more text for parts of free energy
This commit is contained in:
96
main.tex
96
main.tex
@@ -18,7 +18,7 @@
|
||||
\usepackage{cleveref}
|
||||
|
||||
\title{Notes on the free energy calculation for Owen-Scalapino}
|
||||
\date{2020-12-15}
|
||||
\date{2020-12-20}
|
||||
|
||||
\addbibresource{./bibliography.bib}
|
||||
|
||||
@@ -26,7 +26,10 @@
|
||||
|
||||
\newcommand{\pf}{p_{\mathrm{F}}}
|
||||
\newcommand{\vf}{v_{\mathrm{F}}}
|
||||
\newcommand{\corr}{\mu^\ast}
|
||||
\newcommand{\epsF}{\epsilon_{\mathrm{F}}}
|
||||
\newcommand{\debye}{\omega_{\mathrm{D}}}
|
||||
\newcommand{\corr}{\mu^{\ast}}
|
||||
\newcommand{\dof}{\rho}
|
||||
\DeclareMathOperator{\sgn}{sgn}
|
||||
|
||||
\begin{document}
|
||||
@@ -37,6 +40,95 @@ We are interested in the free energy calculation because we want to be able to c
|
||||
As seen in~\cite{OwenScalapino}, the superconducting state is restricted in its temperature range, with the traditional $T_c$ lowered and with an additional lower critical temperature below which the material returns to the normal state.
|
||||
There are some subtleties with how we need to handle this calculation in the OS case, which we will discuss.
|
||||
|
||||
\section{Superconducting Free energy} \label{sec:scfreeen}
|
||||
|
||||
We begin with the standard BCS free energy expression:
|
||||
\begin{equation}
|
||||
F_s = 2 \sum_k \epsilon_k \left(f_k - 2 f_k v_k^2 + v_k^2\right) - \sum_{k, l} V_{kl} u_k v_k u_l v_l (1 - 2 f_k) (1 - 2 f_l) - TS \label{eq:bcs:fs}
|
||||
\end{equation}
|
||||
|
||||
For the distribution function $f_k$, we have
|
||||
\begin{equation}
|
||||
f_k = \frac{1}{1 + \exp\frac{E_k - \corr}{T}},
|
||||
\end{equation}
|
||||
where $E_k^2 = \epsilon_k^2 + \Delta^2$.
|
||||
|
||||
Our coherence factors are unchanged by the additional $\corr$ constraint in our case, apart from the modified value to $\Delta_k$:
|
||||
\begin{align}
|
||||
\abs{u_k}^2 &= \frac12 \left(1 + \frac{\epsilon_k}{E_k} \right) \\
|
||||
\abs{v_k}^2 &= \frac12 \left(1 - \frac{\epsilon_k}{E_k} \right).
|
||||
\end{align}
|
||||
These can be obtained most simply from the expression
|
||||
\begin{equation}
|
||||
\tan 2 \theta_k = - \frac{\Delta_k}{\epsilon_k}
|
||||
\end{equation}
|
||||
from the December 4 notes, as verification that the coherence factor does not change.
|
||||
We'll also use
|
||||
\begin{equation}
|
||||
u_k^\ast v_k = \frac12 \frac{\Delta_k}{E_k}
|
||||
\end{equation}
|
||||
In \cref{eq:bcs:fs}, incidentally, there are some suppressed magnitude signs, as only one of $u_k$ and $v_k$ can always be made real.
|
||||
This will be irrelevant here though, I believe, as at best the interaction term in the energy will have the phase cancel out.
|
||||
|
||||
We can begin reducing this for code by writing $F_s$ as $A - B - C$ with the three terms in \cref{eq:bcs:fs},
|
||||
and simplifying each in turn:
|
||||
\begin{align}
|
||||
A &= 2 \sum_k \epsilon_k \left(f_k - 2 f_k v_k^2 + v_k^2 \right) \\
|
||||
&= 2 \sum_k \epsilon_k \left(f_k - f_k\left(1 - \frac{\epsilon_k}{E_k} \right) + \frac12 \left(1 - \frac{\epsilon_k}{E_k} \right) \right) \\
|
||||
&= 2 \sum_k \epsilon_k \left(f_k\frac{\epsilon_k}{E_k} + \frac12 - \frac12 \frac{\epsilon_k}{E_k} \right) \\
|
||||
&= \sum_k \epsilon_k \left(1 + 2 f_k\frac{\epsilon_k}{E_k} - \frac{\epsilon_k}{E_k} \right) \\
|
||||
\end{align}
|
||||
Next,
|
||||
\begin{align}
|
||||
B &= \sum_{k, l} V_{kl} u_k v_k u_l v_l (1 - 2 f_k) (1 - 2 f_l) \\
|
||||
&= \sum_{k, l} V_{kl} \frac12 \frac{\Delta_k}{E_k} \frac12 \frac{\Delta_l}{E_l} (1 - 2 f_k) (1 - 2 f_l) \\
|
||||
&= \frac14 \sum_{k, l} V_{kl} \frac{\Delta_k}{E_k} \frac{\Delta_l}{E_l} (1 - 2 f_k) (1 - 2 f_l) \\
|
||||
\end{align}
|
||||
Finally, the entropy term:
|
||||
\begin{align}
|
||||
C &= TS \\
|
||||
&= -2 T \sum_k f_k \log f_k + (1 - f_k) \log (1 - f_k)
|
||||
\end{align}
|
||||
|
||||
Next, we make our assumptions about the momentum sum.
|
||||
If we assume that our density of states is constant over the relevant interval, we can replace the integral sums with $\sum_k \rightarrow 2 \int_{0}^{\debye} \dof \dd{\epsilon_k}$.
