e49d00c779df59a786d9f41e0d73c520 numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl 69f6aa8a0f3919797cb28fab7069a578 numpy-1.26.0-cp39-cp39-win32.whl 8233224840dcdda49b08da1d5e91a730 numpy-1.26.0-cp39-cp39-win_amd64.whl c11b4d1181b825407b71a1ac8ec04a10 numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 1515773d4f569d44c6a757cb5a636cb2 numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 60dc766d863d8ab561b494a7a759d562 numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl 69bd28f07afbeed2bb6ecd467afcd469 numpy-1.26.0.tar.gz ##### SHA256 f8db2f125746e44dce707dd44d4f4efeea8d7e2b43aace3f8d1f235cfa2733dd numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl 0621f7daf973d34d18b4e4bafb210bbaf1ef5e0100b5fa750bd9cde84c7ac292 numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl 51be5f8c349fdd1a5568e72713a21f518e7d6707bcf8503b528b88d33b57dc68 numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 767254ad364991ccfc4d81b8152912e53e103ec192d1bb4ea6b1f5a7117040be numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 436c8e9a4bdeeee84e3e59614d38c3dbd3235838a877af8c211cfcac8a80b8d3 numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl c2e698cb0c6dda9372ea98a0344245ee65bdc1c9dd939cceed6bb91256837896 numpy-1.26.0-cp310-cp310-win32.whl 09aaee96c2cbdea95de76ecb8a586cb687d281c881f5f17bfc0fb7f5890f6b91 numpy-1.26.0-cp310-cp310-win_amd64.whl 637c58b468a69869258b8ae26f4a4c6ff8abffd4a8334c830ffb63e0feefe99a numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl 306545e234503a24fe9ae95ebf84d25cba1fdc27db971aa2d9f1ab6bba19a9dd numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl 8c6adc33561bd1d46f81131d5352348350fc23df4d742bb246cdfca606ea1208 numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e062aa24638bb5018b7841977c360d2f5917268d125c833a686b7cbabbec496c numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 546b7dd7e22f3c6861463bebb000646fa730e55df5ee4a0224408b5694cc6148 numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl c0b45c8b65b79337dee5134d038346d30e109e9e2e9d43464a2970e5c0e93229 numpy-1.26.0-cp311-cp311-win32.whl eae430ecf5794cb7ae7fa3808740b015aa80747e5266153128ef055975a72b99 numpy-1.26.0-cp311-cp311-win_amd64.whl 166b36197e9debc4e384e9c652ba60c0bacc216d0fc89e78f973a9760b503388 numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl f042f66d0b4ae6d48e70e28d487376204d3cbf43b84c03bac57e28dac6151581 numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl e5e18e5b14a7560d8acf1c596688f4dfd19b4f2945b245a71e5af4ddb7422feb numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7f6bad22a791226d0a5c7c27a80a20e11cfe09ad5ef9084d4d3fc4a299cca505 numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4acc65dd65da28060e206c8f27a573455ed724e6179941edb19f97e58161bb69 numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl bb0d9a1aaf5f1cb7967320e80690a1d7ff69f1d47ebc5a9bea013e3a21faec95 numpy-1.26.0-cp312-cp312-win32.whl ee84ca3c58fe48b8ddafdeb1db87388dce2c3c3f701bf447b05e4cfcc3679112 numpy-1.26.0-cp312-cp312-win_amd64.whl 4a873a8180479bc829313e8d9798d5234dfacfc2e8a7ac188418189bb8eafbd2 numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl 914b28d3215e0c721dc75db3ad6d62f51f630cb0c277e6b3bcb39519bed10bd8 numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl c78a22e95182fb2e7874712433eaa610478a3caf86f28c621708d35fa4fd6e7f numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 86f737708b366c36b76e953c46ba5827d8c27b7a8c9d0f471810728e5a2fe57c numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b44e6a09afc12952a7d2a58ca0a2429ee0d49a4f89d83a0a11052da696440e49 numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl 5671338034b820c8d58c81ad1dafc0ed5a00771a82fccc71d6438df00302094b numpy-1.26.0-cp39-cp39-win32.whl 020cdbee66ed46b671429c7265cf00d8ac91c046901c55684954c3958525dab2 numpy-1.26.0-cp39-cp39-win_amd64.whl 0792824ce2f7ea0c82ed2e4fecc29bb86bee0567a080dacaf2e0a01fe7654369 numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 7d484292eaeb3e84a51432a94f53578689ffdea3f90e10c8b203a99be5af57d8 numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 186ba67fad3c60dbe8a3abff3b67a91351100f2661c8e2a80364ae6279720299 numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf numpy-1.26.0.tar.gz ### [`v1.25.2`](https://github.com/numpy/numpy/releases/v1.25.2) [Compare Source](https://github.com/numpy/numpy/compare/v1.25.1...v1.25.2) ### NumPy 1.25.2 Release Notes NumPy 1.25.2 is a maintenance release that fixes bugs and regressions discovered after the 1.25.1 release. This is the last planned release in the 1.25.x series, the next release will be 1.26.0, which will use the meson build system and support Python 3.12. The Python versions supported by this release are 3.9-3.11. #### Contributors A total of 13 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Aaron Meurer - Andrew Nelson - Charles Harris - Kevin Sheppard - Matti Picus - Nathan Goldbaum - Peter Hawkins - Ralf Gommers - Randy Eckenrode + - Sam James + - Sebastian Berg - Tyler Reddy - dependabot\[bot] #### Pull requests merged A total of 19 pull requests were merged for this release. - [#&#8203;24148](https://github.com/numpy/numpy/pull/24148): MAINT: prepare 1.25.x for further development - [#&#8203;24174](https://github.com/numpy/numpy/pull/24174): ENH: Improve clang-cl compliance - [#&#8203;24179](https://github.com/numpy/numpy/pull/24179): MAINT: Upgrade various build dependencies. - [#&#8203;24182](https://github.com/numpy/numpy/pull/24182): BLD: use `-ftrapping-math` with Clang on macOS - [#&#8203;24183](https://github.com/numpy/numpy/pull/24183): BUG: properly handle negative indexes in ufunc_at fast path - [#&#8203;24184](https://github.com/numpy/numpy/pull/24184): BUG: PyObject_IsTrue and PyObject_Not error handling in setflags - [#&#8203;24185](https://github.com/numpy/numpy/pull/24185): BUG: histogram small range robust - [#&#8203;24186](https://github.com/numpy/numpy/pull/24186): MAINT: Update meson.build files from main branch - [#&#8203;24234](https://github.com/numpy/numpy/pull/24234): MAINT: exclude min, max and round from `np.__all__` - [#&#8203;24241](https://github.com/numpy/numpy/pull/24241): MAINT: Dependabot updates - [#&#8203;24242](https://github.com/numpy/numpy/pull/24242): BUG: Fix the signature for np.array_api.take - [#&#8203;24243](https://github.com/numpy/numpy/pull/24243): BLD: update OpenBLAS to an intermeidate commit - [#&#8203;24244](https://github.com/numpy/numpy/pull/24244): BUG: Fix reference count leak in str(scalar). - [#&#8203;24245](https://github.com/numpy/numpy/pull/24245): BUG: fix invalid function pointer conversion error - [#&#8203;24255](https://github.com/numpy/numpy/pull/24255): BUG: Factor out slow `getenv` call used for memory policy warning - [#&#8203;24292](https://github.com/numpy/numpy/pull/24292): CI: correct URL in cirrus.star - [#&#8203;24293](https://github.com/numpy/numpy/pull/24293): BUG: Fix C types in scalartypes - [#&#8203;24294](https://github.com/numpy/numpy/pull/24294): BUG: do not modify the input to ufunc_at - [#&#8203;24295](https://github.com/numpy/numpy/pull/24295): BUG: Further fixes to indexing loop and added tests #### Checksums ##### MD5 33518ccb4da8ee11f1dee4b9fef1e468 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl b5cb0c3b33ef6d93ec2888f25b065636 numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl ae027dd38bd73f09c07220b2f516f148 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 88cf69dc3c0d293492c4c7e75dccf3d8 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3e4e3ad02375ba71ae2cd05ccd97aba4 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl f52bb644682deb26c35ddec77198b65c numpy-1.25.2-cp310-cp310-win32.whl 4944cf36652be7560a6bcd0d5d56e8ea numpy-1.25.2-cp310-cp310-win_amd64.whl 5a56e639defebb7b871c8c5613960ca3 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl 3988b96944e7218e629255214f2598bd numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl 302d65015ddd908a862fb3761a2a0363 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e54a2e23272d1c5e5b278bd7e304c948 numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 961d390e8ccaf11b1b0d6200d2c8b1c0 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl e113865b90f97079d344100c41226fbe numpy-1.25.2-cp311-cp311-win32.whl 834a147aa1adaec97655018b882232bd numpy-1.25.2-cp311-cp311-win_amd64.whl fb55f93a8033bde854c8a2b994045686 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl d96e754217d29bf045e082b695667e62 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl beab540edebecbb257e482dd9e498b44 numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e0d608c9e09cd8feba48567586cfefc0 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe1fc32c8bb005ca04b8f10ebdcff6dd numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl 41df58a9935c8ed869c92307c95f02eb numpy-1.25.2-cp39-cp39-win32.whl a4371272c64493beb8b04ac46c4c1521 numpy-1.25.2-cp39-cp39-win_amd64.whl bbe051cbd5f8661dd054277f0b0f0c3d numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 3f68e6b4af6922989dc0133e37db34ee numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fc89421b79e8800240999d3a1d06a4d2 numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl cee1996a80032d47bdf1d9d17249c34e numpy-1.25.2.tar.gz ##### SHA256 db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl 90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl 7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044 numpy-1.25.2-cp310-cp310-win32.whl 834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545 numpy-1.25.2-cp310-cp310-win_amd64.whl c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl 0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl 5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d numpy-1.25.2-cp311-cp311-win32.whl 5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4 numpy-1.25.2-cp311-cp311-win_amd64.whl b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl 3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl 2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01 numpy-1.25.2-cp39-cp39-win32.whl 76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380 numpy-1.25.2-cp39-cp39-win_amd64.whl 1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55 numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901 numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760 numpy-1.25.2.tar.gz ### [`v1.25.1`](https://github.com/numpy/numpy/releases/v1.25.1) [Compare Source](https://github.com/numpy/numpy/compare/v1.25.0...v1.25.1) ### NumPy 1.25.1 Release Notes NumPy 1.25.1 is a maintenance release that fixes bugs and regressions discovered after the 1.25.0 release. The Python versions supported by this release are 3.9-3.11. #### Contributors A total of 10 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Charles Harris - Developer-Ecosystem-Engineering - Hood Chatham - Nathan Goldbaum - Rohit Goswami - Sebastian Berg - Tim Paine + - dependabot\[bot] - matoro + #### Pull requests merged A total of 14 pull requests were merged for this release. - [#&#8203;23968](https://github.com/numpy/numpy/pull/23968): MAINT: prepare 1.25.x for further development - [#&#8203;24036](https://github.com/numpy/numpy/pull/24036): BLD: Port long double identification to C for meson - [#&#8203;24037](https://github.com/numpy/numpy/pull/24037): BUG: Fix reduction `return NULL` to be `goto fail` - [#&#8203;24038](https://github.com/numpy/numpy/pull/24038): BUG: Avoid undefined behavior in array.astype() - [#&#8203;24039](https://github.com/numpy/numpy/pull/24039): BUG: Ensure `__array_ufunc__` works without any kwargs passed - [#&#8203;24117](https://github.com/numpy/numpy/pull/24117): MAINT: Pin urllib3 to avoid anaconda-client bug. - [#&#8203;24118](https://github.com/numpy/numpy/pull/24118): TST: Pin pydantic<2 in Pyodide workflow - [#&#8203;24119](https://github.com/numpy/numpy/pull/24119): MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1 - [#&#8203;24120](https://github.com/numpy/numpy/pull/24120): MAINT: Bump actions/checkout from 3.5.2 to 3.5.3 - [#&#8203;24122](https://github.com/numpy/numpy/pull/24122): BUG: Multiply or Divides using SIMD without a full vector can... - [#&#8203;24127](https://github.com/numpy/numpy/pull/24127): MAINT: testing for IS_MUSL closes [#&#8203;24074](https://github.com/numpy/numpy/issues/24074) - [#&#8203;24128](https://github.com/numpy/numpy/pull/24128): BUG: Only replace dtype temporarily if dimensions changed - [#&#8203;24129](https://github.com/numpy/numpy/pull/24129): MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0 - [#&#8203;24134](https://github.com/numpy/numpy/pull/24134): BUG: Fix private procedures in f2py modules #### Checksums ##### MD5 d09d98643db31e892fad11b8c2b7af22 numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl d5b8d3b0424e2af41018f35a087c4500 numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl 1007893b1a8bfd97d445a63d29d33642 numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6a62d7a6cee310b41dc872aa7f3d7e8b numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e81f6264aecfa2269c5d29d10c362cbc numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl ab8ecd125ca86eac0b3ada67ab66dad6 numpy-1.25.1-cp310-cp310-win32.whl 5466bebeaafcc3d6e1b98858d77ff945 numpy-1.25.1-cp310-cp310-win_amd64.whl f31b059256ae09b7b83df63f52d8371e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl 099f74d654888869704469c321af845d numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl 20d04dccd2bfca5cfd88780d1dc9a3f8 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 61dfd7c00638e83a7af59b86615ee9d2 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4eb459c3d9479c4da2fdf20e4c4085d0 numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl 5e84e797866c68ba65fa89a4bf4ba8ce numpy-1.25.1-cp311-cp311-win32.whl 87bb1633b2e8029dbfa1e59f7ab22625 numpy-1.25.1-cp311-cp311-win_amd64.whl 3fcf2eb5970d848a26abdff1b10228e7 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl d71e1cbe18fe05944219e5a5be1796bf numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl 5b457e10834c991bca84aae7eaa49f34 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5cbb4c2f2892fafdf6f34fcb37c9e743 numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7d9d1ae23cf5420652088bfe8e048d89 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl 7e5bed491b85f0d7c718d6809f9b3ed2 numpy-1.25.1-cp39-cp39-win32.whl 838e97b751bebadf47e2196b2c88ffa2 numpy-1.25.1-cp39-cp39-win_amd64.whl 9ba95d8d6004d9659d7728fe93f67be9 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl fbccb20254a2dc85bdec549a03b8eb56 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 95e36689e6dd078caf11e7e2a2d5f5f1 numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl 768d0ebf15e2242f4c7ca7565bb5dd3e numpy-1.25.1.tar.gz ##### SHA256 77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl 4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588 numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19 numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503 numpy-1.25.1-cp310-cp310-win32.whl c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57 numpy-1.25.1-cp310-cp310-win_amd64.whl 6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800 numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl 41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl 791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb numpy-1.25.1-cp311-cp311-win32.whl c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171 numpy-1.25.1-cp311-cp311-win_amd64.whl 3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl 1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl 247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c numpy-1.25.1-cp39-cp39-win32.whl 1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631 numpy-1.25.1-cp39-cp39-win_amd64.whl 35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl 9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf numpy-1.25.1.tar.gz ### [`v1.25.0`](https://github.com/numpy/numpy/releases/v1.25.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.4...v1.25.0) ### NumPy 1.25.0 Release Notes The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been work to prepare for the future NumPy 2.0.0 release, resulting in a large number of new and expired deprecation. Highlights are: - Support for MUSL, there are now MUSL wheels. - Support the Fujitsu C/C++ compiler. - Object arrays are now supported in einsum - Support for inplace matrix multiplication (`@=`). We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is needed because distutils has been dropped by Python 3.12 and we will be switching to using meson for future builds. The next mainline release will be NumPy 2.0.0. We plan that the 2.0 series will still support downstream projects built against earlier versions of NumPy. The Python versions supported in this release are 3.9-3.11. #### Deprecations - `np.core.MachAr` is deprecated. It is private API. In names defined in `np.core` should generally be considered private. ([gh-22638](https://github.com/numpy/numpy/pull/22638)) - `np.finfo(None)` is deprecated. ([gh-23011](https://github.com/numpy/numpy/pull/23011)) - `np.round_` is deprecated. Use `np.round` instead. ([gh-23302](https://github.com/numpy/numpy/pull/23302)) - `np.product` is deprecated. Use `np.prod` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.cumproduct` is deprecated. Use `np.cumprod` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.sometrue` is deprecated. Use `np.any` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.alltrue` is deprecated. Use `np.all` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - Only ndim-0 arrays are treated as scalars. NumPy used to treat all arrays of size 1 (e.g., `np.array([3.14])`) as scalars. In the future, this will be limited to arrays of ndim 0 (e.g., `np.array(3.14)`). The following expressions will report a deprecation warning: ```python a = np.array([3.14]) float(a) # better: a[0] to get the numpy.float or a.item() b = np.array([[3.14]]) c = numpy.random.rand(10) c[0] = b # better: c[0] = b[0, 0] ``` ([gh-10615](https://github.com/numpy/numpy/pull/10615)) - `numpy.find_common_type` is now deprecated and its use should be replaced with either `numpy.result_type` or `numpy.promote_types`. Most users leave the second `scalar_types` argument to `find_common_type` as `[]` in which case `np.result_type` and `np.promote_types` are both faster and more robust. When not using `scalar_types` the main difference is that the replacement intentionally converts non-native byte-order to native byte order. Further, `find_common_type` returns `object` dtype rather than failing promotion. This leads to differences when the inputs are not all numeric. Importantly, this also happens for e.g. timedelta/datetime for which NumPy promotion rules are currently sometimes surprising. When the `scalar_types` argument is not `[]` things are more complicated. In most cases, using `np.result_type` and passing the Python values `0`, `0.0`, or `0j` has the same result as using `int`, `float`, or `complex` in `scalar_types`. When `scalar_types` is constructed, `np.result_type` is the correct replacement and it may be passed scalar values like `np.float32(0.0)`. Passing values other than 0, may lead to value-inspecting behavior (which `np.find_common_type` never used and NEP 50 may change in the future). The main possible change in behavior in this case, is when the array types are signed integers and scalar types are unsigned. If you are unsure about how to replace a use of `scalar_types` or when non-numeric dtypes are likely, please do not hesitate to open a NumPy issue to ask for help. ([gh-22539](https://github.com/numpy/numpy/pull/22539)) #### Expired deprecations - `np.core.machar` and `np.finfo.machar` have been removed. ([gh-22638](https://github.com/numpy/numpy/pull/22638)) - `+arr` will now raise an error when the dtype is not numeric (and positive is undefined). ([gh-22998](https://github.com/numpy/numpy/pull/22998)) - A sequence must now be passed into the stacking family of functions (`stack`, `vstack`, `hstack`, `dstack` and `column_stack`). ([gh-23019](https://github.com/numpy/numpy/pull/23019)) - `np.clip` now defaults to same-kind casting. Falling back to unsafe casting was deprecated in NumPy 1.17. ([gh-23403](https://github.com/numpy/numpy/pull/23403)) - `np.clip` will now propagate `np.nan` values passed as `min` or `max`. Previously, a scalar NaN was usually ignored. This was deprecated in NumPy 1.17. ([gh-23403](https://github.com/numpy/numpy/pull/23403)) - The `np.dual` submodule has been removed. ([gh-23480](https://github.com/numpy/numpy/pull/23480)) - NumPy now always ignores sequence behavior for an array-like (defining one of the array protocols). (Deprecation started NumPy 1.20) ([gh-23660](https://github.com/numpy/numpy/pull/23660)) - The niche `FutureWarning` when casting to a subarray dtype in `astype` or the array creation functions such as `asarray` is now finalized. The behavior is now always the same as if the subarray dtype was wrapped into a single field (which was the workaround, previously). (FutureWarning since NumPy 1.20) ([gh-23666](https://github.com/numpy/numpy/pull/23666)) - `==` and `!