feat: adds identifying downturn notes
13
Makefile
@ -1,6 +1,6 @@
|
||||
### Build tools
|
||||
#
|
||||
LATEXMK := latexmk -pdflatex="luahblatex %O %S" -pdf -dvi- -ps- -quiet -logfilewarninglist
|
||||
LATEXMK := latexmk -pdflatex="lualatex %O %S" -pdf -dvi- -ps- -quiet -logfilewarninglist
|
||||
WS := wolframscript -f
|
||||
|
||||
### Directory variables
|
||||
@ -11,7 +11,7 @@ CALC_DIR := calc
|
||||
|
||||
### Here we go
|
||||
#
|
||||
OUT_PDF:= $(PDF_DIR)/notes.pdf
|
||||
OUT_PDF:= $(PDF_DIR)/notes.pdf $(PDF_DIR)/identifying_downturn.pdf
|
||||
|
||||
.PHONY: all
|
||||
all: $(OUT_PDF)
|
||||
@ -20,7 +20,7 @@ all: $(OUT_PDF)
|
||||
#
|
||||
|
||||
## setup main pdf deps as variable that subdirs can add to
|
||||
MAIN_PDF_DEPS := bibliography.bib
|
||||
COMMON_PDF_DEPS := bibliography.bib
|
||||
|
||||
## Defining common directory recipes
|
||||
$(PDF_DIR):
|
||||
@ -36,10 +36,15 @@ $(CALC_DIR):
|
||||
FIGURES :=
|
||||
## Making main.pdf and other pdfs
|
||||
#
|
||||
$(PDF_DIR)/notes.pdf: notes.tex $(MAIN_PDF_DEPS) | $(PDF_DIR) $(FIGURES)
|
||||
$(PDF_DIR)/notes.pdf: notes.tex $(COMMON_PDF_DEPS) | $(PDF_DIR) $(FIGURES)
|
||||
$(LATEXMK) $(<F)
|
||||
cp $(@F) $@
|
||||
|
||||
$(PDF_DIR)/identifying_downturn.pdf: identifying_downturn.tex $(COMMON_PDF_DEPS) | $(PDF_DIR) $(FIGURES)
|
||||
$(LATEXMK) $(<F)
|
||||
cp $(@F) $@
|
||||
|
||||
|
||||
### Convenience scripts for tidying tex
|
||||
.PHONY: declutter
|
||||
declutter:
|
||||
|
2
do.sh
@ -6,7 +6,7 @@ set -Eeuo pipefail # -e "Automatic exit from bash shell script on error" -u "Tr
|
||||
|
||||
build() {
|
||||
echo "I am ${FUNCNAME[0]}ing"
|
||||
make pdfs/notes.pdf
|
||||
make all
|
||||
}
|
||||
|
||||
all() {
|
||||
|
BIN
figures/Im rs-no-weirdness.jpg
Normal file
After Width: | Height: | Size: 524 KiB |
BIN
figures/chiVsZCleanCaseWithProblem.jpg
Normal file
After Width: | Height: | Size: 376 KiB |
BIN
figures/downturnExampleClean.jpg
Normal file
After Width: | Height: | Size: 503 KiB |
BIN
figures/downturnExampleDirty-no-downturn.jpg
Normal file
After Width: | Height: | Size: 367 KiB |
BIN
figures/downturnIntermediate.jpg
Normal file
After Width: | Height: | Size: 362 KiB |
BIN
figures/t1VsZDirtyCase-no-problems.jpg
Normal file
After Width: | Height: | Size: 402 KiB |
BIN
figures/t1VsZcleanCase-bad.jpg
Normal file
After Width: | Height: | Size: 401 KiB |
BIN
figures/t1vsTexamples.jpg
Normal file
After Width: | Height: | Size: 368 KiB |
125
identifying_downturn.tex
Normal file
@ -0,0 +1,125 @@
|
||||
\documentclass{article}
|
||||
|
||||
%other packages
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{physics}
|
||||
%
|
||||
% \usepackage[
|
||||
% style=phys, articletitle=false, biblabel=brackets, chaptertitle=false, pageranges=false, url=true
|
||||
% ]{biblatex}
|
||||
|
||||
\usepackage{graphicx}
|
||||
\usepackage{todonotes}
|
||||
\usepackage{siunitx}
|
||||
|
||||
\usepackage{cleveref}
|
||||
|
||||
\title{Identifying the downturn issue with clean case}
|
||||
|
||||
% \addbibresource{./bibliography.bib}
|
||||
|
||||
\graphicspath{{./figures/}}
|
||||
|
||||
\newcommand{\vf}{v_{\mathrm{F}}}
|
||||
\newcommand{\qf}{q_{\mathrm{F}}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\section{The problem}
|
||||
|
||||
As discussed earlier there was an issue with a sharp drop in $T_1(z)$ as temperature approached $T_c$.
|
||||
The dirty case looks fine in \cref{fig:exdirtynodownturn}, but the clean system in \cref{fig:excleandownturn} shows the problem.
|
||||
Both of those are at $z$ around $20 \lambda_F$ ($\lambda_F$ is $\approx \SI{0.4}{\nm}$.)
