feat: Adds 3.19
This commit is contained in:
parent
db52a23e88
commit
f563fb0217
48
tex/3.19.tex
48
tex/3.19.tex
@ -62,9 +62,57 @@
|
|||||||
(Hint: as $N$ grows, the probability density $P(N \epsilon)$ decreases exponentially, which the total number of states $2^N$ grows exponentially.
|
(Hint: as $N$ grows, the probability density $P(N \epsilon)$ decreases exponentially, which the total number of states $2^N$ grows exponentially.
|
||||||
Which one wins?)
|
Which one wins?)
|
||||||
|
|
||||||
|
\subsubsection*{(b) Entropy}
|
||||||
|
What does an exponentially growing number of states mean?
|
||||||
|
Let the entropy per particle be $s(\epsilon) = \flatfrac{S(N\epsilon)}{N}$.
|
||||||
|
Then (setting $\kb = 1$) $\Omega(E) = \exp(S(E)) = \exp(N s(\epsilon))$ grows exponentially whenever the entropy per particle is positive.
|
||||||
|
|
||||||
|
How do we calculate the entropy per particle $s(\epsilon)$ of a typical REM?
|
||||||
|
Can we just use the annealed average
|
||||||
|
\begin{equation}
|
||||||
|
s_{\mathrm{annealed}}(\epsilon) = \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log \left<\Omega(N \epsilon) \right>_{\mathrm{REM}}?
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Show that $s_{\mathrm{annealed}} = \log2 - \epsilon^2$.
|
||||||
|
|
||||||
|
\subsubsection*{Not a part just an answer to that question}
|
||||||
|
Sethna says no, because that limit doesn't work in the glassy state below $\epsilon_\ast$.
|
||||||
|
|
||||||
\section{Solution} \label{sec:solution}
|
\section{Solution} \label{sec:solution}
|
||||||
|
|
||||||
|
\subsection*{(a)}
|
||||||
|
We want $\left< \Omega(N\epsilon) \right>_{REM}$.
|
||||||
|
|
||||||
|
Pretty simply, $\Omega(N \epsilon)$ is the total number of states with a given energy, and the average of that over possible configurations is just the number of possible states $M$ times the probability of any individual state having energy $N \epsilon$, $P(N \epsilon)$:
|
||||||
|
\begin{align}
|
||||||
|
\left< \Omega(N\epsilon) \right>_{REM} &= M P(N \epsilon) \\
|
||||||
|
&= 2^N \frac{1}{\sqrt{\pi N}} e^{\flatfrac{-(N \epsilon)^2}{N}} \\
|
||||||
|
&= \frac{1}{\sqrt{\pi N}} e^{N \log 2} e^{\flatfrac{-(N \epsilon)^2}{N}} \\
|
||||||
|
&= \frac{1}{\sqrt{\pi N}} e^{N \log 2 - \flatfrac{(N \epsilon)^2}{N}}
|
||||||
|
\end{align}
|
||||||
|
This grows exponentially if the argument of the exponential is positive, so
|
||||||
|
\begin{align}
|
||||||
|
N \log 2 &> \frac{(N \epsilon)^2}{N} \\
|
||||||
|
N^2 \log 2 &> N^2 \epsilon^2 \\
|
||||||
|
\sqrt{\log 2} &> \abs{\epsilon}
|
||||||
|
\end{align}
|
||||||
|
This is the condition we were asked to show.
|
||||||
|
|
||||||
|
\subsection*{(b)}
|
||||||
|
We can just jump straight in.
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
s_{\mathrm{annealed}}(\epsilon) &= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log \left<\Omega(N \epsilon) \right>_{\mathrm{REM}} \\
|
||||||
|
&= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \log(\frac{1}{\sqrt{\pi N}} e^{N \log 2 - \flatfrac{(N \epsilon)^2}{N}}) \\
|
||||||
|
&= \lim_{N \rightarrow \infty} \left(\frac{1}{N}\right) \left( \log \frac{1}{\sqrt{\pi N}} + N \log 2 - \flatfrac{(N \epsilon)^2}{N} \right) \\
|
||||||
|
&= \lim_{N \rightarrow \infty} \frac{1}{N} \log \frac{1}{\sqrt{\pi N}} + \log 2 - \epsilon^2 \\
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
The first term clearly goes to $0$ for $N \rightarrow \infty$, because it ends up proportional to $\flatfrac{\log{N}}{N}$.
|
||||||
|
So that just leaves the last two terms which are $N$-independent, giving us
|
||||||
|
\begin{equation}
|
||||||
|
s_{\mathrm{annealed}} = \log2 - \epsilon^2.
|
||||||
|
\end{equation}
|
||||||
\newpage
|
\newpage
|
||||||
\listoftodos
|
\listoftodos
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user