=` warnings have been finalized. The `==` and `!=` operators on arrays now always: - raise errors that occur during comparisons such as when the arrays have incompatible shapes (`np.array([1, 2]) == np.array([1, 2, 3])`). - return an array of all `True` or all `False` when values are fundamentally not comparable (e.g. have different dtypes). An example is `np.array(["a"]) == np.array([1])`. This mimics the Python behavior of returning `False` and `True` when comparing incompatible types like `"a" == 1` and `"a" != 1`. For a long time these gave `DeprecationWarning` or `FutureWarning`. ([gh-22707](https://github.com/numpy/numpy/pull/22707)) - Nose support has been removed. NumPy switched to using pytest in 2018 and nose has been unmaintained for many years. We have kept NumPy's nose support to avoid breaking downstream projects who might have been using it and not yet switched to pytest or some other testing framework. With the arrival of Python 3.12, unpatched nose will raise an error. It is time to move on. *Decorators removed*: - raises - slow - setastest - skipif - knownfailif - deprecated - parametrize - \_needs_refcount These are not to be confused with pytest versions with similar names, e.g., pytest.mark.slow, pytest.mark.skipif, pytest.mark.parametrize. *Functions removed*: - Tester - import_nose - run_module_suite ([gh-23041](https://github.com/numpy/numpy/pull/23041)) - The `numpy.testing.utils` shim has been removed. Importing from the `numpy.testing.utils` shim has been deprecated since 2019, the shim has now been removed. All imports should be made directly from `numpy.testing`. ([gh-23060](https://github.com/numpy/numpy/pull/23060)) - The environment variable to disable dispatching has been removed. Support for the `NUMPY_EXPERIMENTAL_ARRAY_FUNCTION` environment variable has been removed. This variable disabled dispatching with `__array_function__`. ([gh-23376](https://github.com/numpy/numpy/pull/23376)) - Support for `y=` as an alias of `out=` has been removed. The `fix`, `isposinf` and `isneginf` functions allowed using `y=` as a (deprecated) alias for `out=`. This is no longer supported. ([gh-23376](https://github.com/numpy/numpy/pull/23376)) #### Compatibility notes - The `busday_count` method now correctly handles cases where the `begindates` is later in time than the `enddates`. Previously, the `enddates` was included, even though the documentation states it is always excluded. ([gh-23229](https://github.com/numpy/numpy/pull/23229)) - When comparing datetimes and timedelta using `np.equal` or `np.not_equal` numpy previously allowed the comparison with `casting="unsafe"`. This operation now fails. Forcing the output dtype using the `dtype` kwarg can make the operation succeed, but we do not recommend it. ([gh-22707](https://github.com/numpy/numpy/pull/22707)) - When loading data from a file handle using `np.load`, if the handle is at the end of file, as can happen when reading multiple arrays by calling `np.load` repeatedly, numpy previously raised `ValueError` if `allow_pickle=False`, and `OSError` if `allow_pickle=True`. Now it raises `EOFError` instead, in both cases. ([gh-23105](https://github.com/numpy/numpy/pull/23105)) ##### `np.pad` with `mode=wrap` pads with strict multiples of original data Code based on earlier version of `pad` that uses `mode="wrap"` will return different results when the padding size is larger than initial array. `np.pad` with `mode=wrap` now always fills the space with strict multiples of original data even if the padding size is larger than the initial array. ([gh-22575](https://github.com/numpy/numpy/pull/22575)) ##### Cython `long_t` and `ulong_t` removed `long_t` and `ulong_t` were aliases for `longlong_t` and `ulonglong_t` and confusing (a remainder from of Python 2). This change may lead to the errors: 'long_t' is not a type identifier 'ulong_t' is not a type identifier We recommend use of bit-sized types such as `cnp.int64_t` or the use of `cnp.intp_t` which is 32 bits on 32 bit systems and 64 bits on 64 bit systems (this is most compatible with indexing). If C `long` is desired, use plain `long` or `npy_long`. `cnp.int_t` is also `long` (NumPy's default integer). However, `long` is 32 bit on 64 bit windows and we may wish to adjust this even in NumPy. (Please do not hesitate to contact NumPy developers if you are curious about this.) ([gh-22637](https://github.com/numpy/numpy/pull/22637)) ##### Changed error message and type for bad `axes` argument to `ufunc` The error message and type when a wrong `axes` value is passed to `ufunc(..., axes=[...])` has changed. The message is now more indicative of the problem, and if the value is mismatched an `AxisError` will be raised. A `TypeError` will still be raised for invalidinput types. ([gh-22675](https://github.com/numpy/numpy/pull/22675)) ##### Array-likes that define `__array_ufunc__` can now override ufuncs if used as `where` If the `where` keyword argument of a `numpy.ufunc`{.interpreted-text role="class"} is a subclass of `numpy.ndarray`{.interpreted-text role="class"} or is a duck type that defines `numpy.class.__array_ufunc__`{.interpreted-text role="func"} it can override the behavior of the ufunc using the same mechanism as the input and output arguments. Note that for this to work properly, the `where.__array_ufunc__` implementation will have to unwrap the `where` argument to pass it into the default implementation of the `ufunc` or, for `numpy.ndarray`{.interpreted-text role="class"} subclasses before using `super().__array_ufunc__`. ([gh-23240](https://github.com/numpy/numpy/pull/23240)) ##### Compiling against the NumPy C API is now backwards compatible by default NumPy now defaults to exposing a backwards compatible subset of the C-API. This makes the use of `oldest-supported-numpy` unnecessary. Libraries can override the default minimal version to be compatible with using: #define NPY_TARGET_VERSION NPY_1_22_API_VERSION before including NumPy or by passing the equivalent `-D` option to the compiler. The NumPy 1.25 default is `NPY_1_19_API_VERSION`. Because the NumPy 1.19 C API was identical to the NumPy 1.16 one resulting programs will be compatible with NumPy 1.16 (from a C-API perspective). This default will be increased in future non-bugfix releases. You can still compile against an older NumPy version and run on a newer one. For more details please see `for-downstream-package-authors`{.interpreted-text role="ref"}. ([gh-23528](https://github.com/numpy/numpy/pull/23528)) #### New Features ##### `np.einsum` now accepts arrays with `object` dtype The code path will call python operators on object dtype arrays, much like `np.dot` and `np.matmul`. ([gh-18053](https://github.com/numpy/numpy/pull/18053)) ##### Add support for inplace matrix multiplication It is now possible to perform inplace matrix multiplication via the `@=` operator. ```python >>> import numpy as np >>> a = np.arange(6).reshape(3, 2) >>> print(a) [[0 1] [2 3] [4 5]] >>> b = np.ones((2, 2), dtype=int) >>> a @&#8203;= b >>> print(a) [[1 1] [5 5] [9 9]] ``` ([gh-21120](https://github.com/numpy/numpy/pull/21120)) ##### Added `NPY_ENABLE_CPU_FEATURES` environment variable Users may now choose to enable only a subset of the built CPU features at runtime by specifying the `NPY_ENABLE_CPU_FEATURES` environment variable. Note that these specified features must be outside the baseline, since those are always assumed. Errors will be raised if attempting to enable a feature that is either not supported by your CPU, or that NumPy was not built with. ([gh-22137](https://github.com/numpy/numpy/pull/22137)) ##### NumPy now has an `np.exceptions` namespace NumPy now has a dedicated namespace making most exceptions and warnings available. All of these remain available in the main namespace, although some may be moved slowly in the future. The main reason for this is to increase discoverability and add future exceptions. ([gh-22644](https://github.com/numpy/numpy/pull/22644)) ##### `np.linalg` functions return NamedTuples `np.linalg` functions that return tuples now return namedtuples. These functions are `eig()`, `eigh()`, `qr()`, `slogdet()`, and `svd()`. The return type is unchanged in instances where these functions return non-tuples with certain keyword arguments (like `svd(compute_uv=False)`). ([gh-22786](https://github.com/numpy/numpy/pull/22786)) ##### String functions in `np.char` are compatible with NEP 42 custom dtypes Custom dtypes that represent unicode strings or byte strings can now be passed to the string functions in `np.char`. ([gh-22863](https://github.com/numpy/numpy/pull/22863)) ##### String dtype instances can be created from the string abstract dtype classes It is now possible to create a string dtype instance with a size without using the string name of the dtype. For example, `type(np.dtype('U'))(8)` will create a dtype that is equivalent to `np.dtype('U8')`. This feature is most useful when writing generic code dealing with string dtype classes. ([gh-22963](https://github.com/numpy/numpy/pull/22963)) ##### Fujitsu C/C++ compiler is now supported Support for Fujitsu compiler has been added. To build with Fujitsu compiler, run: > python setup.py build -c fujitsu ##### SSL2 is now supported Support for SSL2 has been added. SSL2 is a library that provides OpenBLAS compatible GEMM functions. To enable SSL2, it need to edit site.cfg and build with Fujitsu compiler. See site.cfg.example. ([gh-22982](https://github.com/numpy/numpy/pull/22982)) #### Improvements ##### `NDArrayOperatorsMixin` specifies that it has no `__slots__` The `NDArrayOperatorsMixin` class now specifies that it contains no `__slots__`, ensuring that subclasses can now make use of this feature in Python. ([gh-23113](https://github.com/numpy/numpy/pull/23113)) ##### Fix power of complex zero `np.power` now returns a different result for `0^{non-zero}` for complex numbers. Note that the value is only defined when the real part of the exponent is larger than zero. Previously, NaN was returned unless the imaginary part was strictly zero. The return value is either `0+0j` or `0-0j`. ([gh-18535](https://github.com/numpy/numpy/pull/18535)) ##### New `DTypePromotionError` NumPy now has a new `DTypePromotionError` which is used when two dtypes cannot be promoted to a common one, for example: np.result_type("M8[s]", np.complex128) raises this new exception. ([gh-22707](https://github.com/numpy/numpy/pull/22707)) ##### `np.show_config` uses information from Meson Build and system information now contains information from Meson. `np.show_config` now has a new optional parameter `mode` to help customize the output. ([gh-22769](https://github.com/numpy/numpy/pull/22769)) ##### Fix `np.ma.diff` not preserving the mask when called with arguments prepend/append. Calling `np.ma.diff` with arguments prepend and/or append now returns a `MaskedArray` with the input mask preserved. Previously, a `MaskedArray` without the mask was returned. ([gh-22776](https://github.com/numpy/numpy/pull/22776)) ##### Corrected error handling for NumPy C-API in Cython Many NumPy C functions defined for use in Cython were lacking the correct error indicator like `except -1` or `except *`. These have now been added. ([gh-22997](https://github.com/numpy/numpy/pull/22997)) ##### Ability to directly spawn random number generators `numpy.random.Generator.spawn` now allows to directly spawn new independent child generators via the `numpy.random.SeedSequence.spawn` mechanism. `numpy.random.BitGenerator.spawn` does the same for the underlying bit generator. Additionally, `numpy.random.BitGenerator.seed_seq` now gives direct access to the seed sequence used for initializing the bit generator. This allows for example: seed = 0x2e09b90939db40c400f8f22dae617151 rng = np.random.default_rng(seed) child_rng1, child_rng2 = rng.spawn(2) ### safely use rng, child_rng1, and child_rng2 Previously, this was hard to do without passing the `SeedSequence` explicitly. Please see `numpy.random.SeedSequence` for more information. ([gh-23195](https://github.com/numpy/numpy/pull/23195)) ##### `numpy.logspace` now supports a non-scalar `base` argument The `base` argument of `numpy.logspace` can now be array-like if it is broadcastable against the `start` and `stop` arguments. ([gh-23275](https://github.com/numpy/numpy/pull/23275)) ##### `np.ma.dot()` now supports for non-2d arrays Previously `np.ma.dot()` only worked if `a` and `b` were both 2d. Now it works for non-2d arrays as well as `np.dot()`. ([gh-23322](https://github.com/numpy/numpy/pull/23322)) ##### Explicitly show keys of .npz file in repr `NpzFile` shows keys of loaded .npz file when printed. ```python >>> npzfile = np.load('arr.npz') >>> npzfile NpzFile 'arr.npz' with keys arr_0, arr_1, arr_2, arr_3, arr_4... ``` ([gh-23357](https://github.com/numpy/numpy/pull/23357)) ##### NumPy now exposes DType classes in `np.dtypes` The new `numpy.dtypes` module now exposes DType classes and will contain future dtype related functionality. Most users should have no need to use these classes directly. ([gh-23358](https://github.com/numpy/numpy/pull/23358)) ##### Drop dtype metadata before saving in .npy or .npz files Currently, a `*.npy` file containing a table with a dtype with metadata cannot be read back. Now, `np.save` and `np.savez` drop metadata before saving. ([gh-23371](https://github.com/numpy/numpy/pull/23371)) ##### `numpy.lib.recfunctions.structured_to_unstructured` returns views in more cases `structured_to_unstructured` now returns a view, if the stride between the fields is constant. Prior, padding between the fields or a reversed field would lead to a copy. This change only applies to `ndarray`, `memmap` and `recarray`. For all other array subclasses, the behavior remains unchanged. ([gh-23652](https://github.com/numpy/numpy/pull/23652)) ##### Signed and unsigned integers always compare correctly When `uint64` and `int64` are mixed in NumPy, NumPy typically promotes both to `float64`. This behavior may be argued about but is confusing for comparisons `==`, `<=`, since the results returned can be incorrect but the conversion is hidden since the result is a boolean. NumPy will now return the correct results for these by avoiding the cast to float. ([gh-23713](https://github.com/numpy/numpy/pull/23713)) #### Performance improvements and changes ##### Faster `np.argsort` on AVX-512 enabled processors 32-bit and 64-bit quicksort algorithm for np.argsort gain up to 6x speed up on processors that support AVX-512 instruction set. Thanks to [Intel corporation](https://open.intel.com/) for sponsoring this work. ([gh-23707](https://github.com/numpy/numpy/pull/23707)) ##### Faster `np.sort` on AVX-512 enabled processors Quicksort for 16-bit and 64-bit dtypes gain up to 15x and 9x speed up on processors that support AVX-512 instruction set. Thanks to [Intel corporation](https://open.intel.com/) for sponsoring this work. ([gh-22315](https://github.com/numpy/numpy/pull/22315)) ##### `__array_function__` machinery is now much faster The overhead of the majority of functions in NumPy is now smaller especially when keyword arguments are used. This change significantly speeds up many simple function calls. ([gh-23020](https://github.com/numpy/numpy/pull/23020)) ##### `ufunc.at` can be much faster Generic `ufunc.at` can be up to 9x faster. The conditions for this speedup: - operands are aligned - no casting If ufuncs with appropriate indexed loops on 1d arguments with the above conditions, `ufunc.at` can be up to 60x faster (an additional 7x speedup). Appropriate indexed loops have been added to `add`, `subtract`, `multiply`, `floor_divide`, `maximum`, `minimum`, `fmax`, and `fmin`. The internal logic is similar to the logic used for regular ufuncs, which also have fast paths. Thanks to the [D. E. Shaw group](https://deshaw.com/) for sponsoring this work. ([gh-23136](https://github.com/numpy/numpy/pull/23136)) ##### Faster membership test on `NpzFile` Membership test on `NpzFile` will no longer decompress the archive if it is successful. ([gh-23661](https://github.com/numpy/numpy/pull/23661)) #### Changes ##### `np.r_[]` and `np.c_[]` with certain scalar values In rare cases, using mainly `np.r_` with scalars can lead to different results. The main potential changes are highlighted by the following: >>> np.r_[np.arange(5, dtype=np.uint8), -1].dtype int16 # rather than the default integer (int64 or int32) >>> np.r_[np.arange(5, dtype=np.int8), 255] array([ 0, 1, 2, 3, 4, 255], dtype=int16) Where the second example returned: array([ 0, 1, 2, 3, 4, -1], dtype=int8) The first one is due to a signed integer scalar with an unsigned integer array, while the second is due to `255` not fitting into `int8` and NumPy currently inspecting values to make this work. (Note that the second example is expected to change in the future due to `NEP 50 <NEP50>`{.interpreted-text role="ref"}; it will then raise an error.) ([gh-22539](https://github.com/numpy/numpy/pull/22539)) ##### Most NumPy functions are wrapped into a C-callable To speed up the `__array_function__` dispatching, most NumPy functions are now wrapped into C-callables and are not proper Python functions or C methods. They still look and feel the same as before (like a Python function), and this should only improve performance and user experience (cleaner tracebacks). However, please inform the NumPy developers if this change confuses your program for some reason. ([gh-23020](https://github.com/numpy/numpy/pull/23020)) ##### C++ standard library usage NumPy builds now depend on the C++ standard library, because the `numpy.core._multiarray_umath` extension is linked with the C++ linker. ([gh-23601](https://github.com/numpy/numpy/pull/23601)) #### Checksums ##### MD5 4657f046d9d9d62e4baeae9b2cc1b4ea numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl f57f98fee3da2d98f752f755a880a508 numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl 72b0ad52f96a41a7a82f511cb35c7ef1 numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a61227341b8903fa66ab0e0fdaa15430 numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bfccabfbd866c59545ce11ecdac60701 numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl 22402904f194376b8d2de01481f04b03 numpy-1.25.0-cp310-cp310-win32.whl e983b193f7d63568eac85d8bda8be62e numpy-1.25.0-cp310-cp310-win_amd64.whl 5f6477db172f59a4fd7f591e1007e632 numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl 6a85cca47af69e3d45b4efab9490af4d numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl ad1c0b4b406c9a2f1b42792502bc456b numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 39e241f265611a9c1e89499054ead1c9 numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e36b37acf1acfbc185face67c67bfe09 numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl 67862d7849b4f0f943760142f1628aed numpy-1.25.0-cp311-cp311-win32.whl 6e8ed7865792246cac2213bad404f4da numpy-1.25.0-cp311-cp311-win_amd64.whl 25e843425697364f50dd7288ff9d2ce1 numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl 58641e53bcb1e13dfed1f5af1aff94bc numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl ce15327793c39beecee8401356bc6c9b numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 34b734a2c7698d59954c29fe7c0536f3 numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6652d9df23c84e54466b10f4a2a290be numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl c228105e3c4c8887823d99e35eea9d2b numpy-1.25.0-cp39-cp39-win32.whl 1322210ae6a874293d13c4bb3abf24ee numpy-1.25.0-cp39-cp39-win_amd64.whl dc36096628e65077c2a44c493606c668 numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 942b4276f8d563efb111921d5995834c numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0fa0734a8ff952dd643e7b9826168099 numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl b236497153bc19b4a560ac485e4c2754 numpy-1.25.0.tar.gz ##### SHA256 8aa130c3042052d656751df5e81f6d61edff3e289b5994edcf77f54118a8d9f4 numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl 9e3f2b96e3b63c978bc29daaa3700c028fe3f049ea3031b58aa33fe2a5809d24 numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl d6b267f349a99d3908b56645eebf340cb58f01bd1e773b4eea1a905b3f0e4208 numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4aedd08f15d3045a4e9c648f1e04daca2ab1044256959f1f95aafeeb3d794c16 numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6d183b5c58513f74225c376643234c369468e02947b47942eacbb23c1671f25d numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl d76a84998c51b8b68b40448ddd02bd1081bb33abcdc28beee6cd284fe11036c6 numpy-1.25.0-cp310-cp310-win32.whl c0dc071017bc00abb7d7201bac06fa80333c6314477b3d10b52b58fa6a6e38f6 numpy-1.25.0-cp310-cp310-win_amd64.whl 4c69fe5f05eea336b7a740e114dec995e2f927003c30702d896892403df6dbf0 numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl 9c7211d7920b97aeca7b3773a6783492b5b93baba39e7c36054f6e749fc7490c numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl ecc68f11404930e9c7ecfc937aa423e1e50158317bf67ca91736a9864eae0232 numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e559c6afbca484072a98a51b6fa466aae785cfe89b69e8b856c3191bc8872a82 numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6c284907e37f5e04d2412950960894b143a648dea3f79290757eb878b91acbd1 numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl 95367ccd88c07af21b379be1725b5322362bb83679d36691f124a16357390153 numpy-1.25.0-cp311-cp311-win32.whl b76aa836a952059d70a2788a2d98cb2a533ccd46222558b6970348939e55fc24 numpy-1.25.0-cp311-cp311-win_amd64.whl b792164e539d99d93e4e5e09ae10f8cbe5466de7d759fc155e075237e0c274e4 numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl 7cd981ccc0afe49b9883f14761bb57c964df71124dcd155b0cba2b591f0d64b9 numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl 5aa48bebfb41f93043a796128854b84407d4df730d3fb6e5dc36402f5cd594c0 numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5177310ac2e63d6603f659fadc1e7bab33dd5a8db4e0596df34214eeab0fee3b numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0ac6edfb35d2a99aaf102b509c8e9319c499ebd4978df4971b94419a116d0790 numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl 7412125b4f18aeddca2ecd7219ea2d2708f697943e6f624be41aa5f8a9852cc4 numpy-1.25.0-cp39-cp39-win32.whl 26815c6c8498dc49d81faa76d61078c4f9f0859ce7817919021b9eba72b425e3 numpy-1.25.0-cp39-cp39-win_amd64.whl 5b1b90860bf7d8a8c313b372d4f27343a54f415b20fb69dd601b7efe1029c91e numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 85cdae87d8c136fd4da4dad1e48064d700f63e923d5af6c8c782ac0df8044542 numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cc3fda2b36482891db1060f00f881c77f9423eead4c3579629940a3e12095fe8 numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl f1accae9a28dc3cda46a91de86acf69de0d1b5f4edd44a9b0c3ceb8036dfff19 numpy-1.25.0.tar.gz ### [`v1.24.4`](https://github.com/numpy/numpy/releases/v1.24.4) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.3...v1.24.4) ### NumPy 1.24.4 Release Notes NumPy 1.24.4 is a maintenance release that fixes a few bugs discovered after the 1.24.3 release. It is the last planned release in the 1.24.x cycle. The Python versions supported by this release are 3.8-3.11. #### Contributors A total of 4 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Sebastian Berg - Hongyang Peng + #### Pull requests merged A total of 6 pull requests were merged for this release. - [#&#8203;23720](https://github.com/numpy/numpy/pull/23720): MAINT, BLD: Pin rtools to version 4.0 for Windows builds. - [#&#8203;23739](https://github.com/numpy/numpy/pull/23739): BUG: fix the method for checking local files for 1.24.x - [#&#8203;23760](https://github.com/numpy/numpy/pull/23760): MAINT: Copy rtools installation from install-rtools. - [#&#8203;23761](https://github.com/numpy/numpy/pull/23761): BUG: Fix masked array ravel order for A (and somewhat K) - [#&#8203;23890](https://github.com/numpy/numpy/pull/23890): TYP,DOC: Annotate and document the `metadata` parameter of... - [#&#8203;23994](https://github.com/numpy/numpy/pull/23994): MAINT: Update rtools installation #### Checksums ##### MD5 25049e3aee79dde29e7a498d3ad13379 numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl 579b5c357c918feaef4af03af8afb721 numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl c873a14fa4f0210884db9c05e2904286 numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 110a13ac016286059f0658b52b3646c0 numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fa67218966c0aef4094867cad7703648 numpy-1.24.4-cp310-cp310-win32.whl 6ee768803d8ebac43ee0a04e628a69f9 numpy-1.24.4-cp310-cp310-win_amd64.whl 0c918c16b58cb7f6773ea7d76e0bdaff numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl 20506ae8003faf097c6b3a8915b4140e numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl 902df9d5963e89d88a1939d94207857f numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2543611d802c141c8276e4868b4d9619 numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 37b23a4e4e148d61dd3a515ac5dbf7ec numpy-1.24.4-cp311-cp311-win32.whl 25e9f6bee2b65ff2a87588e717f15165 numpy-1.24.4-cp311-cp311-win_amd64.whl f39a0cc3655a482af7d300bcaff5978e numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl 9ed27941388fdb392e8969169f3fc600 numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl dee3f0c7482f1dc8bd1cd27b9b028a2c numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2cc0967af29df3caef9fb3520f14e071 numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8572a3a0973fa78355bcb5f737745b47 numpy-1.24.4-cp38-cp38-win32.whl 771c63f2ef0d31466bbb12362a532265 numpy-1.24.4-cp38-cp38-win_amd64.whl 5713d9dc3dff287fb72121fe1960c48d numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl 4e6718e3b655219a2a733b4fa242ca32 numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl 31487f9a52ef81f8f88ec7fce8738dad numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ea597b30187e55eb16ee31631e66f60d numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 98adbf30c67154056474001c125f6188 numpy-1.24.4-cp39-cp39-win32.whl 49c444b0e572ef45f1d92c106a36004e numpy-1.24.4-cp39-cp39-win_amd64.whl cdddfdeac437b0f20b4e366f00b5c42e numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 3778338c15628caa3abd61e6f7bd46ec numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e16bd49d5295dc1b01ed50d76229fb54 numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl 3f3995540a17854a29dc79f8eeecd832 numpy-1.24.4.tar.gz ##### SHA256 c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64 numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1 numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl 79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4 numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6 numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc numpy-1.24.4-cp310-cp310-win32.whl b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e numpy-1.24.4-cp310-cp310-win_amd64.whl f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810 numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254 numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl 222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7 numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5 numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d numpy-1.24.4-cp311-cp311-win32.whl b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694 numpy-1.24.4-cp311-cp311-win_amd64.whl 1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61 numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl 04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2 numpy-1.24.4-cp38-cp38-win32.whl 692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706 numpy-1.24.4-cp38-cp38-win_amd64.whl 2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400 numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl 9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9 numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835 numpy-1.24.4-cp39-cp39-win32.whl befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8 numpy-1.24.4-cp39-cp39-win_amd64.whl 31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2 numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl 80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463 numpy-1.24.4.tar.gz ### [`v1.24.3`](https://github.com/numpy/numpy/releases/v1.24.3) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.2...v1.24.3) ### NumPy 1.24.3 Release Notes NumPy 1.24.3 is a maintenance release that fixes bugs and regressions discovered after the 1.24.2 release. The Python versions supported by this release are 3.8-3.11. #### Contributors A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Aleksei Nikiforov + - Alexander Heger - Bas van Beek - Bob Eldering - Brock Mendel - Charles Harris - Kyle Sunden - Peter Hawkins - Rohit Goswami - Sebastian Berg - Warren Weckesser - dependabot\[bot] #### Pull requests merged A total of 17 pull requests were merged for this release. - [#&#8203;23206](https://github.com/numpy/numpy/pull/23206): BUG: fix for f2py string scalars ([#&#8203;23194](https://github.com/numpy/numpy/issues/23194)) - [#&#8203;23207](https://github.com/numpy/numpy/pull/23207): BUG: datetime64/timedelta64 comparisons return NotImplemented - [#&#8203;23208](https://github.com/numpy/numpy/pull/23208): MAINT: Pin matplotlib to version 3.6.3 for refguide checks - [#&#8203;23221](https://github.com/numpy/numpy/pull/23221): DOC: Fix matplotlib error in documentation - [#&#8203;23226](https://github.com/numpy/numpy/pull/23226): CI: Ensure submodules are initialized in gitpod. - [#&#8203;23341](https://github.com/numpy/numpy/pull/23341): TYP: Replace duplicate reduce in ufunc type signature with reduceat. - [#&#8203;23342](https://github.com/numpy/numpy/pull/23342): TYP: Remove duplicate CLIP/WRAP/RAISE in `__init__.pyi`. - [#&#8203;23343](https://github.com/numpy/numpy/pull/23343): TYP: Mark `d` argument to fftfreq and rfftfreq as optional... - [#&#8203;23344](https://github.com/numpy/numpy/pull/23344): TYP: Add type annotations for comparison operators to MaskedArray. - [#&#8203;23345](https://github.com/numpy/numpy/pull/23345): TYP: Remove some stray type-check-only imports of `msort` - [#&#8203;23370](https://github.com/numpy/numpy/pull/23370): BUG: Ensure like is only stripped for `like=` dispatched functions - [#&#8203;23543](https://github.com/numpy/numpy/pull/23543): BUG: fix loading and storing big arrays on s390x - [#&#8203;23544](https://github.com/numpy/numpy/pull/23544): MAINT: Bump larsoner/circleci-artifacts-redirector-action - [#&#8203;23634](https://github.com/numpy/numpy/pull/23634): BUG: Ignore invalid and overflow warnings in masked setitem - [#&#8203;23635](https://github.com/numpy/numpy/pull/23635): BUG: Fix masked array raveling when `order="A"` or `order="K"` - [#&#8203;23636](https://github.com/numpy/numpy/pull/23636): MAINT: Update conftest for newer hypothesis versions - [#&#8203;23637](https://github.com/numpy/numpy/pull/23637): BUG: Fix bug in parsing F77 style string arrays. #### Checksums ##### MD5 93a3ce07e3773842c54d831f18e3eb8d numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl 39691ff3d1612438dfcd3266c9765aab numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl a99234799a239e7e9c6fa15c212996df numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3673aa638746851dd19d5199e1eb3a91 numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3c72962360bcd0938a6bddee6cdca766 numpy-1.24.3-cp310-cp310-win32.whl a3329efa646012fa4ee06ce5e08eadaf numpy-1.24.3-cp310-cp310-win_amd64.whl 5323fb0323d1ec10ee3c35a2fa79cbcd numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl cfa001dcd07cdf6414ced433e88959d4 numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl d75bbfb06ed00d04232dce0e865eb42c numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fe18b810bcf284572467ce585dbc533b numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e97699a4ef96a81e0916bdf15440abe0 numpy-1.24.3-cp311-cp311-win32.whl e6de5b7d77dc43ed47f516eb10bbe8b6 numpy-1.24.3-cp311-cp311-win_amd64.whl dd04ebf441a8913f4900b56e7a33a75e numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl e47ac5521b0bfc3effb040072d8a7902 numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl 7b7dae3309e7ca8a8859633a5d337431 numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8cc87b88163ed84e70c48fd0f5f8f20e numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 350934bae971d0ebe231a59b640069db numpy-1.24.3-cp38-cp38-win32.whl c4708ef009bb5d427ea94a4fc4a10e12 numpy-1.24.3-cp38-cp38-win_amd64.whl 44b08a293a4e12d62c27b8f15ba5664e numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl 3ae7ac30f86c720e42b2324a0ae1adf5 numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl 065464a8d918c670c7863d1e72e3e6dd numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1f163b9ea417c253e84480aa8d99dee6 numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c86e648389e333e062bea11c749b9a32 numpy-1.24.3-cp39-cp39-win32.whl bfe332e577c604d6d62a57381e6aa0a6 numpy-1.24.3-cp39-cp39-win_amd64.whl 374695eeef5aca32a5b7f2f518dd3ba1 numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 6abd9dba54405182e6e7bb32dbe377bb numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0848bd41c08dd5ebbc5a7f0788678e0e numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl 89e5e2e78407032290ae6acf6dcaea46 numpy-1.24.3.tar.gz ##### SHA256 3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570 numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl 202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7 numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl 8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463 numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6 numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b numpy-1.24.3-cp310-cp310-win32.whl ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7 numpy-1.24.3-cp310-cp310-win_amd64.whl 9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3 numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl 76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385 numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950 numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096 numpy-1.24.3-cp311-cp311-win32.whl 5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80 numpy-1.24.3-cp311-cp311-win_amd64.whl 7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078 numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4 numpy-1.24.3-cp38-cp38-win32.whl 56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289 numpy-1.24.3-cp38-cp38-win_amd64.whl 4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4 numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl 0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187 numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02 numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4 numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c numpy-1.24.3-cp39-cp39-win32.whl d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17 numpy-1.24.3-cp39-cp39-win_amd64.whl 352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0 numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812 numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4 numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155 numpy-1.24.3.tar.gz ### [`v1.24.2`](https://github.com/numpy/numpy/releases/v1.24.2) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.1...v1.24.2) ### NumPy 1.24.2 Release Notes NumPy 1.24.2 is a maintenance release that fixes bugs and regressions discovered after the 1.24.1 release. The Python versions supported by this release are 3.8-3.11. #### Contributors A total of 14 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Khem Raj + - Mark Harfouche - Matti Picus - Panagiotis Zestanakis + - Peter Hawkins - Pradipta Ghosh - Ross Barnowski - Sayed Adel - Sebastian Berg - Syam Gadde + - dmbelov + - pkubaj + #### Pull requests merged A total of 17 pull requests were merged for this release. - [#&#8203;22965](https://github.com/numpy/numpy/pull/22965): MAINT: Update python 3.11-dev to 3.11. - [#&#8203;22966](https://github.com/numpy/numpy/pull/22966): DOC: Remove dangling deprecation warning - [#&#8203;22967](https://github.com/numpy/numpy/pull/22967): ENH: Detect CPU features on FreeBSD/powerpc64\* - [#&#8203;22968](https://github.com/numpy/numpy/pull/22968): BUG: np.loadtxt cannot load text file with quoted fields separated... - [#&#8203;22969](https://github.com/numpy/numpy/pull/22969): TST: Add fixture to avoid issue with randomizing test order. - [#&#8203;22970](https://github.com/numpy/numpy/pull/22970): BUG: Fix fill violating read-only flag. ([#&#8203;22959](https://github.com/numpy/numpy/issues/22959)) - [#&#8203;22971](https://github.com/numpy/numpy/pull/22971): MAINT: Add additional information to missing scalar AttributeError - [#&#8203;22972](https://github.com/numpy/numpy/pull/22972): MAINT: Move export for scipy arm64 helper into main module - [#&#8203;22976](https://github.com/numpy/numpy/pull/22976): BUG, SIMD: Fix spurious invalid exception for sin/cos on arm64/clang - [#&#8203;22989](https://github.com/numpy/numpy/pull/22989): BUG: Ensure correct loop order in sin, cos, and arctan2 - [#&#8203;23030](https://github.com/numpy/numpy/pull/23030): DOC: Add version added information for the strict parameter in... - [#&#8203;23031](https://github.com/numpy/numpy/pull/23031): BUG: use `_Alignof` rather than `offsetof()` on most compilers - [#&#8203;23147](https://github.com/numpy/numpy/pull/23147): BUG: Fix for npyv\_\_trunc_s32\_f32 (VXE) - [#&#8203;23148](https://github.com/numpy/numpy/pull/23148): BUG: Fix integer / float scalar promotion - [#&#8203;23149](https://github.com/numpy/numpy/pull/23149): BUG: Add missing \<type_traits> header. - [#&#8203;23150](https://github.com/numpy/numpy/pull/23150): TYP, MAINT: Add a missing explicit `Any` parameter to the `npt.ArrayLike`... - [#&#8203;23161](https://github.com/numpy/numpy/pull/23161): BLD: remove redundant definition of npy_nextafter \[wheel build] #### Checksums ##### MD5 73fe0b507f56c0baf43171a76ad2003f numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl 2dbbe6f8a14e14978d24de9fcc8b49fe numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl 9ddadbf9cac2742318d8b292cb9ca579 numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 969f4f33baaff53dbbbaf1a146c43534 numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6df575dff02feac835d22debb15d190e numpy-1.24.2-cp310-cp310-win32.whl 2f939228a8c33265f2a8a1fce349d6f1 numpy-1.24.2-cp310-cp310-win_amd64.whl c093e61421be01ffff435387839949f1 numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl 03d71e3d9a086b56837c461fd7c9188b numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl c0dc33697d156e2b9a029095efeb1b10 numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 13b57957a1f40e13f8826d14b031a6fe numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5afd966db0b59655618c1859d98d87f6 numpy-1.24.2-cp311-cp311-win32.whl e0b850f9c20871cd65ecb35235688f4d numpy-1.24.2-cp311-cp311-win_amd64.whl 9a30452135ab0387b8ea9007e94e9f81 numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl bdd6eede4524a230574b37e1f631f2c0 numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl 4f930a9030d77d45a1cb6f374c91fb53 numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e77155c010f9dd63ea2815579a28c503 numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1a45f4373945eaeabeaa4020ce04e8fd numpy-1.24.2-cp38-cp38-win32.whl 66e93d70fad16b4ccb4531e31aad36e3 numpy-1.24.2-cp38-cp38-win_amd64.whl 93a4984da83c6811367d3daf709ed25c numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl e0281b96c490ba00f1382eb3984b4e51 numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl ce97d81e4ae6e10241d471492391b1be numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0c0ea440190705f98abeaa856e7da690 numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c25f7fbb185f1b8f7761bc22082d9939 numpy-1.24.2-cp39-cp39-win32.whl 7705c6b0bcf22b5e64cf248144b2f554 numpy-1.24.2-cp39-cp39-win_amd64.whl 07b6361e36e0093b580dc05799b1f03d numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 4c1466ae486b39d1a35aacb46256ec1e numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4fea9d95e0489d06c3a24a87697d2fc0 numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl c4212a8da1ecf17ece37e2afd0319806 numpy-1.24.2.tar.gz ##### SHA256 eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5 numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl 6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253 numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978 numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9 numpy-1.24.2-cp310-cp310-win32.whl 97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0 numpy-1.24.2-cp310-cp310-win_amd64.whl 7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl 4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0 numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl 4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281 numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910 numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95 numpy-1.24.2-cp311-cp311-win32.whl 557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04 numpy-1.24.2-cp311-cp311-win_amd64.whl d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2 numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5 numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96 numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d numpy-1.24.2-cp38-cp38-win32.whl 76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756 numpy-1.24.2-cp38-cp38-win_amd64.whl 4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl 889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780 numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468 numpy-1.24.2-cp39-cp39-win32.whl a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5 numpy-1.24.2-cp39-cp39-win_amd64.whl 92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl 003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22 numpy-1.24.2.tar.gz ### [`v1.24.1`](https://github.com/numpy/numpy/releases/v1.24.1) [Compare Source](https://github.com/numpy/numpy/compare/v1.24.0...v1.24.1) ### NumPy 1.24.1 Release Notes NumPy 1.24.1 is a maintenance release that fixes bugs and regressions discovered after the 1.24.0 release. The Python versions supported by this release are 3.8-3.11. #### Contributors A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Andrew Nelson - Ben Greiner + - Charles Harris - Clément Robert - Matteo Raso - Matti Picus - Melissa Weber Mendonça - Miles Cranmer - Ralf Gommers - Rohit Goswami - Sayed Adel - Sebastian Berg #### Pull requests merged A total of 18 pull requests were merged for this release. - [#&#8203;22820](https://github.com/numpy/numpy/pull/22820): BLD: add workaround in setup.py for newer setuptools - [#&#8203;22830](https://github.com/numpy/numpy/pull/22830): BLD: CIRRUS_TAG redux - [#&#8203;22831](https://github.com/numpy/numpy/pull/22831): DOC: fix a couple typos in 1.23 notes - [#&#8203;22832](https://github.com/numpy/numpy/pull/22832): BUG: Fix refcounting errors found using pytest-leaks - [#&#8203;22834](https://github.com/numpy/numpy/pull/22834): BUG, SIMD: Fix invalid value encountered in several ufuncs - [#&#8203;22837](https://github.com/numpy/numpy/pull/22837): TST: ignore more np.distutils.log imports - [#&#8203;22839](https://github.com/numpy/numpy/pull/22839): BUG: Do not use getdata() in np.ma.masked_invalid - [#&#8203;22847](https://github.com/numpy/numpy/pull/22847): BUG: Ensure correct behavior for rows ending in delimiter in... - [#&#8203;22848](https://github.com/numpy/numpy/pull/22848): BUG, SIMD: Fix the bitmask of the boolean comparison - [#&#8203;22857](https://github.com/numpy/numpy/pull/22857): BLD: Help raspian arm + clang 13 about \__builtin_mul_overflow - [#&#8203;22858](https://github.com/numpy/numpy/pull/22858): API: Ensure a full mask is returned for masked_invalid - [#&#8203;22866](https://github.com/numpy/numpy/pull/22866): BUG: Polynomials now copy properly ([#&#8203;22669](https://github.com/numpy/numpy/issues/22669)) - [#&#8203;22867](https://github.com/numpy/numpy/pull/22867): BUG, SIMD: Fix memory overlap in ufunc comparison loops - [#&#8203;22868](https://github.com/numpy/numpy/pull/22868): BUG: Fortify string casts against floating point warnings - [#&#8203;22875](https://github.com/numpy/numpy/pull/22875): TST: Ignore nan-warnings in randomized out tests - [#&#8203;22883](https://github.com/numpy/numpy/pull/22883): MAINT: restore npymath implementations needed for freebsd - [#&#8203;22884](https://github.com/numpy/numpy/pull/22884): BUG: Fix integer overflow in in1d for mixed integer dtypes [#&#8203;22877](https://github.com/numpy/numpy/issues/22877) - [#&#8203;22887](https://github.com/numpy/numpy/pull/22887): BUG: Use whole file for encoding checks with `charset_normalizer`. #### Checksums ##### MD5 9e543db90493d6a00939bd54c2012085 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl 4ebd7af622bf617b4876087e500d7586 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl 0c0a3012b438bb455a6c2fadfb1be76a numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0bddb527345449df624d3cb9aa0e1b75 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b246beb773689d97307f7b4c2970f061 numpy-1.24.1-cp310-cp310-win32.whl 1f3823999fce821a28dee10ac6fdd721 numpy-1.24.1-cp310-cp310-win_amd64.whl 8eedcacd6b096a568e4cb393d43b3ae5 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl 50bddb05acd54b4396100a70522496dd numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl 2a76bd9da8a78b44eb816bd70fa3aee3 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9e86658a414272f9749bde39344f9b76 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 915dfb89054e1631574a22a9b53a2b25 numpy-1.24.1-cp311-cp311-win32.whl ab7caa2c6c20e1fab977e1a94dede976 numpy-1.24.1-cp311-cp311-win_amd64.whl 8246de961f813f5aad89bca3d12f81e7 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl 58366b1a559baa0547ce976e416ed76d numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl a96f29bf106a64f82b9ba412635727d1 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4c32a43bdb85121614ab3e99929e33c7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 09b20949ed21683ad7c9cbdf9ebb2439 numpy-1.24.1-cp38-cp38-win32.whl 9e9f1577f874286a8bdff8dc5551eb9f numpy-1.24.1-cp38-cp38-win_amd64.whl 4383c1137f0287df67c364fbdba2bc72 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl 987f22c49b2be084b5d72f88f347d31e numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl 848ad020bba075ed8f19072c64dcd153 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 864b159e644848bc25f881907dbcf062 numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl db339ec0b2693cac2d7cf9ca75c334b1 numpy-1.24.1-cp39-cp39-win32.whl fec91d4c85066ad8a93816d71b627701 numpy-1.24.1-cp39-cp39-win_amd64.whl 619af9cd4f33b668822ae2350f446a15 numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 46f19b4b147f8836c2bd34262fabfffa numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e85b245c57a10891b3025579bf0cf298 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl dd3aaeeada8e95cc2edf9a3a4aa8b5af numpy-1.24.1.tar.gz ##### SHA256 179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7 numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9 numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7 numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398 numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2 numpy-1.24.1-cp310-cp310-win32.whl b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2 numpy-1.24.1-cp310-cp310-win_amd64.whl 7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8 numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl 28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032 numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1 numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9 numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36 numpy-1.24.1-cp311-cp311-win32.whl de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51 numpy-1.24.1-cp311-cp311-win_amd64.whl b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407 numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl 26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954 numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36 numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7 numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1 numpy-1.24.1-cp38-cp38-win32.whl 6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c numpy-1.24.1-cp38-cp38-win_amd64.whl 28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6 numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl 84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7 numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl 8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700 numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f numpy-1.24.1-cp39-cp39-win32.whl ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e numpy-1.24.1-cp39-cp39-win_amd64.whl ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086 numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566 numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl 2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2 numpy-1.24.1.tar.gz ### [`v1.24.0`](https://github.com/numpy/numpy/releases/v1.24.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.5...v1.24.0) ### NumPy 1.24 Release Notes The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There are also a large number of new and expired deprecations due to changes in promotion and cleanups. This might be called a deprecation release. Highlights are - Many new deprecations, check them out. - Many expired deprecations, - New F2PY features and fixes. - New "dtype" and "casting" keywords for stacking functions. See below for the details, This release supports Python versions 3.8-3.11. #### Deprecations ##### Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose The `numpy.fastCopyAndTranspose` function has been deprecated. Use the corresponding copy and transpose methods directly: arr.T.copy() The underlying C function `PyArray_CopyAndTranspose` has also been deprecated from the NumPy C-API. ([gh-22313](https://github.com/numpy/numpy/pull/22313)) ##### Conversion of out-of-bound Python integers Attempting a conversion from a Python integer to a NumPy value will now always check whether the result can be represented by NumPy. This means the following examples will fail in the future and give a `DeprecationWarning` now: np.uint8(-1) np.array([3000], dtype=np.int8) Many of these did succeed before. Such code was mainly useful for unsigned integers with negative values such as `np.uint8(-1)` giving `np.iinfo(np.uint8).max`. Note that conversion between NumPy integers is unaffected, so that `np.array(-1).astype(np.uint8)` continues to work and use C integer overflow logic. For negative values, it will also work to view the array: `np.array(-1, dtype=np.int8).view(np.uint8)`. In some cases, using `np.iinfo(np.uint8).max` or `val % 2**8` may also work well. In rare cases input data may mix both negative values and very large unsigned values (i.e. `-1` and `2**63`). There it is unfortunately necessary to use `%` on the Python value or use signed or unsigned conversion depending on whether negative values are expected. ([gh-22385](https://github.com/numpy/numpy/pull/22385)) ##### Deprecate `msort` The `numpy.msort` function is deprecated. Use `np.sort(a, axis=0)` instead. ([gh-22456](https://github.com/numpy/numpy/pull/22456)) ##### `np.str0` and similar are now deprecated The scalar type aliases ending in a 0 bit size: `np.object0`, `np.str0`, `np.bytes0`, `np.void0`, `np.int0`, `np.uint0` as well as `np.bool8` are now deprecated and will eventually be removed. ([gh-22607](https://github.com/numpy/numpy/pull/22607)) #### Expired deprecations - The `normed` keyword argument has been removed from \[np.histogram]{.title-ref}, \[np.histogram2d]{.title-ref}, and \[np.histogramdd]{.title-ref}. Use `density` instead. If `normed` was passed by position, `density` is now used. ([gh-21645](https://github.com/numpy/numpy/pull/21645)) - Ragged array creation will now always raise a `ValueError` unless `dtype=object` is passed. This includes very deeply nested sequences. ([gh-22004](https://github.com/numpy/numpy/pull/22004)) - Support for Visual Studio 2015 and earlier has been removed. - Support for the Windows Interix POSIX interop layer has been removed. ([gh-22139](https://github.com/numpy/numpy/pull/22139)) - Support for Cygwin < 3.3 has been removed. ([gh-22159](https://github.com/numpy/numpy/pull/22159)) - The mini() method of `np.ma.MaskedArray` has been removed. Use either `np.ma.MaskedArray.min()` or `np.ma.minimum.reduce()`. - The single-argument form of `np.ma.minimum` and `np.ma.maximum` has been removed. Use `np.ma.minimum.reduce()` or `np.ma.maximum.reduce()` instead. ([gh-22228](https://github.com/numpy/numpy/pull/22228)) - Passing dtype instances other than the canonical (mainly native byte-order) ones to `dtype=` or `signature=` in ufuncs will now raise a `TypeError`. We recommend passing the strings `"int8"` or scalar types `np.int8` since the byte-order, datetime/timedelta unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.) ([gh-22540](https://github.com/numpy/numpy/pull/22540)) - The `dtype=` argument to comparison ufuncs is now applied correctly. That means that only `bool` and `object` are valid values and `dtype=object` is enforced. ([gh-22541](https://github.com/numpy/numpy/pull/22541)) - The deprecation for the aliases `np.object`, `np.bool`, `np.float`, `np.complex`, `np.str`, and `np.int` is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future. ([gh-22607](https://github.com/numpy/numpy/pull/22607)) #### Compatibility notes ##### `array.fill(scalar)` may behave slightly different `numpy.ndarray.fill` may in some cases behave slightly different now due to the fact that the logic is aligned with item assignment: arr = np.array([1]) # with any dtype/value arr.fill(scalar) ### is now identical to: arr[0] = scalar Previously casting may have produced slightly different answers when using values that could not be represented in the target `dtype` or when the target had `object` dtype. ([gh-20924](https://github.com/numpy/numpy/pull/20924)) ##### Subarray to object cast now copies Casting a dtype that includes a subarray to an object will now ensure a copy of the subarray. Previously an unsafe view was returned: arr = np.ones(3, dtype=[("f", "i", 3)]) subarray_fields = arr.astype(object)[0] subarray = subarray_fields[0] # "f" field np.may_share_memory(subarray, arr) Is now always false. While previously it was true for the specific cast. ([gh-21925](https://github.com/numpy/numpy/pull/21925)) ##### Returned arrays respect uniqueness of dtype kwarg objects When the `dtype` keyword argument is used with :py`np.array()`{.interpreted-text role="func"} or :py`asarray()`{.interpreted-text role="func"}, the dtype of the returned array now always exactly matches the dtype provided by the caller. In some cases this change means that a *view* rather than the input array is returned. The following is an example for this on 64bit Linux where `long` and `longlong` are the same precision but different `dtypes`: >>> arr = np.array([1, 2, 3], dtype="long") >>> new_dtype = np.dtype("longlong") >>> new = np.asarray(arr, dtype=new_dtype) >>> new.dtype is new_dtype True >>> new is arr False Before the change, the `dtype` did not match because `new is arr` was `True`. ([gh-21995](https://github.com/numpy/numpy/pull/21995)) ##### DLPack export raises `BufferError` When an array buffer cannot be exported via DLPack a `BufferError` is now always raised where previously `TypeError` or `RuntimeError` was raised. This allows falling back to the buffer protocol or `__array_interface__` when DLPack was tried first. ([gh-22542](https://github.com/numpy/numpy/pull/22542)) ##### NumPy builds are no longer tested on GCC-6 Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available on Ubuntu 20.04, so builds using that compiler are no longer tested. We still test builds using GCC-7 and GCC-8. ([gh-22598](https://github.com/numpy/numpy/pull/22598)) #### New Features ##### New attribute `symbol` added to polynomial classes The polynomial classes in the `numpy.polynomial` package have a new `symbol` attribute which is used to represent the indeterminate of the polynomial. This can be used to change the value of the variable when printing: >>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y") >>> print(P_y) 1.0 + 0.0·y¹ - 1.0·y² Note that the polynomial classes only support 1D polynomials, so operations that involve polynomials with different symbols are disallowed when the result would be multivariate: >>> P = np.polynomial.Polynomial([1, -1]) # default symbol is "x" >>> P_z = np.polynomial.Polynomial([1, 1], symbol="z") >>> P * P_z Traceback (most recent call last) ... ValueError: Polynomial symbols differ The symbol can be any valid Python identifier. The default is `symbol=x`, consistent with existing behavior. ([gh-16154](https://github.com/numpy/numpy/pull/16154)) ##### F2PY support for Fortran `character` strings F2PY now supports wrapping Fortran functions with: - character (e.g. `character x`) - character array (e.g. `character, dimension(n) :: x`) - character string (e.g. `character(len=10) x`) - and character string array (e.g. `character(len=10), dimension(n, m) :: x`) arguments, including passing Python unicode strings as Fortran character string arguments. ([gh-19388](https://github.com/numpy/numpy/pull/19388)) ##### New function `np.show_runtime` A new function `numpy.show_runtime` has been added to display the runtime information of the machine in addition to `numpy.show_config` which displays the build-related information. ([gh-21468](https://github.com/numpy/numpy/pull/21468)) ##### `strict` option for `testing.assert_array_equal` The `strict` option is now available for `testing.assert_array_equal`. Setting `strict=True` will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type. ([gh-21595](https://github.com/numpy/numpy/pull/21595)) ##### New parameter `equal_nan` added to `np.unique` `np.unique` was changed in 1.21 to treat all `NaN` values as equal and return a single `NaN`. Setting `equal_nan=False` will restore pre-1.21 behavior to treat `NaNs` as unique. Defaults to `True`. ([gh-21623](https://github.com/numpy/numpy/pull/21623)) ##### `casting` and `dtype` keyword arguments for `numpy.stack` The `casting` and `dtype` keyword arguments are now available for `numpy.stack`. To use them, write `np.stack(..., dtype=None, casting='same_kind')`. ##### `casting` and `dtype` keyword arguments for `numpy.vstack` The `casting` and `dtype` keyword arguments are now available for `numpy.vstack`. To use them, write `np.vstack(..., dtype=None, casting='same_kind')`. ##### `casting` and `dtype` keyword arguments for `numpy.hstack` The `casting` and `dtype` keyword arguments are now available for `numpy.hstack`. To use them, write `np.hstack(..., dtype=None, casting='same_kind')`. ([gh-21627](https://github.com/numpy/numpy/pull/21627)) ##### The bit generator underlying the singleton RandomState can be changed The singleton `RandomState` instance exposed in the `numpy.random` module is initialized at startup with the `MT19937` bit generator. The new function `set_bit_generator` allows the default bit generator to be replaced with a user-provided bit generator. This function has been introduced to provide a method allowing seamless integration of a high-quality, modern bit generator in new code with existing code that makes use of the singleton-provided random variate generating functions. The companion function `get_bit_generator` returns the current bit generator being used by the singleton `RandomState`. This is provided to simplify restoring the original source of randomness if required. The preferred method to generate reproducible random numbers is to use a modern bit generator in an instance of `Generator`. The function `default_rng` simplifies instantiation: >>> rg = np.random.default_rng(3728973198) >>> rg.random() The same bit generator can then be shared with the singleton instance so that calling functions in the `random` module will use the same bit generator: >>> orig_bit_gen = np.random.get_bit_generator() >>> np.random.set_bit_generator(rg.bit_generator) >>> np.random.normal() The swap is permanent (until reversed) and so any call to functions in the `random` module will use the new bit generator. The original can be restored if required for code to run correctly: >>> np.random.set_bit_generator(orig_bit_gen) ([gh-21976](https://github.com/numpy/numpy/pull/21976)) ##### `np.void` now has a `dtype` argument NumPy now allows constructing structured void scalars directly by passing the `dtype` argument to `np.void`. ([gh-22316](https://github.com/numpy/numpy/pull/22316)) #### Improvements ##### F2PY Improvements - The generated extension modules don't use the deprecated NumPy-C API anymore - Improved `f2py` generated exception messages - Numerous bug and `flake8` warning fixes - various CPP macros that one can use within C-expressions of signature files are prefixed with `f2py_`. For example, one should use `f2py_len(x)` instead of `len(x)` - A new construct `character(f2py_len=...)