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{downturnExampleDirty-no-downturn}
|
||||
\caption{$T_1(z)$, everything looks appropriately good for a dirty system.} \label{fig:exdirtynodownturn}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{downturnExampleClean}
|
||||
\caption{$T_1(z)$, for a clean system we have the downturn.} \label{fig:excleandownturn}
|
||||
\end{figure}
|
||||
|
||||
The obvious question is whether this matters, because it's $T$ so close to $T_c$ that cutting it off is probably not an issue.
|
||||
But the effect matters because in the intermediate values of $\tau$ both the turning up to the normal state and the problematic downturn are present, and that's not great.
|
||||
\Cref{fig:downturnintermediate} shows what that looks like.
|
||||
I \emph{think} that that's still probably explainable as having a rise up to the normal state for $T \rightarrow T_c$, masked by the downturn because it only rises close to $T_c$.
|
||||
But it's not really a convincing graph, so I proceed under the assumption that it's worth investigation.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{downturnIntermediate}
|
||||
\caption{$T_1(z)$, for a clean system we have the downturn.} \label{fig:downturnintermediate}
|
||||
\end{figure}
|
||||
|
||||
Interestingly, this problem is dependent on the specific $z$.
|
||||
$T_1$ plotted for different zs in \cref{fig:varioust1vsT}.
|
||||
The smaller $z$ doesn't have that effect.
|
||||
But that's the direction that's less helpful, because it's already a very small $z$.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{t1vsTexamples}
|
||||
\caption{$T_1(T)$, for different $z$, some showing the downturn others not.} \label{fig:varioust1vsT}
|
||||
\end{figure}
|
||||
|
||||
I plotted $T_1$ as a function of $z$ at very high temperatures ($T = 0.99999 T_c$), in the downturn, and again for $T = 0.99 T_c$, which is above the downturn.
|
||||
In \cref{fig:t1vszdirty}, the dirty case, everything looks sensible.
|
||||
However, in \cref{fig:t1vszclean} we can see that for $z > \lambda_F$ the $T_1(z)$ curve has a very different flat shape at the very high temperature, which ultimately leads to the downturn.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{t1VsZDirtyCase-no-problems}
|
||||
\caption{$T_1(z)$, at two different temperatures.} \label{fig:t1vszdirty}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{t1VsZcleanCase-bad}
|
||||
\caption{$T_1(z)$, at two different temperatures.} \label{fig:t1vszclean}
|
||||
\end{figure}
|
||||
|
||||
I looked at where that might come from.
|
||||
We have that $T_1 \propto \frac{1}{\chi}$, and
|
||||
\begin{equation}
|
||||
\chi_{B,zz} \propto \int_0^\infty \dd{u} u^2 e^{-2 u z} \Im r_s(u),
|
||||
\end{equation}
|
||||
in a regime where $u \gg \frac{1}{\lambda}$ for vacuum wavelength $\lambda$.
|
||||
This is always the regime we care about.
|
||||
So $\chi(z) \approx \Im r_s(\frac{1}{z})$ or so.
|
||||
I plotted $\Im r_s(u)$ in \cref{fig:imrs}, and it doesn't really have any of the unusual features we might exepect.
|
||||
That figure is pretty ugly, but the takeaway is that for $u > 0.2 \lambda_F$, all that matters is the temperature.
|
||||
However, for $u < 0.2 \lambda_F$ the dirty and clean lines start to split, and for small enough $u$ the difference between the higher and lower temperature cases is less important than the clean-dirty difference.
|
||||
That makes sense, and doesn't at all explain why $T_1$ is problematic.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{Im rs-no-weirdness}
|
||||
\caption{$\Im r_s$, showing no weirdness.} \label{fig:imrs}
|
||||
\end{figure}
|
||||
|
||||
So that leaves the integral as a problem.
|
||||
I haven't been able to excise the issue yet though, either by increasing precision or rewriting the integral different ways to pull $z$ out.
|
||||
Using something like
|
||||
\begin{equation}
|
||||
\chi_{B,zz} \propto \frac{1}{z^3} \int_0^\infty \dd{u'} u'^2 e^{-2 u'} \Im r_s(\frac{u'}{z})
|
||||
\end{equation}
|
||||
should be numerically nicer, but I get about the same answers (with Mathematica's integral handler internally doing something similar to that transform anyway?).
|
||||
The problem is definitely still apparent in the $\chi$ calculation, which is plotted in \cref{fig:chi}.
|
||||
So I'm currently confused on this.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{chiVsZCleanCaseWithProblem}
|
||||
\caption{$\chi(z)$, showing the same issue as $T_1$ (as expected).} \label{fig:chi}
|
||||
\end{figure}
|
||||
|
||||
% \printbibliography
|
||||
|
||||
\end{document}
|