fix: fixes stuff with nam integration
All checks were successful
gitea-physics/pyewjn/pipeline/head This commit looks good

This commit is contained in:
Deepak Mallubhotla 2022-03-28 21:16:26 -05:00
parent 20db727015
commit 2b22267f36
Signed by: deepak
GPG Key ID: BEBAEBF28083E022
5 changed files with 152 additions and 8 deletions

View File

@ -32,7 +32,7 @@ class CalculationParams(object):
tau: float,
v_f: float,
t_rel: float = 0.8,
t_c: float = 1e-11,
t_c: float = 1e11,
dipole_moment: float = 1,
):
"""Creates parameter object, SI units

View File

@ -1,4 +1,11 @@
from pyewjn.dielectric.nam_dielectric_coefficient_approximator import get_nam_dielectric
from pyewjn.dielectric.nam_dielectric_coefficient_approximator import (
get_nam_dielectric,
get_unapproximated_nam_dielectric,
)
from pyewjn.dielectric.lindhard_dielectric import get_lindhard_dielectric
__all__ = ["get_nam_dielectric", "get_lindhard_dielectric"]
__all__ = [
"get_nam_dielectric",
"get_lindhard_dielectric",
"get_unapproximated_nam_dielectric",
]

View File

@ -12,6 +12,7 @@ _logger = logging.getLogger(__name__)
FIXED_LARGE_MOMENTUM = 1e8
WRT_TC_THRESHOLD = 0.98
class DedimensionalisedParameters(object):
@ -24,16 +25,24 @@ class DedimensionalisedParameters(object):
temp: float,
critical_temp: float,
c_light: float,
wrt_tc: bool = False,
):
gap = 0
if temp < critical_temp:
# else, problems will happen
gap = 3.06 * np.sqrt(critical_temp * (critical_temp - temp))
self.xi = omega / gap
self.nu = 1 / (tau * gap)
self.t = temp / gap
self.a = omega * v_f / (c_light * gap)
if wrt_tc:
scale = critical_temp
else:
scale = gap
self.xi = omega / scale
self.nu = 1 / (tau * scale)
self.t = temp / scale
self.a = omega * v_f / (c_light * scale)
self.b = sigma_n / omega
self.delta = gap / scale
class NamDielectricCoefficients(object):
@ -65,9 +74,11 @@ def get_dedimensionalised_parameters(
temp: float,
critical_temp: float,
c_light: float,
wrt_tc: bool = False,
) -> DedimensionalisedParameters:
return DedimensionalisedParameters(
omega, sigma_n, tau, v_f, temp, critical_temp, c_light
omega, sigma_n, tau, v_f, temp, critical_temp, c_light, wrt_tc
)
@ -157,6 +168,7 @@ def get_unapproximated_nam_dielectric(
params.t_rel * params.t_c,
params.t_c,
constants.c_light,
wrt_tc=params.t_rel > WRT_TC_THRESHOLD,
)
prefactor = 4j * np.pi * dedim.b

View File

@ -0,0 +1,67 @@
import numpy as np
from numpy.lib.scimath import sqrt as csqrt
import pyewjn.util
def g(w, wp, d):
return ((wp * (w + wp)) + d**2) / (
csqrt(wp**2 - d**2) * csqrt((w + wp) ** 2 - d**2)
)
def s(k, e, v):
return (e - 1j * v) / k
def f(k, e, v):
sv = s(k, e, v)
logv = np.log(np.real_if_close((sv + 1) / (sv - 1)) + 0j)
return (1 / k) * (2 * sv + ((1 - sv**2) * logv))
def i1(w, wp, k, v, d):
gv = g(w, wp, d)
e1 = csqrt((w + wp) ** 2 - d**2)
e2 = csqrt(wp**2 - d**2)
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
f_lower = f(k, np.real(-e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
return f_upper + f_lower
def i2(w, wp, k, v, d):
gv = g(w, wp, d)
e1 = csqrt((w + wp) ** 2 - d**2)
e2 = csqrt(wp**2 - d**2)
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
f_lower = f(k, np.real(e1 + e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
return f_upper + f_lower
def a(w, k, v, t, d):
result = pyewjn.util.complex_quad(
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v, d)),
1 - w,
1,
epsabs=1e-10,
)
return result[0]
def b_int(wp, w, k, v, t, d):
return (np.tanh((w + wp) / (2 * t)) * i1(w, wp, k, v, d)) - (
np.tanh(wp / (2 * t)) * i2(w, wp, k, v, d)
)
def b(w, k, v, t, d, b_max=np.inf):
return pyewjn.util.complex_quad(lambda wp: b_int(wp, w, k, v, t, d), 1, b_max)[0]
def sigma_nam_keep_gap(w, k, v, t, d):
return -1j * (3 / 4) * (v / w) * (-a(w, k, v, t, d) + b(w, k, v, t, d))

View File

@ -0,0 +1,58 @@
import numpy as np
import pytest
import pyewjn.dielectric
import pyewjn.noise.chi
from pyewjn.baskets import CalculationParams
cutoff_to_use = 5.4596e9
@pytest.fixture
def chi_zz_e_nam():
params = CalculationParams(
omega=1e9, v_f=2e6, omega_p=3.544907701811032e15, tau=1e-14, t_rel=0.99999
)
eps_l = pyewjn.dielectric.get_nam_dielectric(cutoff_to_use, params)
return pyewjn.noise.chi.get_chi_zz_e(eps_l)
@pytest.mark.parametrize(
"test_input,expected",
[
# z chi_zz_e_nam(z)
(1e-5, 4.07695673649665e6),
(1e-6, 4.095895777068543e9),
# (1e-7, 5.012885033150058e12), commenting this one out because it seems numerically too unstable
# (1e-8, 1.441261982619894e16), commenting this one out because it seems numerically too unstable
],
)
def test_chi_zz_e_nam(chi_zz_e_nam, test_input, expected):
actual = chi_zz_e_nam(test_input)
np.testing.assert_allclose(
actual,
expected,
rtol=0.05,
err_msg="chi_zz_e is inaccurate for nam case",
verbose=True,
)
@pytest.mark.parametrize(
"test_input,expected",
[
# z chi_zz_e_nam(z)
(1e-6, 4.095895777068543e9),
],
)
def test_chi_zz_e_nam_benchmark(benchmark, chi_zz_e_nam, test_input, expected):
actual = benchmark(chi_zz_e_nam, test_input)
np.testing.assert_allclose(
actual,
expected,
rtol=0.05,
err_msg="chi_zz_e is inaccurate for nam case",
verbose=True,
)