` is introduced to support returning assumed length character strings (e.g. `character(len=*)`) from wrapper functions A hook to support rewriting `f2py` internal data structures after reading all its input files is introduced. This is required, for instance, for BC of SciPy support where character arguments are treated as character strings arguments in `C` expressions. ([gh-19388](https://github.com/numpy/numpy/pull/19388)) ##### IBM zSystems Vector Extension Facility (SIMD) Added support for SIMD extensions of zSystem (z13, z14, z15), through the universal intrinsics interface. This support leads to performance improvements for all SIMD kernels implemented using the universal intrinsics, including the following operations: rint, floor, trunc, ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal, not_equal, greater, greater_equal, less, less_equal, maximum, minimum, fmax, fmin, argmax, argmin, add, subtract, multiply, divide. ([gh-20913](https://github.com/numpy/numpy/pull/20913)) ##### NumPy now gives floating point errors in casts In most cases, NumPy previously did not give floating point warnings or errors when these happened during casts. For examples, casts like: np.array([2e300]).astype(np.float32) # overflow for float32 np.array([np.inf]).astype(np.int64) Should now generally give floating point warnings. These warnings should warn that floating point overflow occurred. For errors when converting floating point values to integers users should expect invalid value warnings. Users can modify the behavior of these warnings using `np.errstate`. Note that for float to int casts, the exact warnings that are given may be platform dependent. For example: arr = np.full(100, value=1000, dtype=np.float64) arr.astype(np.int8) May give a result equivalent to (the intermediate cast means no warning is given): arr.astype(np.int64).astype(np.int8) May return an undefined result, with a warning set: RuntimeWarning: invalid value encountered in cast The precise behavior is subject to the C99 standard and its implementation in both software and hardware. ([gh-21437](https://github.com/numpy/numpy/pull/21437)) ##### F2PY supports the value attribute The Fortran standard requires that variables declared with the `value` attribute must be passed by value instead of reference. F2PY now supports this use pattern correctly. So `integer, intent(in), value :: x` in Fortran codes will have correct wrappers generated. ([gh-21807](https://github.com/numpy/numpy/pull/21807)) ##### Added pickle support for third-party BitGenerators The pickle format for bit generators was extended to allow each bit generator to supply its own constructor when during pickling. Previous versions of NumPy only supported unpickling `Generator` instances created with one of the core set of bit generators supplied with NumPy. Attempting to unpickle a `Generator` that used a third-party bit generators would fail since the constructor used during the unpickling was only aware of the bit generators included in NumPy. ([gh-22014](https://github.com/numpy/numpy/pull/22014)) ##### arange() now explicitly fails with dtype=str Previously, the `np.arange(n, dtype=str)` function worked for `n=1` and `n=2`, but would raise a non-specific exception message for other values of `n`. Now, it raises a \[TypeError]{.title-ref} informing that `arange` does not support string dtypes: >>> np.arange(2, dtype=str) Traceback (most recent call last) ... TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>. ([gh-22055](https://github.com/numpy/numpy/pull/22055)) ##### `numpy.typing` protocols are now runtime checkable The protocols used in `numpy.typing.ArrayLike` and `numpy.typing.DTypeLike` are now properly marked as runtime checkable, making them easier to use for runtime type checkers. ([gh-22357](https://github.com/numpy/numpy/pull/22357)) #### Performance improvements and changes ##### Faster version of `np.isin` and `np.in1d` for integer arrays `np.in1d` (used by `np.isin`) can now switch to a faster algorithm (up to >10x faster) when it is passed two integer arrays. This is often automatically used, but you can use `kind="sort"` or `kind="table"` to force the old or new method, respectively. ([gh-12065](https://github.com/numpy/numpy/pull/12065)) ##### Faster comparison operators The comparison functions (`numpy.equal`, `numpy.not_equal`, `numpy.less`, `numpy.less_equal`, `numpy.greater` and `numpy.greater_equal`) are now much faster as they are now vectorized with universal intrinsics. For a CPU with SIMD extension AVX512BW, the performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and boolean data types, respectively (with N=50000). ([gh-21483](https://github.com/numpy/numpy/pull/21483)) #### Changes ##### Better reporting of integer division overflow Integer division overflow of scalars and arrays used to provide a `RuntimeWarning` and the return value was undefined leading to crashes at rare occasions: >>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1) <stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32) Integer division overflow now returns the input dtype's minimum value and raise the following `RuntimeWarning`: >>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1) <stdin>:1: RuntimeWarning: overflow encountered in floor_divide array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648, -2147483648], dtype=int32) ([gh-21506](https://github.com/numpy/numpy/pull/21506)) ##### `masked_invalid` now modifies the mask in-place When used with `copy=False`, `numpy.ma.masked_invalid` now modifies the input masked array in-place. This makes it behave identically to `masked_where` and better matches the documentation. ([gh-22046](https://github.com/numpy/numpy/pull/22046)) ##### `nditer`/`NpyIter` allows all allocating all operands The NumPy iterator available through `np.nditer` in Python and as `NpyIter` in C now supports allocating all arrays. The iterator shape defaults to `()` in this case. The operands dtype must be provided, since a "common dtype" cannot be inferred from the other inputs. ([gh-22457](https://github.com/numpy/numpy/pull/22457)) #### Checksums ##### MD5 d60311246bd71b177258ce06e2a4ec57 numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl 02022b335938af55cb83bbaebdbff8e1 numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl 02b35d6612369fcc614c6223aaec0119 numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7b8ad389a9619db3e1f8243fc0cfe63d numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6ff4acbb7b1258ccbd528c151eb0fe84 numpy-1.24.0-cp310-cp310-win32.whl d194c96601222db97b0af54fce1cfb1d numpy-1.24.0-cp310-cp310-win_amd64.whl 5fe4eb551a9312e37492da9f5bfb8545 numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl a8e836a768f73e9f509b11c3873c7e09 numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl 10404d6d1a5a9624f85018f61110b2be numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl cfdb0cb844f1db9be2cde998be54d65f numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 73bc66ad3ae8656ba18d64db98feb5e1 numpy-1.24.0-cp311-cp311-win32.whl 4bbc30a53009c48d364d4dc2c612af95 numpy-1.24.0-cp311-cp311-win_amd64.whl 94ce5f6a09605a9675a0d464b1ec6597 numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl e5e42b69a209eda7e6895dda39ea8610 numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl 36eb6143d1e2aac3c618275edf636983 numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 712c3718e8b53ff04c626cc4c78492aa numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0a1a48a8e458bd4ce581169484c17e4f numpy-1.24.0-cp38-cp38-win32.whl c8ab7e4b919548663568a5b5a8b5eab4 numpy-1.24.0-cp38-cp38-win_amd64.whl 1783a5d769566111d93c474c79892c01 numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl c9e77130674372c73f8209d58396624d numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl 14c0f2f52f20f13a81bba7df27f30145 numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c106393b46fa0302dbac49b14a4dfed4 numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c83e6d6946f32820f166c3f1ff010ab6 numpy-1.24.0-cp39-cp39-win32.whl acd5a4737d1094d5f40afa584dbd6d79 numpy-1.24.0-cp39-cp39-win_amd64.whl 26e32f942c9fd62f64fd9bf6df95b5b1 numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 4f027df0cc313ca626b106849999de13 numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ac58db9a90d0bec95bc7850b9e462f34 numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl 1ca41c84ad9a116402a025d21e35bc64 numpy-1.24.0.tar.gz ##### SHA256 6e73a1f4f5b74a42abb55bc2b3d869f1b38cbc8776da5f8b66bf110284f7a437 numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl 9387c7d6d50e8f8c31e7bfc034241e9c6f4b3eb5db8d118d6487047b922f82af numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl 7ad6a024a32ee61d18f5b402cd02e9c0e22c0fb9dc23751991b3a16d209d972e numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 73cf2c5b5a07450f20a0c8e04d9955491970177dce8df8d6903bf253e53268e0 numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cec79ff3984b2d1d103183fc4a3361f5b55bbb66cb395cbf5a920a4bb1fd588d numpy-1.24.0-cp310-cp310-win32.whl 4f5e78b8b710cd7cd1a8145994cfffc6ddd5911669a437777d8cedfce6c83a98 numpy-1.24.0-cp310-cp310-win_amd64.whl 4445f472b246cad6514cc09fbb5ecb7aab09ca2acc3c16f29f8dca6c468af501 numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl ec3e5e8172a0a6a4f3c2e7423d4a8434c41349141b04744b11a90e017a95bad5 numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl f9168790149f917ad8e3cf5047b353fefef753bd50b07c547da0bdf30bc15d91 numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ada6c1e9608ceadaf7020e1deea508b73ace85560a16f51bef26aecb93626a72 numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f3c4a9a9f92734a4728ddbd331e0124eabbc968a0359a506e8e74a9b0d2d419b numpy-1.24.0-cp311-cp311-win32.whl 90075ef2c6ac6397d0035bcd8b298b26e481a7035f7a3f382c047eb9c3414db0 numpy-1.24.0-cp311-cp311-win_amd64.whl 0885d9a7666cafe5f9876c57bfee34226e2b2847bfb94c9505e18d81011e5401 numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl e63d2157f9fc98cc178870db83b0e0c85acdadd598b134b00ebec9e0db57a01f numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl cf8960f72997e56781eb1c2ea256a70124f92a543b384f89e5fb3503a308b1d3 numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2f8e0df2ecc1928ef7256f18e309c9d6229b08b5be859163f5caa59c93d53646 numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe44e925c68fb5e8db1334bf30ac1a1b6b963b932a19cf41d2e899cf02f36aab numpy-1.24.0-cp38-cp38-win32.whl d7f223554aba7280e6057727333ed357b71b7da7422d02ff5e91b857888c25d1 numpy-1.24.0-cp38-cp38-win_amd64.whl ab11f6a7602cf8ea4c093e091938207de3068c5693a0520168ecf4395750f7ea numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl 12bba5561d8118981f2f1ff069ecae200c05d7b6c78a5cdac0911f74bc71cbd1 numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl 9af91f794d2d3007d91d749ebc955302889261db514eb24caef30e03e8ec1e41 numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8b1ddfac6a82d4f3c8e99436c90b9c2c68c0bb14658d1684cdd00f05fab241f5 numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ac4fe68f1a5a18136acebd4eff91aab8bed00d1ef2fdb34b5d9192297ffbbdfc numpy-1.24.0-cp39-cp39-win32.whl 667b5b1f6a352419e340f6475ef9930348ae5cb7fca15f2cc3afcb530823715e numpy-1.24.0-cp39-cp39-win_amd64.whl 4d01f7832fa319a36fd75ba10ea4027c9338ede875792f7bf617f4b45056fc3a numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl dbb0490f0a880700a6cc4d000384baf19c1f4df59fff158d9482d4dbbca2b239 numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0104d8adaa3a4cc60c2777cab5196593bf8a7f416eda133be1f3803dd0838886 numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl c4ab7c9711fe6b235e86487ca74c1b092a6dd59a3cb45b63241ea0a148501853 numpy-1.24.0.tar.gz ### [`v1.23.5`](https://github.com/numpy/numpy/releases/v1.23.5) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.4...v1.23.5) ### NumPy 1.23.5 Release Notes NumPy 1.23.5 is a maintenance release that fixes bugs discovered after the 1.23.4 release and keeps the build infrastructure current. The Python versions supported for this release are 3.8-3.11. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - [@&#8203;DWesl](https://github.com/DWesl) - Aayush Agrawal + - Adam Knapp + - Charles Harris - Navpreet Singh + - Sebastian Berg - Tania Allard #### Pull requests merged A total of 10 pull requests were merged for this release. - [#&#8203;22489](https://github.com/numpy/numpy/pull/22489): TST, MAINT: Replace most setup with setup_method (also teardown) - [#&#8203;22490](https://github.com/numpy/numpy/pull/22490): MAINT, CI: Switch to cygwin/cygwin-install-action@v2 - [#&#8203;22494](https://github.com/numpy/numpy/pull/22494): TST: Make test_partial_iteration_cleanup robust but require leak... - [#&#8203;22592](https://github.com/numpy/numpy/pull/22592): MAINT: Ensure graceful handling of large header sizes - [#&#8203;22593](https://github.com/numpy/numpy/pull/22593): TYP: Spelling alignment for array flag literal - [#&#8203;22594](https://github.com/numpy/numpy/pull/22594): BUG: Fix bounds checking for `random.logseries` - [#&#8203;22595](https://github.com/numpy/numpy/pull/22595): DEV: Update GH actions and Dockerfile for Gitpod - [#&#8203;22596](https://github.com/numpy/numpy/pull/22596): CI: Only fetch in actions/checkout - [#&#8203;22597](https://github.com/numpy/numpy/pull/22597): BUG: Decrement ref count in gentype_reduce if allocated memory... - [#&#8203;22625](https://github.com/numpy/numpy/pull/22625): BUG: Histogramdd breaks on big arrays in Windows #### Checksums ##### MD5 8a412b79d975199cefadb465279fd569 numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl 1b56e8e6a0516c78473657abf0710538 numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl c787f4763c9a5876e86a17f1651ba458 numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl db07645022e56747ba3f00c2d742232e numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c63a6fb7cc16a13aabc82ec57ac6bb4d numpy-1.23.5-cp310-cp310-win32.whl 3fea9247e1d812600015641941fa273f numpy-1.23.5-cp310-cp310-win_amd64.whl 4222cfb36e5ac9aec348c81b075e2c05 numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl 6c7102f185b310ac70a62c13d46f04e6 numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl 6b7319f66bf7ac01b49e2a32470baf28 numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3c60928ddb1f55163801f06ac2229eb0 numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6936b6bcfd6474acc7a8c162a9393b3c numpy-1.23.5-cp311-cp311-win32.whl 6c9af68b7b56c12c913678cafbdc44d6 numpy-1.23.5-cp311-cp311-win_amd64.whl 699daeac883260d3f182ae4bbbd9bbd2 numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl 6c233a36339de0652139e78ef91504d4 numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl 57d5439556ab5078c91bdeffd9c0036e numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a8045b59187f2e0ccd4294851adbbb8a numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7f38f7e560e4bf41490372ab84aa7a38 numpy-1.23.5-cp38-cp38-win32.whl 76095726ba459d7f761b44acf2e56bd1 numpy-1.23.5-cp38-cp38-win_amd64.whl 174befd584bc1b03ed87c8f0d149a58e numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl 9cbac793d77278f5d27a7979b64f6b5b numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl 6e417b087044e90562183b33f3049b09 numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 54fa63341eaa6da346d824399e8237f6 numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cc14d62a158e99c57f925c86551e45f0 numpy-1.23.5-cp39-cp39-win32.whl bad36b81e7e84bd7a028affa0659d235 numpy-1.23.5-cp39-cp39-win_amd64.whl b4d17d6b79a8354a2834047669651963 numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 89f6dc4a4ff63fca6af1223111cd888d numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 633d574a35b8592bab502ef569b0731e numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl 8b2692a511a3795f3af8af2cd7566a15 numpy-1.23.5.tar.gz ##### SHA256 9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63 numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl 7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43 numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1 numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280 numpy-1.23.5-cp310-cp310-win32.whl dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6 numpy-1.23.5-cp310-cp310-win_amd64.whl ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96 numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl 56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl 5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2 numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387 numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0 numpy-1.23.5-cp311-cp311-win32.whl 0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d numpy-1.23.5-cp311-cp311-win_amd64.whl f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl 0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9 numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl 92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398 numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07 numpy-1.23.5-cp38-cp38-win32.whl ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e numpy-1.23.5-cp38-cp38-win_amd64.whl 8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719 numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481 numpy-1.23.5-cp39-cp39-win32.whl 09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df numpy-1.23.5-cp39-cp39-win_amd64.whl abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8 numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135 numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl 1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a numpy-1.23.5.tar.gz ### [`v1.23.4`](https://github.com/numpy/numpy/releases/v1.23.4) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.3...v1.23.4) ### NumPy 1.23.4 Release