Compare commits

..

1 Commits

Author SHA1 Message Date
a7fe2455a5 Adds some tests whatever
Some checks failed
gitea-physics/pathfinder/pipeline/head There was a failure building this commit
2021-11-01 15:50:57 -05:00
5 changed files with 379 additions and 0 deletions

View File

@ -42,6 +42,15 @@ class DotMeasurement():
return (self._alpha(p, s))**2 * self._b(w)
def mod_factor_for_point(self, pt: numpy.ndarray) -> float:
'''
modification factor for cost function.
'''
s = pt[3:6] # are we'll only ever work in 3d.
diff = self.r - s
return numpy.linalg.norm(diff)**2
def _alpha(self, p: numpy.ndarray, s: numpy.ndarray) -> float:
diff = self.r - s
return p.dot(diff) / (numpy.linalg.norm(diff)**3)
@ -57,6 +66,23 @@ class DotMeasurement():
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return sum(self.v_for_point(pt) for pt in chunked_pts) - self.v
def cost2(self, pts: numpy.ndarray) -> float:
# 7 because dipole in 3d has 7 degrees of freedom.
pt_length = 7
# creates numpy.ndarrays in groups of pt_length.
# Will throw problems for irregular points, but that's okay for now.
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
mod_factor = numpy.prod([self.mod_factor_for_point(pt) for pt in chunked_pts])
return (sum(self.v_for_point(pt) for pt in chunked_pts) - self.v) * mod_factor
def simple_cost(self, pts: numpy.ndarray) -> float:
# for reduced case, a is constant
pt_length = 2
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return sum(pt[0] * self._b(pt[1]) for pt in chunked_pts) - self.v
def jac_pt(self, pt: numpy.ndarray) -> numpy.ndarray:
p = pt[0:3] # hardcoded here because chances
s = pt[3:6] # are we'll only ever work in 3d.
@ -77,6 +103,39 @@ class DotMeasurement():
return numpy.concatenate((p_divs, r_divs, w_div), axis=None)
def jac_pt2(self, pt: numpy.ndarray, cost, mod_factor: float) -> numpy.ndarray:
p = pt[0:3] # hardcoded here because chances
s = pt[3:6] # are we'll only ever work in 3d.
w = pt[6]
diff = self.r - s
alpha = self._alpha(p, s)
b = self._b(w)
p_divs = (2 * alpha * diff / (numpy.linalg.norm(diff)**3) * b) * mod_factor
s_divs = ((-p / (numpy.linalg.norm(diff)**3) + 3 * p.dot(diff) * diff / (numpy.linalg.norm(diff)**5)) * 2 * alpha * b) * mod_factor
s_divs_mod = -2 * cost * mod_factor * diff / numpy.linalg.norm(diff)**2
f2 = self.f**2
w2 = w**2
w_div = (alpha**2 * (1 / numpy.pi) * ((f2 - w2) / ((f2 + w2)**2))) * mod_factor
return numpy.concatenate((p_divs, s_divs + s_divs_mod, w_div), axis=None)
def simple_jac_pt(self, pt: numpy.ndarray) -> numpy.ndarray:
a = pt[0]
w = pt[1]
f2 = self.f**2
w2 = w**2
b = self._b(w)
w_div = a * (1 / numpy.pi) * ((f2 - w2) / ((f2 + w2)**2))
return numpy.concatenate((b, w_div), axis=None)
def jac(self, pts: numpy.ndarray) -> numpy.ndarray:
# 7 because oscillating dipole in 3d has 7 degrees of freedom.
pt_length = 7
@ -85,3 +144,20 @@ class DotMeasurement():
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return numpy.append([], [self.jac_pt(pt) for pt in chunked_pts])
def jac2(self, pts: numpy.ndarray) -> numpy.ndarray:
# 7 because oscillating dipole in 3d has 7 degrees of freedom.
pt_length = 7
# creates numpy.ndarrays in groups of pt_length.
# Will throw problems for irregular points, but that's okay for now.
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
cost = self.cost(pts)
mod_factor = numpy.prod([self.mod_factor_for_point(pt) for pt in chunked_pts])
return numpy.append([], [self.jac_pt2(pt, cost, mod_factor) for pt in chunked_pts])
def simple_jac(self, pts: numpy.ndarray) -> numpy.ndarray:
pt_length = 2
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return numpy.append([], [self.simple_jac_pt(pt) for pt in chunked_pts])

