adds noise calc sections
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -9,6 +9,7 @@ dist
|
||||
*.log
|
||||
*.pdf
|
||||
*.jpg
|
||||
*.png
|
||||
*.bbl
|
||||
*.bcf
|
||||
*.blg
|
||||
|
||||
17
main.tex
17
main.tex
@@ -209,6 +209,23 @@ with
|
||||
S(\kappa, E) &= \frac{1}{\kappa} \left(E - i \left(\Im[\sqrt{(\xi + \xi')^2 - 1} + \sqrt{\xi'^2 - 1}] + 2 \nu \right) \right) \\
|
||||
g &= \frac{\xi' \left( \xi + \xi'\right) + 1}{\sqrt{\xi'^2 - 1}\sqrt{(\xi + \xi')^2 - 1}}
|
||||
\end{align}
|
||||
|
||||
\section{Noise calculation}
|
||||
|
||||
For our noise calculation, we assume a material parameterised by a Debye frequency $\debye$ and the interaction parameter $N(0) V$.
|
||||
Because these aren't necessarily experimentally accessible, I tried to keep their values such that they lead to a physically reasonable $T_c$.
|
||||
In order to keep $N(0) V$ small and $\debye$ bigger than the other parameters, I chose $N(0)V = 0.25$ and $\debye = \SI{1e13}{\per\s}$.
|
||||
This leads to $T_{c0} = T_c(\mu = 0) = \SI{1.44e11}{\per\s}$, similar to the values used for the equilibrium Nam case.
|
||||
|
||||
\begin{enumerate}
|
||||
\item Use the Owen Scalapino coupled integral equations \cref{eq:gap,eq:n}, find $\mu$ and $\Delta$ for fixed $n$.
|
||||
\item Find the expected gap from the approximation in OS, $T_c(n) \approx (1 - 4n) T_{c0}$.
|
||||
If $T > T_c(n)$, then the calculation is skipped (a more complete handling would use either the Lindhard form or use a Nam expression that's been extended to $\Delta = 0$).
|
||||
This is necessary because the coupled integral equations are very hard to solve
|
||||
\item Using the modified Nam equations, calculate the dielectric function and create the approximated interpolation form, similar to the equilibrium case.
|
||||
\item Calculate the noise as usual.
|
||||
\end{enumerate}
|
||||
|
||||
\printbibliography
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user