Notes NumPy 1.23.4 is a maintenance release that fixes bugs discovered after the 1.23.3 release and keeps the build infrastructure current. The main improvements are fixes for some annotation corner cases, a fix for a long time `nested_iters` memory leak, and a fix of complex vector dot for very large arrays. The Python versions supported for this release are 3.8-3.11. Note that the mypy version needs to be 0.981+ if you test using Python 3.10.7, otherwise the typing tests will fail. #### Contributors A total of 8 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Matthew Barber - Matti Picus - Ralf Gommers - Ross Barnowski - Sebastian Berg - Sicheng Zeng + #### Pull requests merged A total of 13 pull requests were merged for this release. - [#&#8203;22368](https://github.com/numpy/numpy/pull/22368): BUG: Add `__array_api_version__` to `numpy.array_api` namespace - [#&#8203;22370](https://github.com/numpy/numpy/pull/22370): MAINT: update sde toolkit to 9.0, fix download link - [#&#8203;22382](https://github.com/numpy/numpy/pull/22382): BLD: use macos-11 image on azure, macos-1015 is deprecated - [#&#8203;22383](https://github.com/numpy/numpy/pull/22383): MAINT: random: remove `get_info` from "extending with Cython"... - [#&#8203;22384](https://github.com/numpy/numpy/pull/22384): BUG: Fix complex vector dot with more than NPY_CBLAS_CHUNK elements - [#&#8203;22387](https://github.com/numpy/numpy/pull/22387): REV: Loosen `lookfor`'s import try/except again - [#&#8203;22388](https://github.com/numpy/numpy/pull/22388): TYP,ENH: Mark `numpy.typing` protocols as runtime checkable - [#&#8203;22389](https://github.com/numpy/numpy/pull/22389): TYP,MAINT: Change more overloads to play nice with pyright - [#&#8203;22390](https://github.com/numpy/numpy/pull/22390): TST,TYP: Bump mypy to 0.981 - [#&#8203;22391](https://github.com/numpy/numpy/pull/22391): DOC: Update delimiter param description. - [#&#8203;22392](https://github.com/numpy/numpy/pull/22392): BUG: Memory leaks in numpy.nested_iters - [#&#8203;22413](https://github.com/numpy/numpy/pull/22413): REL: Prepare for the NumPy 1.23.4 release. - [#&#8203;22424](https://github.com/numpy/numpy/pull/22424): TST: Fix failing aarch64 wheel builds. #### Checksums ##### MD5 90a3d95982490cfeeef22c0f7cbd874f numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl c3cae63394db6c82fd2cb5700fc5917d numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl b3ff0878de205f56c38fd7dcab80081f numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e2b086ca2229209f2f996c2f9a38bf9c numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 44cc8bb112ca737520cf986fff92dfb0 numpy-1.23.4-cp310-cp310-win32.whl 21c8e5fdfba2ff953e446189379cf0c9 numpy-1.23.4-cp310-cp310-win_amd64.whl 27445a9c85977cb8efa682a4b993347f numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl 11ef4b7dfdaa37604cb881f3ca4459db numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl b3c77344274f91514f728a454fd471fa numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 43aef7f984cd63d95c11fb74dd59ef0b numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 637fe21b585228c9670d6e002bf8047f numpy-1.23.4-cp311-cp311-win32.whl f529edf9b849d6e3b8cdb5120ae5b81a numpy-1.23.4-cp311-cp311-win_amd64.whl 76c61ce36317a7e509663829c6844fd9 numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl 2133f6893eef41cd9331c7d0271044c4 numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl 5ccb3aa6fb8cb9e20ec336e315d01dec numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl da71f34a4df0b98e4d9e17906dd57b07 numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a318978f51fb80a17c2381e39194e906 numpy-1.23.4-cp38-cp38-win32.whl eac810d6bc43830bf151ea55cd0ded93 numpy-1.23.4-cp38-cp38-win_amd64.whl 4cf0a6007abe42564c7380dbf92a26ce numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl 2e005bedf129ce8bafa6f550537f3740 numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl 10aa210311fcd19a03f6c5495824a306 numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6301298a67999657a0878b64eeed09f2 numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 76144e575a3c3863ea22e03cdf022d8a numpy-1.23.4-cp39-cp39-win32.whl 8291dd66ef5451b4db2da55c21535757 numpy-1.23.4-cp39-cp39-win_amd64.whl 7cc095b18690071828b5b620d5ec40e7 numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 63742f15e8bfa215c893136bbfc6444f numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4ed382e55abc09c89a34db047692f6a6 numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl d9ffd2c189633486ec246e61d4b947a0 numpy-1.23.4.tar.gz ##### SHA256 95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2 numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl 926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71 numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3 numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd numpy-1.23.4-cp310-cp310-win32.whl d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329 numpy-1.23.4-cp310-cp310-win_amd64.whl 488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl 8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0 numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488 numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79 numpy-1.23.4-cp311-cp311-win32.whl 7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d numpy-1.23.4-cp311-cp311-win_amd64.whl 7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5 numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6 numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl 8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68 numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl dada341ebb79619fe00a291185bba370c9803b1e1d7051610e01ed809ef3a4ba numpy-1.23.4-cp38-cp38-win32.whl 0fe563fc8ed9dc4474cbf70742673fc4391d70f4363f917599a7fa99f042d5a8 numpy-1.23.4-cp38-cp38-win_amd64.whl c67b833dbccefe97cdd3f52798d430b9d3430396af7cdb2a0c32954c3ef73894 numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7 numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl 12ac457b63ec8ded85d85c1e17d85efd3c2b0967ca39560b307a35a6703a4735 numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 95de7dc7dc47a312f6feddd3da2500826defdccbc41608d0031276a24181a2c0 numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef numpy-1.23.4-cp39-cp39-win32.whl f260da502d7441a45695199b4e7fd8ca87db659ba1c78f2bbf31f934fe76ae0e numpy-1.23.4-cp39-cp39-win_amd64.whl 61be02e3bf810b60ab74e81d6d0d36246dbfb644a462458bb53b595791251911 numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 296d17aed51161dbad3c67ed6d164e51fcd18dbcd5dd4f9d0a9c6055dce30810 numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4d52914c88b4930dafb6c48ba5115a96cbab40f45740239d9f4159c4ba779962 numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl ed2cc92af0efad20198638c69bb0fc2870a58dabfba6eb722c933b48556c686c numpy-1.23.4.tar.gz ### [`v1.23.3`](https://github.com/numpy/numpy/releases/v1.23.3) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.2...v1.23.3) ### NumPy 1.23.3 Release Notes NumPy 1.23.3 is a maintenance release that fixes bugs discovered after the 1.23.2 release. There is no major theme for this release, the main improvements are for some downstream builds and some annotation corner cases. The Python versions supported for this release are 3.8-3.11. Note that we will move to MacOS 11 for the NumPy 1.23.4 release, the 10.15 version currently used will no longer be supported by our build infrastructure at that point. #### Contributors A total of 16 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Aaron Meurer - Bas van Beek - Charles Harris - Ganesh Kathiresan - Gavin Zhang + - Iantra Solari+ - Jyn Spring 琴春 + - Matti Picus - Rafael Cardoso Fernandes Sousa - Rafael Sousa + - Ralf Gommers - Rin Cat (鈴猫) + - Saransh Chopra + - Sayed Adel - Sebastian Berg - Serge Guelton #### Pull requests merged A total of 14 pull requests were merged for this release. - [#&#8203;22136](https://github.com/numpy/numpy/pull/22136): BLD: Add Python 3.11 wheels to aarch64 build - [#&#8203;22148](https://github.com/numpy/numpy/pull/22148): MAINT: Update setup.py for Python 3.11. - [#&#8203;22155](https://github.com/numpy/numpy/pull/22155): CI: Test NumPy build against old versions of GCC(6, 7, 8) - [#&#8203;22156](https://github.com/numpy/numpy/pull/22156): MAINT: support IBM i system - [#&#8203;22195](https://github.com/numpy/numpy/pull/22195): BUG: Fix circleci build - [#&#8203;22214](https://github.com/numpy/numpy/pull/22214): BUG: Expose heapsort algorithms in a shared header - [#&#8203;22215](https://github.com/numpy/numpy/pull/22215): BUG: Support using libunwind for backtrack - [#&#8203;22216](https://github.com/numpy/numpy/pull/22216): MAINT: fix an incorrect pointer type usage in f2py - [#&#8203;22220](https://github.com/numpy/numpy/pull/22220): BUG: change overloads to play nice with pyright. - [#&#8203;22221](https://github.com/numpy/numpy/pull/22221): TST,BUG: Use fork context to fix MacOS savez test - [#&#8203;22222](https://github.com/numpy/numpy/pull/22222): TYP,BUG: Reduce argument validation in C-based `__class_getitem__` - [#&#8203;22223](https://github.com/numpy/numpy/pull/22223): TST: ensure `np.equal.reduce` raises a `TypeError` - [#&#8203;22224](https://github.com/numpy/numpy/pull/22224): BUG: Fix the implementation of numpy.array_api.vecdot - [#&#8203;22230](https://github.com/numpy/numpy/pull/22230): BUG: Better report integer division overflow (backport) #### Checksums ##### MD5 a60bf0b1d440bf18d87c49409036d05a numpy-1.23.3-cp310-cp310-macosx_10_9_x86_64.whl 59b43423a692f5351c6a43b852b210d7 numpy-1.23.3-cp310-cp310-macosx_11_0_arm64.whl f482a4be6954b1b606320f0ffc1995dd numpy-1.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a82e2ecc4060a37dae5424e624eabfe3 numpy-1.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 84916178e5f4d073d0008754cba7f300 numpy-1.23.3-cp310-cp310-win32.whl 605da65b9b66dfce8b62d847cb3841f7 numpy-1.23.3-cp310-cp310-win_amd64.whl 57cf29f781be955a9cd0de8d07fbce56 numpy-1.23.3-cp311-cp311-macosx_10_9_x86_64.whl f395dcf622dff0ba44777cbae0442189 numpy-1.23.3-cp311-cp311-macosx_11_0_arm64.whl 55d6a6439913ba84ad89268e0ad59fa0 numpy-1.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 202bc3a8617f479ebe60ca0dec29964b numpy-1.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a42c3d058bcef47b26841bf9472a89bf numpy-1.23.3-cp311-cp311-win32.whl 237dbd94e5529065c0c5cc4e47ceeb7e numpy-1.23.3-cp311-cp311-win_amd64.whl d0587d5b28d3fa7e0ec8fd3df76e4bd4 numpy-1.23.3-cp38-cp38-macosx_10_9_x86_64.whl 054234695ed3d955fb01f661db2c14fc numpy-1.23.3-cp38-cp38-macosx_11_0_arm64.whl 4e75ac61e34f1bf23e7cbd6e2bfc7a32 numpy-1.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 29ccb3a732027ee1abe23a9562c32d0c numpy-1.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 12817838edc1e1bea27df79f3a83da5d numpy-1.23.3-cp38-cp38-win32.whl ef430e830a9fea7d8db0218b901671f6 numpy-1.23.3-cp38-cp38-win_amd64.whl b001f7e17df798f9b949bbe259924c77 numpy-1.23.3-cp39-cp39-macosx_10_9_x86_64.whl bc1782f5d79187d63d14ed69a6a411e9 numpy-1.23.3-cp39-cp39-macosx_11_0_arm64.whl f8fb0178bc34a198d5ce4e166076e1fc numpy-1.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fb80d38c37aae1e4d416cd4de068ff0a numpy-1.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 318d0a2a27b7e361295c0382a0ff4a94 numpy-1.23.3-cp39-cp39-win32.whl 880dc73de09fccda0650e9404fa83608 numpy-1.23.3-cp39-cp39-win_amd64.whl 3b5a51f78718a1a82d2750ec159f9acf numpy-1.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 56a0c90a303979d5bf8fc57e86e57ccb numpy-1.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5338d997a3178750834e742a257dfa4a numpy-1.23.3-pp38-pypy38_pp73-win_amd64.whl 6efc60a3f6c1b74c849d53fbcc07807b numpy-1.23.3.tar.gz ##### SHA256 c9f707b5bb73bf277d812ded9896f9512a43edff72712f31667d0a8c2f8e71ee numpy-1.23.3-cp310-cp310-macosx_10_9_x86_64.whl ffcf105ecdd9396e05a8e58e81faaaf34d3f9875f137c7372450baa5d77c9a54 numpy-1.23.3-cp310-cp310-macosx_11_0_arm64.whl 0ea3f98a0ffce3f8f57675eb9119f3f4edb81888b6874bc1953f91e0b1d4f440 numpy-1.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 004f0efcb2fe1c0bd6ae1fcfc69cc8b6bf2407e0f18be308612007a0762b4089 numpy-1.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 98dcbc02e39b1658dc4b4508442a560fe3ca5ca0d989f0df062534e5ca3a5c1a numpy-1.23.3-cp310-cp310-win32.whl 39a664e3d26ea854211867d20ebcc8023257c1800ae89773cbba9f9e97bae036 numpy-1.23.3-cp310-cp310-win_amd64.whl 1f27b5322ac4067e67c8f9378b41c746d8feac8bdd0e0ffede5324667b8a075c numpy-1.23.3-cp311-cp311-macosx_10_9_x86_64.whl 2ad3ec9a748a8943e6eb4358201f7e1c12ede35f510b1a2221b70af4bb64295c numpy-1.23.3-cp311-cp311-macosx_11_0_arm64.whl bdc9febce3e68b697d931941b263c59e0c74e8f18861f4064c1f712562903411 numpy-1.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 301c00cf5e60e08e04d842fc47df641d4a181e651c7135c50dc2762ffe293dbd numpy-1.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7cd1328e5bdf0dee621912f5833648e2daca72e3839ec1d6695e91089625f0b4 numpy-1.23.3-cp311-cp311-win32.whl 8355fc10fd33a5a70981a5b8a0de51d10af3688d7a9e4a34fcc8fa0d7467bb7f numpy-1.23.3-cp311-cp311-win_amd64.whl bc6e8da415f359b578b00bcfb1d08411c96e9a97f9e6c7adada554a0812a6cc6 numpy-1.23.3-cp38-cp38-macosx_10_9_x86_64.whl 22d43376ee0acd547f3149b9ec12eec2f0ca4a6ab2f61753c5b29bb3e795ac4d numpy-1.23.3-cp38-cp38-macosx_11_0_arm64.whl a64403f634e5ffdcd85e0b12c08f04b3080d3e840aef118721021f9b48fc1460 numpy-1.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl efd9d3abe5774404becdb0748178b48a218f1d8c44e0375475732211ea47c67e numpy-1.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f8c02ec3c4c4fcb718fdf89a6c6f709b14949408e8cf2a2be5bfa9c49548fd85 numpy-1.23.3-cp38-cp38-win32.whl e868b0389c5ccfc092031a861d4e158ea164d8b7fdbb10e3b5689b4fc6498df6 numpy-1.23.3-cp38-cp38-win_amd64.whl 09f6b7bdffe57fc61d869a22f506049825d707b288039d30f26a0d0d8ea05164 numpy-1.23.3-cp39-cp39-macosx_10_9_x86_64.whl 8c79d7cf86d049d0c5089231a5bcd31edb03555bd93d81a16870aa98c6cfb79d numpy-1.23.3-cp39-cp39-macosx_11_0_arm64.whl e5d5420053bbb3dd64c30e58f9363d7a9c27444c3648e61460c1237f9ec3fa14 numpy-1.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d5422d6a1ea9b15577a9432e26608c73a78faf0b9039437b075cf322c92e98e7 numpy-1.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c1ba66c48b19cc9c2975c0d354f24058888cdc674bebadceb3cdc9ec403fb5d1 numpy-1.23.3-cp39-cp39-win32.whl 78a63d2df1d947bd9d1b11d35564c2f9e4b57898aae4626638056ec1a231c40c numpy-1.23.3-cp39-cp39-win_amd64.whl 17c0e467ade9bda685d5ac7f5fa729d8d3e76b23195471adae2d6a6941bd2c18 numpy-1.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 91b8d6768a75247026e951dce3b2aac79dc7e78622fc148329135ba189813584 numpy-1.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 94c15ca4e52671a59219146ff584488907b1f9b3fc232622b47e2cf832e94fb8 numpy-1.23.3-pp38-pypy38_pp73-win_amd64.whl 51bf49c0cd1d52be0a240aa66f3458afc4b95d8993d2d04f0d91fa60c10af6cd numpy-1.23.3.tar.gz ### [`v1.23.2`](https://github.com/numpy/numpy/releases/v1.23.2) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.1...v1.23.2) ### NumPy 1.23.2 Release Notes NumPy 1.23.2 is a maintenance release that fixes bugs discovered after the 1.23.1 release. Notable features are: - Typing changes needed for Python 3.11 - Wheels for Python 3.11.0rc1 The Python versions supported for this release are 3.8-3.11. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Alexander Grund + - Bas van Beek - Charles Harris - Jon Cusick + - Matti Picus - Michael Osthege + - Pal Barta + - Ross Barnowski - Sebastian Berg #### Pull requests merged A total of 15 pull requests were merged for this release. - [#&#8203;22030](https://github.com/numpy/numpy/pull/22030): ENH: Add `__array_ufunc__` typing support to the `nin=1` ufuncs - [#&#8203;22031](https://github.com/numpy/numpy/pull/22031): MAINT, TYP: Fix `np.angle` dtype-overloads - [#&#8203;22032](https://github.com/numpy/numpy/pull/22032): MAINT: Do not let `_GenericAlias` wrap the underlying classes'... - [#&#8203;22033](https://github.com/numpy/numpy/pull/22033): TYP,MAINT: Allow `einsum` subscripts to be passed via integer... - [#&#8203;22034](https://github.com/numpy/numpy/pull/22034): MAINT,TYP: Add object-overloads for the `np.generic` rich comparisons - [#&#8203;22035](https://github.com/numpy/numpy/pull/22035): MAINT,TYP: Allow the `squeeze` and `transpose` method to... - [#&#8203;22036](https://github.com/numpy/numpy/pull/22036): BUG: Fix subarray to object cast ownership details - [#&#8203;22037](https://github.com/numpy/numpy/pull/22037): BUG: Use `Popen` to silently invoke f77 -v - [#&#8203;22038](https://github.com/numpy/numpy/pull/22038): BUG: Avoid errors on NULL during deepcopy - [#&#8203;22039](https://github.com/numpy/numpy/pull/22039): DOC: Add versionchanged for converter callable behavior. - [#&#8203;22057](https://github.com/numpy/numpy/pull/22057): MAINT: Quiet the anaconda uploads. - [#&#8203;22078](https://github.com/numpy/numpy/pull/22078): ENH: reorder includes for testing on top of system installations... - [#&#8203;22106](https://github.com/numpy/numpy/pull/22106): TST: fix test_linear_interpolation_formula_symmetric - [#&#8203;22107](https://github.com/numpy/numpy/pull/22107): BUG: Fix skip condition for test_loss_of_precision\[complex256] - [#&#8203;22115](https://github.com/numpy/numpy/pull/22115): BLD: Build python3.11.0rc1 wheels. #### Checksums ##### MD5 fe1e3480ea8c417c8f7b05f543c1448d numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl 0ab14b1afd0a55a374ca69b3b39cab3c numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl df059e5405bfe75c0ac77b01abbdb237 numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4ed412c4c078e96edf11ca3b11eef76b numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0caad53d9a5e3c5e8cd29f19a9f0c014 numpy-1.23.2-cp310-cp310-win32.whl 01e508b8b4f591daff128da1cfde8e1f numpy-1.23.2-cp310-cp310-win_amd64.whl 8ecdb7e2a87255878b748550d91cfbe0 numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl e3004aae46cec9e234f78eaf473272e0 numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl ec23c73caf581867d5ca9255b802f144 numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9b8389f528fe113247954248f0b78ce1 numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a54b136daa2fbb483909f08eecbfa3c5 numpy-1.23.2-cp311-cp311-win32.whl ead32e141857c5ef33b1a6cd88aefc0f numpy-1.23.2-cp311-cp311-win_amd64.whl df1f18e52d0a2840d101fdc9c2c6af84 numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl 04c986880bb24fac2f44face75eab914 numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl edeba58edb214390112810f7ead903a8 numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c26ea699d94d7f1009c976c66cc4def3 numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c246a78b09f8893d998d449dcab0fac3 numpy-1.23.2-cp38-cp38-win32.whl b5c5a2f961402259e301c49b8b05de55 numpy-1.23.2-cp38-cp38-win_amd64.whl d156dfae94d33eeff7fb9c6e5187e049 numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl 7f2ad7867c577eab925a31de76486765 numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl 76262a8e5d7a4d945446467467300a10 numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8ee105f4574d61a2d494418b55f63fcb numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2b7c79cae66023f8e716150223201981 numpy-1.23.2-cp39-cp39-win32.whl d7af57dd070ccb165f3893412eb602e3 numpy-1.23.2-cp39-cp39-win_amd64.whl 355a231dbd87a0f2125cc23eb8f97075 numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 4ab13c35056f67981d03f9ceec41db42 numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3a6f1e1256ee9be10d8cdf6be578fe52 numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl 9bf2a361509797de14ceee607387fe0f numpy-1.23.2.tar.gz ##### SHA256 e603ca1fb47b913942f3e660a15e55a9ebca906857edfea476ae5f0fe9b457d5 numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl 633679a472934b1c20a12ed0c9a6c9eb167fbb4cb89031939bfd03dd9dbc62b8 numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl 17e5226674f6ea79e14e3b91bfbc153fdf3ac13f5cc54ee7bc8fdbe820a32da0 numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bdc02c0235b261925102b1bd586579b7158e9d0d07ecb61148a1799214a4afd5 numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df28dda02c9328e122661f399f7655cdcbcf22ea42daa3650a26bce08a187450 numpy-1.23.2-cp310-cp310-win32.whl 8ebf7e194b89bc66b78475bd3624d92980fca4e5bb86dda08d677d786fefc414 numpy-1.23.2-cp310-cp310-win_amd64.whl dc76bca1ca98f4b122114435f83f1fcf3c0fe48e4e6f660e07996abf2f53903c numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl ecfdd68d334a6b97472ed032b5b37a30d8217c097acfff15e8452c710e775524 numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl 5593f67e66dea4e237f5af998d31a43e447786b2154ba1ad833676c788f37cde numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ac987b35df8c2a2eab495ee206658117e9ce867acf3ccb376a19e83070e69418 numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d98addfd3c8728ee8b2c49126f3c44c703e2b005d4a95998e2167af176a9e722 numpy-1.23.2-cp311-cp311-win32.whl 8ecb818231afe5f0f568c81f12ce50f2b828ff2b27487520d85eb44c71313b9e numpy-1.23.2-cp311-cp311-win_amd64.whl 909c56c4d4341ec8315291a105169d8aae732cfb4c250fbc375a1efb7a844f8f numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl 8247f01c4721479e482cc2f9f7d973f3f47810cbc8c65e38fd1bbd3141cc9842 numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl b8b97a8a87cadcd3f94659b4ef6ec056261fa1e1c3317f4193ac231d4df70215 numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bd5b7ccae24e3d8501ee5563e82febc1771e73bd268eef82a1e8d2b4d556ae66 numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9b83d48e464f393d46e8dd8171687394d39bc5abfe2978896b77dc2604e8635d numpy-1.23.2-cp38-cp38-win32.whl dec198619b7dbd6db58603cd256e092bcadef22a796f778bf87f8592b468441d numpy-1.23.2-cp38-cp38-win_amd64.whl 4f41f5bf20d9a521f8cab3a34557cd77b6f205ab2116651f12959714494268b0 numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl 806cc25d5c43e240db709875e947076b2826f47c2c340a5a2f36da5bb10c58d6 numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl 8f9d84a24889ebb4c641a9b99e54adb8cab50972f0166a3abc14c3b93163f074 numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c403c81bb8ffb1c993d0165a11493fd4bf1353d258f6997b3ee288b0a48fce77 numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cf8c6aed12a935abf2e290860af8e77b26a042eb7f2582ff83dc7ed5f963340c numpy-1.23.2-cp39-cp39-win32.whl 5e28cd64624dc2354a349152599e55308eb6ca95a13ce6a7d5679ebff2962913 numpy-1.23.2-cp39-cp39-win_amd64.whl 806970e69106556d1dd200e26647e9bee5e2b3f1814f9da104a943e8d548ca38 numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 2bd879d3ca4b6f39b7770829f73278b7c5e248c91d538aab1e506c628353e47f numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl be6b350dfbc7f708d9d853663772a9310783ea58f6035eec649fb9c4371b5389 numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl b78d00e48261fbbd04aa0d7427cf78d18401ee0abd89c7559bbf422e5b1c7d01 numpy-1.23.2.tar.gz ### [`v1.23.1`](https://github.com/numpy/numpy/releases/v1.23.1) [Compare Source](https://github.com/numpy/numpy/compare/v1.23.0...v1.23.1) ### NumPy 1.23.1 Release Notes The NumPy 1.23.1 is a maintenance release that fixes bugs discovered after the 1.23.0 release. Notable fixes are: - Fix searchsorted for float16 NaNs - Fix compilation on Apple M1 - Fix KeyError in crackfortran operator support (Slycot) The Python version supported for this release are 3.8-3.10. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Matthias Koeppe + - Pranab Das + - Rohit Goswami - Sebastian Berg - Serge Guelton - Srimukh Sripada + #### Pull requests merged A total of 8 pull requests were merged for this release. - [#&#8203;21866](https://github.com/numpy/numpy/pull/21866): BUG: Fix discovered MachAr (still used within valgrind) - [#&#8203;21867](https://github.com/numpy/numpy/pull/21867): BUG: Handle NaNs correctly for float16 during sorting - [#&#8203;21868](https://github.com/numpy/numpy/pull/21868): BUG: Use `keepdims` during normalization in `np.average` and... - [#&#8203;21869](https://github.com/numpy/numpy/pull/21869): DOC: mention changes to `max_rows` behaviour in `np.loadtxt` - [#&#8203;21870](https://github.com/numpy/numpy/pull/21870): BUG: Reject non integer array-likes with size 1 in delete - [#&#8203;21949](https://github.com/numpy/numpy/pull/21949): BLD: Make can_link_svml return False for 32bit builds on x86\_64 - [#&#8203;21951](https://github.com/numpy/numpy/pull/21951): BUG: Reorder extern "C" to only apply to function declarations... - [#&#8203;21952](https://github.com/numpy/numpy/pull/21952): BUG: Fix KeyError in crackfortran operator support #### Checksums ##### MD5 79f0d8c114f282b834b49209d6955f98 numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl 42a89a88ef26b768e8933ce46b1cc2bd numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl 1c1d68b3483eaf99b9a3583c8ac8bf47 numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9d3e9f7f9b3dce6cf15209e4f25f346e numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a9afb7c34b48d08fc50427ae6516b42d numpy-1.23.1-cp310-cp310-win32.whl a0e02823883bdfcec49309e108f65e13 numpy-1.23.1-cp310-cp310-win_amd64.whl f40cdf4ec7bb0cf31a90a4fa294323c2 numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl 80115a959f0fe30d6c401b2650a61c70 numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl 1cf199b3a93960c4f269853a56a8d8eb numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl aa6f0f192312c79cd770c2c395e9982a numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d07bee0ea3142a96cb5e4e16aca273ca numpy-1.23.1-cp38-cp38-win32.whl 02d0734ae8ad5e18a40c6c6de18486a0 numpy-1.23.1-cp38-cp38-win_amd64.whl e1ca14acd7d83bc74bdf6ab0bb4bd195 numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl c9152c62b2f31e742e24bfdc97b28666 numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl 05b0b37c92f7a7e7c01afac0a5322b40 numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d9810bb71a0ef9837e87ea5c44fcab5e numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4255577f857e838f7a94e3a614ddc5eb numpy-1.23.1-cp39-cp39-win32.whl 787486e3cd87b98024ffe1c969c4db7a numpy-1.23.1-cp39-cp39-win_amd64.whl 5c7b2d1471b1b9ec6ff1cb3fe1f8ac14 numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 40d5b2ff869707b0d97325ce44631135 numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 44ce1e07927cc09415df9898857792da numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl 4f8636a9c1a77ca0fb923ba55378891f numpy-1.23.1.tar.gz ##### SHA256 b15c3f1ed08df4980e02cc79ee058b788a3d0bef2fb3c9ca90bb8cbd5b8a3a04 numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl 9ce242162015b7e88092dccd0e854548c0926b75c7924a3495e02c6067aba1f5 numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl e0d7447679ae9a7124385ccf0ea990bb85bb869cef217e2ea6c844b6a6855073 numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3119daed207e9410eaf57dcf9591fdc68045f60483d94956bee0bfdcba790953 numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3ab67966c8d45d55a2bdf40701536af6443763907086c0a6d1232688e27e5447 numpy-1.23.1-cp310-cp310-win32.whl 1865fdf51446839ca3fffaab172461f2b781163f6f395f1aed256b1ddc253622 numpy-1.23.1-cp310-cp310-win_amd64.whl aeba539285dcf0a1ba755945865ec61240ede5432df41d6e29fab305f4384db2 numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl 7e8229f3687cdadba2c4faef39204feb51ef7c1a9b669247d49a24f3e2e1617c numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl 68b69f52e6545af010b76516f5daaef6173e73353e3295c5cb9f96c35d755641 numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1408c3527a74a0209c781ac82bde2182b0f0bf54dea6e6a363fe0cc4488a7ce7 numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 47f10ab202fe4d8495ff484b5561c65dd59177949ca07975663f4494f7269e3e numpy-1.23.1-cp38-cp38-win32.whl 37e5ebebb0eb54c5b4a9b04e6f3018e16b8ef257d26c8945925ba8105008e645 numpy-1.23.1-cp38-cp38-win_amd64.whl 173f28921b15d341afadf6c3898a34f20a0569e4ad5435297ba262ee8941e77b numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl 876f60de09734fbcb4e27a97c9a286b51284df1326b1ac5f1bf0ad3678236b22 numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl 35590b9c33c0f1c9732b3231bb6a72d1e4f77872390c47d50a615686ae7ed3fd numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a35c4e64dfca659fe4d0f1421fc0f05b8ed1ca8c46fb73d9e5a7f175f85696bb numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c2f91f88230042a130ceb1b496932aa717dcbd665350beb821534c5c7e15881c numpy-1.23.1-cp39-cp39-win32.whl 37ece2bd095e9781a7156852e43d18044fd0d742934833335599c583618181b9 numpy-1.23.1-cp39-cp39-win_amd64.whl 8002574a6b46ac3b5739a003b5233376aeac5163e5dcd43dd7ad062f3e186129 numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 5d732d17b8a9061540a10fda5bfeabca5785700ab5469a5e9b93aca5e2d3a5fb numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 55df0f7483b822855af67e38fb3a526e787adf189383b4934305565d71c4b148 numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl d748ef349bfef2e1194b59da37ed5a29c19ea8d7e6342019921ba2ba4fd8b624 numpy-1.23.1.tar.gz ### [`v1.23.0`](https://github.com/numpy/numpy/releases/v1.23.0) [Compare Source](https://github.com/numpy/numpy/compare/v1.22.4...v1.23.0) ### NumPy 1.23.0 Release Notes The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. The highlights are: - Implementation of `loadtxt` in C, greatly improving its performance. - Exposing DLPack at the Python level for easy data exchange. - Changes to the promotion and comparisons of structured dtypes. - Improvements to f2py. See below for the details, #### New functions - A masked array specialization of `ndenumerate` is now available as `numpy.ma.ndenumerate`. It provides an alternative to `numpy.ndenumerate` and skips masked values by default. ([gh-20020](https://github.com/numpy/numpy/pull/20020)) - `numpy.from_dlpack` has been added to allow easy exchange of data using the DLPack protocol. It accepts Python objects that implement the `__dlpack__` and `__dlpack_device__` methods and returns a ndarray object which is generally the view of the data of the input object. ([gh-21145](https://github.com/numpy/numpy/pull/21145)) #### Deprecations - Setting `__array_finalize__` to `None` is deprecated. It must now be a method and may wish to call `super().__array_finalize__(obj)` after checking for `None` or if the NumPy version is sufficiently new. ([gh-20766](https://github.com/numpy/numpy/pull/20766)) - Using `axis=32` (`axis=np.MAXDIMS`) in many cases had the same meaning as `axis=None`. This is deprecated and `axis=None` must be used instead. ([gh-20920](https://github.com/numpy/numpy/pull/20920)) - The hook function `PyDataMem_SetEventHook` has been deprecated and the demonstration of its use in tool/allocation_tracking has been removed. The ability to track allocations is now built-in to python via `tracemalloc`. ([gh-20394](https://github.com/numpy/numpy/pull/20394)) - `numpy.distutils` has been deprecated, as a result of `distutils` itself being deprecated. It will not be present in NumPy for Python >= 3.12, and will be removed completely 2 years after the release of Python 3.12 For more details, see `distutils-status-migration`{.interpreted-text role="ref"}. ([gh-20875](https://github.com/numpy/numpy/pull/20875)) - `numpy.loadtxt` will now give a `DeprecationWarning` when an integer `dtype` is requested but the value is formatted as a floating point number. ([gh-21663](https://github.com/numpy/numpy/pull/21663)) #### Expired deprecations - The `NpzFile.iteritems()` and `NpzFile.iterkeys()` methods have been removed as part of the continued removal of Python 2 compatibility. This concludes the deprecation from 1.15. ([gh-16830](https://github.com/numpy/numpy/pull/16830)) - The `alen` and `asscalar` functions have been removed. ([gh-20414](https://github.com/numpy/numpy/pull/20414)) - The `UPDATEIFCOPY` array flag has been removed together with the enum `NPY_ARRAY_UPDATEIFCOPY`. The associated (and deprecated) `PyArray_XDECREF_ERR` was also removed. These were all deprecated in 1.14. They are replaced by `WRITEBACKIFCOPY`, that requires calling `PyArray_ResoveWritebackIfCopy` before the array is deallocated. ([gh-20589](https://github.com/numpy/numpy/pull/20589)) - Exceptions will be raised during array-like creation. When an object raised an exception during access of the special attributes `__array__` or `__array_interface__`, this exception was usually ignored. This behaviour was deprecated in 1.21, and the exception will now be raised. ([gh-20835](https://github.com/numpy/numpy/pull/20835)) - Multidimensional indexing with non-tuple values is not allowed. Previously, code such as `arr[ind]` where `ind = [[0, 1], [0, 1]]` produced a `FutureWarning` and was interpreted as a multidimensional index (i.e., `arr[tuple(ind)]`). Now this example is treated like an array index over a single dimension (`arr[array(ind)]`). Multidimensional indexing with anything but a tuple was deprecated in NumPy 1.15. ([gh-21029](https://github.com/numpy/numpy/pull/21029)) - Changing to a dtype of different size in F-contiguous arrays is no longer permitted. Deprecated since Numpy 1.11.0. See below for an extended explanation of the effects of this change. ([gh-20722](https://github.com/numpy/numpy/pull/20722)) #### New Features ##### crackfortran has support for operator and assignment overloading `crackfortran` parser now understands operator and assignment definitions in a module. They are added in the `body` list of the module which contains a new key `implementedby` listing the names of the subroutines or functions implementing the operator or assignment. ([gh-15006](https://github.com/numpy/numpy/pull/15006)) ##### f2py supports reading access type attributes from derived type statements As a result, one does not need to use `public` or `private` statements to specify derived type access properties. ([gh-15844](https://github.com/numpy/numpy/pull/15844)) ##### New parameter `ndmin` added to `genfromtxt` This parameter behaves the same as `ndmin` from `numpy.loadtxt`. ([gh-20500](https://github.com/numpy/numpy/pull/20500)) ##### `np.loadtxt` now supports quote character and single converter function `numpy.loadtxt` now supports an additional `quotechar` keyword argument which is not set by default. Using `quotechar='"'` will read quoted fields as used by the Excel CSV dialect. Further, it is now possible to pass a single callable rather than a dictionary for the `converters` argument. ([gh-20580](https://github.com/numpy/numpy/pull/20580)) ##### Changing to dtype of a different size now requires contiguity of only the last axis Previously, viewing an array with a dtype of a different item size required that the entire array be C-contiguous. This limitation would unnecessarily force the user to make contiguous copies of non-contiguous arrays before being able to change the dtype. This change affects not only `ndarray.view`, but other construction mechanisms, including the discouraged direct assignment to `ndarray.dtype`. This change expires the deprecation regarding the viewing of F-contiguous arrays, described elsewhere in the release notes. ([gh-20722](https://github.com/numpy/numpy/pull/20722)) ##### Deterministic output files for F2PY For F77 inputs, `f2py` will generate `modname-f2pywrappers.f` unconditionally, though these may be empty. For free-form inputs, `modname-f2pywrappers.f`, `modname-f2pywrappers2.f90` will both be generated unconditionally, and may be empty. This allows writing generic output rules in `cmake` or `meson` and other build systems. Older behavior can be restored by passing `--skip-empty-wrappers` to `f2py`. `f2py-meson`{.interpreted-text role="ref"} details usage. ([gh-21187](https://github.com/numpy/numpy/pull/21187)) ##### `keepdims` parameter for `average` The parameter `keepdims` was added to the functions `numpy.average` and `numpy.ma.average`. The parameter has the same meaning as it does in reduction functions such as `numpy.sum` or `numpy.mean`. ([gh-21485](https://github.com/numpy/numpy/pull/21485)) ##### New parameter `equal_nan` added to `np.unique` `np.unique` was changed in 1.21 to treat all `NaN` values as equal and return a single `NaN`. Setting `equal_nan=False` will restore pre-1.21 behavior to treat `NaNs` as unique. Defaults to `True`. ([gh-21623](https://github.com/numpy/numpy/pull/21623)) #### Compatibility notes ##### 1D `np.linalg.norm` preserves float input types, even for scalar results Previously, this would promote to `float64` when the `ord` argument was not one of the explicitly listed values, e.g. `ord=3`: >>> f32 = np.float32([1, 2]) >>> np.linalg.norm(f32, 2).dtype dtype('float32') >>> np.linalg.norm(f32, 3) dtype('float64') # numpy 1.22 dtype('float32') # numpy 1.23 This change affects only `float32` and `float16` vectors with `ord` other than `-Inf`, `0`, `1`, `2`, and `Inf`. ([gh-17709](https://github.com/numpy/numpy/pull/17709)) ##### Changes to structured (void) dtype promotion and comparisons In general, NumPy now defines correct, but slightly limited, promotion for structured dtypes by promoting the subtypes of each field instead of raising an exception: >>> np.result_type(np.dtype("i,i"), np.dtype("i,d")) dtype([('f0', '<i4'), ('f1', '<f8')]) For promotion matching field names, order, and titles are enforced, however padding is ignored. Promotion involving structured dtypes now always ensures native byte-order for all fields (which may change the result of `np.concatenate`) and ensures that the result will be "packed", i.e. all fields are ordered contiguously and padding is removed. See `structured_dtype_comparison_and_promotion`{.interpreted-text role="ref"} for further details. The `repr` of aligned structures will now never print the long form including `offsets` and `itemsize` unless the structure includes padding not guaranteed by `align=True`. In alignment with the above changes to the promotion logic, the casting safety has been updated: - `"equiv"` enforces matching names and titles. The itemsize is allowed to differ due to padding. - `"safe"` allows mismatching field names and titles - The cast safety is limited by the cast safety of each included field. - The order of fields is used to decide cast safety of each individual field. Previously, the field names were used and only unsafe casts were possible when names mismatched. The main important change here is that name mismatches are now considered "safe" casts. ([gh-19226](https://github.com/numpy/numpy/pull/19226)) ##### `NPY_RELAXED_STRIDES_CHECKING` has been removed NumPy cannot be compiled with `NPY_RELAXED_STRIDES_CHECKING=0` anymore. Relaxed strides have been the default for many years and the option was initially introduced to allow a smoother transition. ([gh-20220](https://github.com/numpy/numpy/pull/20220)) ##### `np.loadtxt` has recieved several changes The row counting of `numpy.loadtxt` was fixed. `loadtxt` ignores fully empty lines in the file, but counted them towards `max_rows`. When `max_rows` is used and the file contains empty lines, these will now not be counted. Previously, it was possible that the result contained fewer than `max_rows` rows even though more data was available to be read. If the old behaviour is required, `itertools.islice` may be used: import itertools lines = itertools.islice(open("file"), 0, max_rows) result = np.loadtxt(lines, ...) While generally much faster and improved, `numpy.loadtxt` may now fail to converter certain strings to numbers that were previously successfully read. The most important cases for this are: - Parsing floating point values such as `1.0` into integers is now deprecated. - Parsing hexadecimal floats such as `0x3p3` will fail - An `_` was previously accepted as a thousands delimiter `100_000`. This will now result in an error. If you experience these limitations, they can all be worked around by passing appropriate `converters=`. NumPy now supports passing a single converter to be used for all columns to make this more convenient. For example, `converters=float.fromhex` can read hexadecimal float numbers and `converters=int` will be able to read `100_000`. Further, the error messages have been generally improved. However, this means that error types may differ. In particularly, a `ValueError` is now always raised when parsing of a single entry fails. ([gh-20580](https://github.com/numpy/numpy/pull/20580)) #### Improvements ##### `ndarray.