View File

@ -31,15 +31,96 @@ class DotOscillatingDipoleModel():
return costs_to_return
def costs2(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def costs_to_return(pt: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.cost2(pt) for dot in self.dots])
return costs_to_return
def simple_costs(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def costs_to_return(pt: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.simple_cost(pt) for dot in self.dots])
return costs_to_return
def jac(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.jac(pts) for dot in self.dots])
return jac_to_return
def jac2(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.jac2(pts) for dot in self.dots])
return jac_to_return
def simple_jac(self) -> Callable[[numpy.ndarray], numpy.ndarray]:
def jac_to_return(pts: numpy.ndarray) -> numpy.ndarray:
return numpy.array([dot.simple_jac(pts) for dot in self.dots])
return jac_to_return
def sol(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1, use_root=True):
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
result = scipy.optimize.least_squares(self.costs(), initial, jac=self.jac(), ftol=1e-15, gtol=3e-16)
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
return result
def sol2(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1, use_root=True):
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
result = scipy.optimize.least_squares(self.costs2(), initial, jac=self.jac2(), ftol=1e-15, gtol=3e-16)
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
return result
def simple_sol(self, initial_a=0.1, initial_frequency=1):
initial = numpy.tile(numpy.concatenate((initial_a, initial_frequency), axis=None), self.n)
result = scipy.optimize.least_squares(self.simple_costs(), initial, jac=self.simple_jac(), ftol=1e-15, gtol=3e-16)
result.pathfinder_x = result.x
return result
def sol_simple(self, costs, initial, **kwargs):
initial = numpy.tile(numpy.concatenate(initial, axis=None), self.n)
result = scipy.optimize.least_squares(self.costs(), initial, jac=kwargs["jac"], ftol=kwargs["ftol"], gtol=kwargs["gtol"])
result.old_fun = result.fun
result.fun = numpy.sum(result.fun**2, axis=None)
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
return result
def sol_basinhopping(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1):
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
def summed_costs(pt):
curr_cost = self.costs()(pt)
squared_cost = numpy.sum(curr_cost**2, axis=None)
gradient = .5 * numpy.matmul(numpy.transpose(self.jac()(pt)), curr_cost)
return (squared_cost, gradient)
minimizer_kwargs = {"method": "BFGS", "jac": True}
result = scipy.optimize.basinhopping(summed_costs, initial, niter=1000, minimizer_kwargs=minimizer_kwargs)
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
return result
def sol_basinhopping_big(self, initial_dipole=(0.1, 0.1, 0.1), initial_position=(.1, .1, .1), initial_frequency=1):
initial = numpy.tile(numpy.concatenate((initial_dipole, initial_position, initial_frequency), axis=None), self.n)
minimizer_kwargs = {
"method": self.sol_simple,
"jac": self.jac(),
"options": {
"ftol": 1e-15,
"gtol": 3e-1,
}
}
result = scipy.optimize.basinhopping(self.costs(), initial, niter=1000, minimizer_kwargs=minimizer_kwargs)
result.pathfinder_x = pathfinder.model.oscillating.util.normalize_oscillating_dipole_list(result.x)
return result

View File

@ -0,0 +1,57 @@
import itertools
import logging
import multiprocessing
import numpy
import pathfinder.model.oscillating
def print_result(msg, result):
logging.info(msg)
logging.info(f"\tResult: {result.pathfinder_x}")
logging.info(f"\tSuccess: {result.success}. {result.message}")
try:
logging.info(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
logging.info(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def try_initial_position(model, expected_result, initial_pos):
res = model.sol_basinhopping(initial_position=initial_pos)
return res.pathfinder_x
def main():
logging.info("Running script...")
dot_inputs = list(itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(1, 10, .05) for o in (0, 0.5)
))
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 0, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 0, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
logging.info("Finished setting up model")
results = []
rb = -4
ru = 5
points_to_try = [(model, expected_result, (0.01 + dx, 0.01 + dy, 0.01 + dz)) for dx in range(rb, ru, 3) for dy in range(rb, ru, 3) for dz in range(rb, ru, 2)]
logging.info(f"Will have {len(points_to_try)} points to try")
logging.info("creating pool...")
with multiprocessing.Pool() as pool:
results = pool.starmap(try_initial_position, points_to_try)
logging.info(results)
final_values = [r for r in results if r is not None]
logging.info(final_values)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()

