65 lines
1.4 KiB
Python
65 lines
1.4 KiB
Python
import numpy as np
|
|
from numpy.lib.scimath import sqrt as csqrt
|
|
|
|
import pynam.util
|
|
|
|
|
|
def g(w, wp):
|
|
return ((wp * (w + wp)) + 1) / (csqrt(wp ** 2 - 1) * csqrt((w + wp) ** 2 - 1))
|
|
|
|
|
|
def s(k, e, v):
|
|
return (e - 1j * v) / k
|
|
|
|
|
|
def f(k, e, v):
|
|
sv = s(k, e, v)
|
|
logv = np.log(np.real_if_close((sv + 1) / (sv - 1)) + 0j)
|
|
return (1 / k) * (2 * sv + ((1 - sv**2) * logv))
|
|
|
|
|
|
def i1(w, wp, k, v):
|
|
gv = g(w, wp)
|
|
e1 = csqrt((w + wp) ** 2 - 1)
|
|
e2 = csqrt(wp ** 2 - 1)
|
|
|
|
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
|
|
f_lower = f(k, np.real(-e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
|
|
|
|
return f_upper + f_lower
|
|
|
|
|
|
def i2(w, wp, k, v):
|
|
gv = g(w, wp)
|
|
e1 = csqrt((w + wp) ** 2 - 1)
|
|
e2 = csqrt(wp ** 2 - 1)
|
|
|
|
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
|
|
f_lower = f(k, np.real(e1 + e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
|
|
|
|
return f_upper + f_lower
|
|
|
|
|
|
def a(w, k, v, t):
|
|
result = pynam.util.complex_quad.complex_quad(
|
|
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
|
|
1 - w, 1,
|
|
epsabs=1e-10
|
|
)
|
|
|
|
return result[0]
|
|
|
|
|
|
def b_int(wp, w, k, v, t):
|
|
return (np.tanh((w + wp) / (2 * t)) * i1(w, wp, k, v)) - (np.tanh(wp / (2 * t)) * i2(w, wp, k, v))
|
|
|
|
|
|
def b(w, k, v, t, b_max=np.inf):
|
|
return pynam.util.complex_quad(
|
|
lambda wp: b_int(wp, w, k, v, t), 1, b_max
|
|
)[0]
|
|
|
|
|
|
def sigma_nam(w, k, v, t):
|
|
return -1j * (3 / 4) * (v / w) * (-a(w, k, v, t) + b(w, k, v, t))
|