__array_finalize__` is now callable This means subclasses can now use `super().__array_finalize__(obj)` without worrying whether `ndarray` is their superclass or not. The actual call remains a no-op. ([gh-20766](https://github.com/numpy/numpy/pull/20766)) ##### Add support for VSX4/Power10 With VSX4/Power10 enablement, the new instructions available in Power ISA 3.1 can be used to accelerate some NumPy operations, e.g., floor_divide, modulo, etc. ([gh-20821](https://github.com/numpy/numpy/pull/20821)) ##### `np.fromiter` now accepts objects and subarrays The `numpy.fromiter` function now supports object and subarray dtypes. Please see he function documentation for examples. ([gh-20993](https://github.com/numpy/numpy/pull/20993)) ##### Math C library feature detection now uses correct signatures Compiling is preceded by a detection phase to determine whether the underlying libc supports certain math operations. Previously this code did not respect the proper signatures. Fixing this enables compilation for the `wasm-ld` backend (compilation for web assembly) and reduces the number of warnings. ([gh-21154](https://github.com/numpy/numpy/pull/21154)) ##### `np.kron` now maintains subclass information `np.kron` maintains subclass information now such as masked arrays while computing the Kronecker product of the inputs ```python >>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]]) >>> np.kron(x,x) masked_array( data=[[1, --, --, --], [--, 4, --, --], [--, --, 4, --], [--, --, --, 16]], mask=[[False, True, True, True], [ True, False, True, True], [ True, True, False, True], [ True, True, True, False]], fill_value=999999) ``` :warning: Warning, `np.kron` output now follows `ufunc` ordering (`multiply`) to determine the output class type ```python >>> class myarr(np.ndarray): >>> __array_priority__ = -1 >>> a = np.ones([2, 2]) >>> ma = myarray(a.shape, a.dtype, a.data) >>> type(np.kron(a, ma)) == np.ndarray False # Before it was True >>> type(np.kron(a, ma)) == myarr True ``` ([gh-21262](https://github.com/numpy/numpy/pull/21262)) #### Performance improvements and changes ##### Faster `np.loadtxt` `numpy.loadtxt` is now generally much faster than previously as most of it is now implemented in C. ([gh-20580](https://github.com/numpy/numpy/pull/20580)) ##### Faster reduction operators Reduction operations like `numpy.sum`, `numpy.prod`, `numpy.add.reduce`, `numpy.logical_and.reduce` on contiguous integer-based arrays are now much faster. ([gh-21001](https://github.com/numpy/numpy/pull/21001)) ##### Faster `np.where` `numpy.where` is now much faster than previously on unpredictable/random input data. ([gh-21130](https://github.com/numpy/numpy/pull/21130)) ##### Faster operations on NumPy scalars Many operations on NumPy scalars are now significantly faster, although rare operations (e.g. with 0-D arrays rather than scalars) may be slower in some cases. However, even with these improvements users who want the best performance for their scalars, may want to convert a known NumPy scalar into a Python one using `scalar.item()`. ([gh-21188](https://github.com/numpy/numpy/pull/21188)) ##### Faster `np.kron` `numpy.kron` is about 80% faster as the product is now computed using broadcasting. ([gh-21354](https://github.com/numpy/numpy/pull/21354)) #### Checksums ##### MD5 21839aaeab3088e685d7c8d0e1856a23 numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl e657684ea521c50de0197aabfb44e78d numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl 219017660861fdec59b852630e3fef2a numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 03c3df83b8327910482a7d24ebe9213b numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b8f06ce4054acc147845a9643bd36082 numpy-1.23.0-cp310-cp310-win32.whl 877322db5a62634eef4e351db99a070d numpy-1.23.0-cp310-cp310-win_amd64.whl 7bb54f95e74306eff733466b6343695f numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl 5514a0030e5cf065e916950737d6d129 numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl 22d43465791814fe50e03ded430bd80c numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 771a1f7e488327645bac5b54dd2f6286 numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 449bfa2d55aff3e722d2fc85a7549620 numpy-1.23.0-cp38-cp38-win32.whl 60c7d27cf92dadb6d206df6e65b1032f numpy-1.23.0-cp38-cp38-win_amd64.whl dc2a5c5d2223f7b45a45f7f760d0f2db numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl ba5729353c3521ed7ee72c796e77a546 numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl 06d5cd49de096482944dead2eb92d783 numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6ff50a994f6006349b5f1415e4da6f45 numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 49185f219512403ef23d43d6f2adbefd numpy-1.23.0-cp39-cp39-win32.whl ff126a84dcf91700f9ca13ff606d109f numpy-1.23.0-cp39-cp39-win_amd64.whl e1462428487dc599cdffb723dec642c4 numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl fef1d20265135737fbc0f91ca4441990 numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4f8142288202a32c682d01921d6c2c78 numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl 513e4241d06b8fae5732cd049cdf3b57 numpy-1.23.0.tar.gz ##### SHA256 58bfd40eb478f54ff7a5710dd61c8097e169bc36cc68333d00a9bcd8def53b38 numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl 196cd074c3f97c4121601790955f915187736f9cf458d3ee1f1b46aff2b1ade0 numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl f1d88ef79e0a7fa631bb2c3dda1ea46b32b1fe614e10fedd611d3d5398447f2f numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d54b3b828d618a19779a84c3ad952e96e2c2311b16384e973e671aa5be1f6187 numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 2b2da66582f3a69c8ce25ed7921dcd8010d05e59ac8d89d126a299be60421171 numpy-1.23.0-cp310-cp310-win32.whl 97a76604d9b0e79f59baeca16593c711fddb44936e40310f78bfef79ee9a835f numpy-1.23.0-cp310-cp310-win_amd64.whl d8cc87bed09de55477dba9da370c1679bd534df9baa171dd01accbb09687dac3 numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl f0f18804df7370571fb65db9b98bf1378172bd4e962482b857e612d1fec0f53e numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl ac86f407873b952679f5f9e6c0612687e51547af0e14ddea1eedfcb22466babd numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ae8adff4172692ce56233db04b7ce5792186f179c415c37d539c25de7298d25d numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe8b9683eb26d2c4d5db32cd29b38fdcf8381324ab48313b5b69088e0e355379 numpy-1.23.0-cp38-cp38-win32.whl 5043bcd71fcc458dfb8a0fc5509bbc979da0131b9d08e3d5f50fb0bbb36f169a numpy-1.23.0-cp38-cp38-win_amd64.whl 1c29b44905af288b3919803aceb6ec7fec77406d8b08aaa2e8b9e63d0fe2f160 numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl 98e8e0d8d69ff4d3fa63e6c61e8cfe2d03c29b16b58dbef1f9baa175bbed7860 numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl 79a506cacf2be3a74ead5467aee97b81fca00c9c4c8b3ba16dbab488cd99ba10 numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 092f5e6025813e64ad6d1b52b519165d08c730d099c114a9247c9bb635a2a450 numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d6ca8dabe696c2785d0c8c9b0d8a9b6e5fdbe4f922bde70d57fa1a2848134f95 numpy-1.23.0-cp39-cp39-win32.whl fc431493df245f3c627c0c05c2bd134535e7929dbe2e602b80e42bf52ff760bc numpy-1.23.0-cp39-cp39-win_amd64.whl f9c3fc2adf67762c9fe1849c859942d23f8d3e0bee7b5ed3d4a9c3eeb50a2f07 numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl d0d2094e8f4d760500394d77b383a1b06d3663e8892cdf5df3c592f55f3bff66 numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 94b170b4fa0168cd6be4becf37cb5b127bd12a795123984385b8cd4aca9857e5 numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl bd3fa4fe2e38533d5336e1272fc4e765cabbbde144309ccee8675509d5cd7b05 numpy-1.23.0.tar.gz ### [`v1.22.4`](https://github.com/numpy/numpy/releases/v1.22.4) [Compare Source](https://github.com/numpy/numpy/compare/v1.22.3...v1.22.4) ### NumPy 1.22.4 Release Notes NumPy 1.22.4 is a maintenance release that fixes bugs discovered after the 1.22.3 release. In addition, the wheels for this release are built using the recently released Cython 0.29.30, which should fix the reported problems with [debugging](https://github.com/numpy/numpy/issues/21008). The Python versions supported for this release are 3.8-3.10. Note that the Mac wheels are now based on OS X 10.15 rather than 10.6 that was used in previous NumPy release cycles. #### Contributors A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Alexander Shadchin - Bas van Beek - Charles Harris - Hood Chatham - Jarrod Millman - John-Mark Gurney + - Junyan Ou + - Mariusz Felisiak + - Ross Barnowski - Sebastian Berg - Serge Guelton - Stefan van der Walt #### Pull requests merged A total of 22 pull requests were merged for this release. - [#&#8203;21191](https://github.com/numpy/numpy/pull/21191): TYP, BUG: Fix `np.lib.stride_tricks` re-exported under the... - [#&#8203;21192](https://github.com/numpy/numpy/pull/21192): TST: Bump mypy from 0.931 to 0.940 - [#&#8203;21243](https://github.com/numpy/numpy/pull/21243): MAINT: Explicitly re-export the types in `numpy._typing` - [#&#8203;21245](https://github.com/numpy/numpy/pull/21245): MAINT: Specify sphinx, numpydoc versions for CI doc builds - [#&#8203;21275](https://github.com/numpy/numpy/pull/21275): BUG: Fix typos - [#&#8203;21277](https://github.com/numpy/numpy/pull/21277): ENH, BLD: Fix math feature detection for wasm - [#&#8203;21350](https://github.com/numpy/numpy/pull/21350): MAINT: Fix failing simd and cygwin tests. - [#&#8203;21438](https://github.com/numpy/numpy/pull/21438): MAINT: Fix failing Python 3.8 32-bit Windows test. - [#&#8203;21444](https://github.com/numpy/numpy/pull/21444): BUG: add linux guard per [#&#8203;21386](https://github.com/numpy/numpy/issues/21386) - [#&#8203;21445](https://github.com/numpy/numpy/pull/21445): BUG: Allow legacy dtypes to cast to datetime again - [#&#8203;21446](https://github.com/numpy/numpy/pull/21446): BUG: Make mmap handling safer in frombuffer - [#&#8203;21447](https://github.com/numpy/numpy/pull/21447): BUG: Stop using PyBytesObject.ob_shash deprecated in Python 3.11. - [#&#8203;21448](https://github.com/numpy/numpy/pull/21448): ENH: Introduce numpy.core.setup_common.NPY_CXX_FLAGS - [#&#8203;21472](https://github.com/numpy/numpy/pull/21472): BUG: Ensure compile errors are raised correclty - [#&#8203;21473](https://github.com/numpy/numpy/pull/21473): BUG: Fix segmentation fault - [#&#8203;21474](https://github.com/numpy/numpy/pull/21474): MAINT: Update doc requirements - [#&#8203;21475](https://github.com/numpy/numpy/pull/21475): MAINT: Mark `npy_memchr` with `no_sanitize("alignment")` on clang - [#&#8203;21512](https://github.com/numpy/numpy/pull/21512): DOC: Proposal - make the doc landing page cards more similar... - [#&#8203;21525](https://github.com/numpy/numpy/pull/21525): MAINT: Update Cython version to 0.29.30. - [#&#8203;21536](https://github.com/numpy/numpy/pull/21536): BUG: Fix GCC error during build configuration - [#&#8203;21541](https://github.com/numpy/numpy/pull/21541): REL: Prepare for the NumPy 1.22.4 release. - [#&#8203;21547](https://github.com/numpy/numpy/pull/21547): MAINT: Skip tests that fail on PyPy. #### Checksums ##### MD5 a19351fd3dc0b3bbc733495ed18b8f24 numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl 0730f9e196f70ad89f246bf95ccf05d5 numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl 63c74e5395a2b31d8adc5b1aa0c62471 numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl f99778023770c12f896768c90f7712e5 numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 757d68b0cdb4e28ffce8574b6a2f3c5e numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 50becf2e048e54dc5227dfe8378aae1e numpy-1.22.4-cp310-cp310-win32.whl 79dfdc29a4730e44d6df33dbea5b35b0 numpy-1.22.4-cp310-cp310-win_amd64.whl 8fd8f04d71ead55c2773d1b46668ca67 numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl 41a7c6240081010824cc0d5c02900fe6 numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl 6bc066d3f61da3304c82d92f3f900a4f numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 86d959605c66ccba11c6504f25fff0d7 numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ae0405894c065349a511e4575b919e2a numpy-1.22.4-cp38-cp38-win32.whl c9a731d08081396b7a1b66977734d2ac numpy-1.22.4-cp38-cp38-win_amd64.whl 4d9b97d74799e5fc48860f0b4a3b255a numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl c99fa7e04cb7cc23f1713f2023b4e489 numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl dda3815df12b8a99c6c3069f69997521 numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl 9b7c5b39d5611d92b66eb545d44b25db numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 90fc45eaf8b8c4fac3f3ebd105a5a856 numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9562153d4a83d773c20eb626cbd65cde numpy-1.22.4-cp39-cp39-win32.whl 711b23acce54a18ce74fc80f48f48062 numpy-1.22.4-cp39-cp39-win_amd64.whl ab803b24ea557452e828adba1b986af3 numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 09b3a41ea0b9bc20bd1691cf88f0b0d3 numpy-1.22.4.tar.gz b44849506fbb54cdef9dbb435b2b1987 numpy-1.22.4.zip ##### SHA256 ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3 numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl 1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887 numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl 7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0 numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl 43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74 numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e numpy-1.22.4-cp310-cp310-win32.whl 3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077 numpy-1.22.4-cp310-cp310-win_amd64.whl 59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1 numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72 numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6 numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0 numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba numpy-1.22.4-cp38-cp38-win32.whl e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76 numpy-1.22.4-cp38-cp38-win_amd64.whl 4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5 numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl 2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802 numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd numpy-1.22.4-cp39-cp39-win32.whl f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32 numpy-1.22.4-cp39-cp39-win_amd64.whl 0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207 numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b4308198d0e41efaa108e57d69973398439c7299a9d551680cdd603cf6d20709 numpy-1.22.4.tar.gz 425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af numpy-1.22.4.zip </details> --- ### Configuration 📅 **Schedule**: At any time (no schedule defined). 🚦 **Automerge**: Disabled by config. Please merge this manually once you are satisfied. ♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, click this checkbox. --- This PR has been generated by [Renovate Bot](https://github.com/renovatebot/renovate).
renovate-bot added 1 commit 2024-06-17 01:31:07 +00:00
chore(deps): update dependency numpy to v2
Some checks failed
renovate/artifacts Artifact file update failure
gitea-physics/deepdog/pipeline/head There was a failure building this commit
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
0cd0a4e09a
deepak was assigned by renovate-bot 2024-06-17 01:31:08 +00:00
Author
Owner

⚠ Artifact update problem

Renovate failed to update an artifact related to this branch. You probably do not want to merge this PR as-is.

♻ Renovate will retry this branch, including artifacts, only when one of the following happens:

  • any of the package files in this branch needs updating, or
  • the branch becomes conflicted, or
  • you click the rebase/retry checkbox if found above, or
  • you rename this PR's title to start with "rebase!" to trigger it manually

The artifact failure details are included below:

File name: poetry.lock
The currently activated Python version 3.10.2 is not supported by the project (>=3.8.1,<3.10).
Trying to find and use a compatible version. 

  NoCompatiblePythonVersionFound

  Poetry was unable to find a compatible version. If you have one, you can explicitly use it via the "env use" command.

  at /usr/local/poetry/1.1.13/venv/lib/python3.10/site-packages/poetry/utils/env.py:768 in create_venv
       764│                     python_minor = ".".join(python_patch.split(".")[:2])
       765│                     break
       766│ 
       767│             if not executable:
    →  768│                 raise NoCompatiblePythonVersionFound(
       769│                     self._poetry.package.python_versions
       770│                 )
       771│ 
       772│         if root_venv:


### ⚠ Artifact update problem Renovate failed to update an artifact related to this branch. You probably do not want to merge this PR as-is. ♻ Renovate will retry this branch, including artifacts, only when one of the following happens: - any of the package files in this branch needs updating, or - the branch becomes conflicted, or - you click the rebase/retry checkbox if found above, or - you rename this PR's title to start with "rebase!" to trigger it manually The artifact failure details are included below: ##### File name: poetry.lock ``` The currently activated Python version 3.10.2 is not supported by the project (>=3.8.1,<3.10). Trying to find and use a compatible version. NoCompatiblePythonVersionFound Poetry was unable to find a compatible version. If you have one, you can explicitly use it via the "env use" command. at /usr/local/poetry/1.1.13/venv/lib/python3.10/site-packages/poetry/utils/env.py:768 in create_venv 764│ python_minor = ".".join(python_patch.split(".")[:2]) 765│ break 766│ 767│ if not executable: → 768│ raise NoCompatiblePythonVersionFound( 769│ self._poetry.package.python_versions 770│ ) 771│ 772│ if root_venv: ```
renovate-bot force-pushed renovate/numpy-2.x from 0cd0a4e09a to cce575a9ef 2024-07-22 01:31:12 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from cce575a9ef to a86f9bf88e 2024-08-19 01:30:52 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from a86f9bf88e to a47342ce7e 2024-09-04 01:31:13 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from a47342ce7e to 18c99acdd4 2024-10-06 01:31:11 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from 18c99acdd4 to 27db2ca5e0 2024-11-03 01:31:19 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from 27db2ca5e0 to bd92d58c9f 2024-12-09 01:31:16 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from bd92d58c9f to 0f0472965b 2024-12-22 01:30:59 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from 0f0472965b to fd7d72c87a 2025-01-19 01:31:25 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from fd7d72c87a to aed66048b8 2025-02-14 01:31:17 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from aed66048b8 to f33b5c7292 2025-03-17 01:31:10 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from f33b5c7292 to 3f0f3f19fe 2025-04-20 01:31:23 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from 3f0f3f19fe to 044588dc70 2025-05-18 01:31:13 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from 044588dc70 to bf3e5b96ca 2025-06-08 01:31:07 +00:00 Compare
renovate-bot force-pushed renovate/numpy-2.x from bf3e5b96ca to d7121e3b3f 2025-06-22 01:31:09 +00:00 Compare
Some checks failed
renovate/artifacts Artifact file update failure
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
This pull request can be merged automatically.
You are not authorized to merge this pull request.

Checkout

From your project repository, check out a new branch and test the changes.
git fetch -u origin renovate/numpy-2.x:renovate/numpy-2.x
git checkout renovate/numpy-2.x
Sign in to join this conversation.
No Reviewers
No Label
1 Participants
Notifications
Due Date
No due date set.
Dependencies

No dependencies set.

Reference: physics/deepdog#40
No description provided.