|
||||
The $2$ factor here comes from assuming that all of our sums are symmetric in $\epsilon_k$, which is also why our integral begins from $0$.
|
||||
I don't know if this assumption is correct, but I believe it is (and it handles the intuition that $v_k$ represents our electronlike quasiparticles, which are relevant for $\epsilon_k > \epsF$)
|
||||
This assumes that we don't consider quasiparticles with energy above $\debye$ as participating in this interaction, and that $\debye \ll \epsF$, which are both reasonable assumptions for this problem.
|
||||
This means that our term $A$ is then
|
||||
\begin{align}
|
||||
A &= \int_{0}^{\debye} 2 \dof \dd{\epsilon_k} \epsilon_k \left(1 + 2 f_k\frac{\epsilon_k}{E_k} - \frac{\epsilon_k}{E_k} \right) \\
|
||||
&= 2 \dof \int_{0}^{\debye} \dd{\epsilon_k} \epsilon_k \left(1 + 2 f_k\frac{\epsilon_k}{E_k} - \frac{\epsilon_k}{E_k} \right) \\
|
||||
&= 2 \dof \int_{0}^{\debye} \dd{\epsilon_k} \epsilon_k \left(1 + 2 \left( \frac{1}{1 + \exp\frac{E_k - \corr}{T}} \right)\frac{\epsilon_k}{E_k} - \frac{\epsilon_k}{E_k} \right) \\
|
||||
&= \dof\debye^2 + 2 \dof \int_{0}^{\debye} \dd{\epsilon_k} 2 \epsilon_k \left( \frac{1}{1 + \exp\frac{E_k - \corr}{T}} \right)\frac{\epsilon_k}{E_k} - \frac{\epsilon_k^2}{E_k} \\
|
||||
&= \dof\debye^2 + 2 \dof \int_{0}^{\debye} \dd{\epsilon_k} \frac{\epsilon_k^2}{E_k} \left( \frac{2}{1 + \exp\frac{E_k - \corr}{T}} - 1\right) \\;
|
||||
&= \dof\debye^2 + 2 \dof \int_{0}^{\debye} \dd{\epsilon_k} \frac{\epsilon_k^2}{E_k} \frac{2}{1 + \exp\frac{E_k - \corr}{T}} - 2 \dof \int_0^{\debye} \dd{\epsilon_k} \frac{\epsilon_k^2}{\sqrt{k^2 + \Delta^2}} \\
|
||||
&= \dof\debye^2 + 2 \dof \int_{0}^{\debye} \dd{\epsilon_k} \frac{\epsilon_k^2}{E_k} \frac{2}{1 + \exp\frac{E_k - \corr}{T}} - \dof \left( \debye \sqrt{\Delta^2 + \debye^2} + \Delta^2 \log \frac{\Delta}{\debye + \sqrt{\Delta^2 + \debye^2}} \right)
|
||||
\end{align}
|
||||
|
||||
Similarly, we can assume that $V_{kl} \rightarrow - V$ and $\Delta_k \rightarrow \Delta$, as part of our standard weak coupling assumption set, giving us
|
||||
\begin{align}
|
||||
B &= V \int_{0}^{\debye} \dof \dd{\epsilon_k} \int_{0}^{\debye} \dof \dd{\epsilon_l} \frac{\Delta_k}{E_k} \frac{\Delta_l}{E_l} (1 - 2 f_k) (1 - 2 f_l) \\
|
||||
&= V \left(\dof \int_{0}^{\debye} \dd{\epsilon_k} \frac{\Delta_k}{E_k} (1 - \frac{2}{1 + \exp\frac{E_k - \corr}{T}}) \right)^2 \\
|
||||
&= V \left(\dof \Delta \int_{0}^{\debye} \frac{\dd{\epsilon_k}}{E_k} (1 - \frac{2}{1 + \exp\frac{E_k - \corr}{T}}) \right)^2.
|
||||
\end{align}
|
||||
Lastly,
|
||||
\begin{align}
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} f_k \log f_k + (1 - f_k) \log (1 - f_k) \\
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} f_k \log f_k + (1 - f_k) \log (1 - \frac{1}{1 + \exp\frac{E_k - \corr}{T}}) \\
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} f_k \log f_k + (1 - f_k) \log (\frac{\exp\frac{E_k - \corr}{T}}{1 + \exp\frac{E_k - \corr}{T}}) \\
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} f_k \log f_k + (1 - f_k) \left(\log(\exp\frac{E_k - \corr}{T}) - \log({1 + \exp\frac{E_k - \corr}{T}})\right) \\
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} f_k \log f_k + (1 - f_k) \left(\frac{E_k - \corr}{T} - \log({1 + \exp\frac{E_k - \corr}{T}})\right)
|
||||
\end{align}
|
||||
We can simplify this slightly further:
|
||||
\begin{align}
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} f_k \log f_k + (1 - f_k) \left(\frac{E_k - \corr}{T} + \log f_k\right) \\
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} \log f_k + (1 - f_k) \frac{E_k - \corr}{T}\\
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} -\log({1 + \exp\frac{E_k - \corr}{T}}) + (1 - f_k) \frac{E_k - \corr}{T}\\
|
||||
C &= - 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} -\log({\exp\frac{-E_k + \corr}{T}} + 1) - \frac{E_k - \corr}{T} + (1 - f_k) \frac{E_k - \corr}{T}\\
|
||||
C &= 4 T \int_{0}^{\debye} \dof \dd{\epsilon_k} \log({\exp\frac{-E_k + \corr}{T}} + 1) + f_k \frac{E_k - \corr}{T}\\
|
||||
\end{align}
|
||||
|
||||
\printbibliography
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user