View File

@ -0,0 +1,83 @@
import numpy
import pathfinder.model.oscillating
import itertools
def chunk_n_sort(pts):
pt_length = 7
chunked_pts = [pts[i: i + pt_length] for i in range(0, len(pts), pt_length)]
return chunked_pts
def print_result(msg, result):
print(msg)
print(f"\tResult: {result.pathfinder_x}")
# print(f"\tSuccess: {result.success}. {result.message}")
try:
print(f"\tFunc evals: {result.nfev}")
except AttributeError:
pass
try:
print(f"\tJacb evals: {result.njev}")
except AttributeError:
pass
def test_one_dipole_six_dot_two_frequencies_bh():
# setup
dot_inputs = [
([0, 0, .01], 5), ([-1, 0, -.01], 5), ([-2, 0, -.01], 5), ([0, -1, .01], 5), ([-1, -1, 0], 5), ([-2, -1, 0], 5),
([0, 0, .01], 1), ([-1, 0, -.01], 1), ([-2, 0, -.01], 1), ([0, -1, .01], 1), ([-1, -1, 0], 1), ([-2, -1, 0], 1),
]
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
res = model.sol_basinhopping()
print_result("one oscillating dipole six dots", res)
print(res.lowest_optimization_result)
# assert res.lowest_optimization_result.success, "The solution for a single dipole and six dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
def test_one_dipole_six_dot_two_frequencies_bhbig():
# setup
dot_inputs = [
([0, 0, .01], 5), ([-1, 0, -.01], 5), ([-2, 0, -.01], 5), ([0, -1, .01], 5), ([-1, -1, 0], 5), ([-2, -1, 0], 5),
([0, 0, .01], 1), ([-1, 0, -.01], 1), ([-2, 0, -.01], 1), ([0, -1, .01], 1), ([-1, -1, 0], 1), ([-2, -1, 0], 1),
]
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
res = model.sol_basinhopping_big()
print_result("one oscillating dipole six dots", res)
print(res.lowest_optimization_result)
# assert res.lowest_optimization_result.success, "The solution for a single dipole and six dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
def test_one_dipole_four_dot_ten_frequencies_bhbig():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f), ([-2 + o, 0, -.01], f), ([-2 + o, -1, .01], f)) for f in numpy.arange(1, 10, .1) for o in (0, 0.2)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
res = model.sol_basinhopping_big()
print_result("one oscillating dipole four dots", res)
print(res)
print(res.lowest_optimization_result)
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)

View File

@ -1,5 +1,7 @@
import numpy
import pathfinder.model.oscillating
import itertools
import pytest
def chunk_n_sort(pts):
@ -107,3 +109,83 @@ def test_two_dipole_eighteen_dot_two_frequencies_morerealistic():
print_result("two oscillating dipole six dots", res)
assert res.success, "The solution for two dipole and six dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
def test_one_dipole_four_dot_ten_frequencies():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f), ([-2 + o, 0, -.01], f), ([-2 + o, -1, .01], f)) for f in numpy.arange(1, 10, .1) for o in (0, 0.01)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
expected_result = numpy.array([1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 1)
res = model.sol(initial_position=(.1, .1, .1))
print_result("one oscillating dipole four dots", res)
print(model.jac()(res.x))
assert res.success, "The solution for one dipole and four dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
def test_two_dipole_four_dot_ten_frequencies():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in range(1, 10) for o in (0, .5)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
dipole2 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
expected_result = numpy.array([1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 2)
res = model.sol()
print_result("two oscillating dipole four dots", res)
assert res.success, "The solution for two dipole and two dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
@pytest.mark.skip(reason="Never actually works.")
def test_three_dipole_four_dot_ten_frequencies_wrongcount():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in range(1, 10) for o in (0, .5)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
dipole2 = pathfinder.model.oscillating.OscillatingDipole([2, 5, 0], [1, 6, 1], 2)
dipole3 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
expected_result = numpy.array([2, 5, 0, 1, 6, 1, 2, 1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2, dipole3])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 2)
res = model.sol()
print_result("three but thinks two oscillating dipole four dots", res)
# assert res.success, "The solution for two dipole and two dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)
@pytest.mark.skip(reason="Never actually works.")
def test_three_dipole_four_dot_twenty_frequencies_rightcount():
# setup
dot_inputs = itertools.chain.from_iterable(
(([0 + o, 0, .01], f), ([0 + o, -1, 0], f), ([-1 + o, 0, -.01], f), ([-1 + o, -1, .01], f)) for f in numpy.arange(0.2, 10, .2) for o in (0, .5)
)
dipole = pathfinder.model.oscillating.OscillatingDipole([1, 2, 3], [0, 4, -1], 7)
dipole2 = pathfinder.model.oscillating.OscillatingDipole([2, 5, 0], [1, 6, 1], 2)
dipole3 = pathfinder.model.oscillating.OscillatingDipole([-1, 2, 0], [-1, 2, 1], 4)
expected_result = numpy.array([2, 5, 0, 1, 6, 1, 2, 1, -2, 0, -1, 2, 1, 4, 1, 2, 3, 0, 4, -1, 7])
dipole_arrangement = pathfinder.model.oscillating.OscillatingDipoleArrangement([dipole, dipole2, dipole3])
dot_measurements = dipole_arrangement.get_dot_measurements(dot_inputs)
model = pathfinder.model.oscillating.DotOscillatingDipoleModel(dot_measurements, 3)
res = model.sol(initial_position=(.1, 3, .1))
print_result("three oscillating dipole four dots", res)
# assert res.success, "The solution for two dipole and two dots should have succeeded."
numpy.testing.assert_allclose(res.pathfinder_x, expected_result, err_msg="Dipole wasn't as expected.", rtol=1e-6, atol=1e-6)