feat: Adds 3.8 file and starts solution for part a
This commit is contained in:
parent
15240f6dfc
commit
fe9c57eda9
80
tex/3.8.tex
Normal file
80
tex/3.8.tex
Normal file
@ -0,0 +1,80 @@
|
||||
\documentclass{article}
|
||||
|
||||
% set up telugu
|
||||
\usepackage{fontspec}
|
||||
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
|
||||
\usepackage{polyglossia}
|
||||
\setdefaultlanguage{english}
|
||||
\setotherlanguage{telugu}
|
||||
|
||||
%other packages
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{physics}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{todonotes}
|
||||
\usepackage[plain]{fancyref}
|
||||
\usepackage{luacode}
|
||||
\usepackage{titling}
|
||||
\usepackage{enumerate}
|
||||
|
||||
% custom deepak packages
|
||||
\usepackage{luatrivially}
|
||||
\usepackage{subtitling}
|
||||
|
||||
\begin{luacode*}
|
||||
math.randomseed(31415926)
|
||||
\end{luacode*}
|
||||
|
||||
\newcommand{\kb}{k_{\mathrm{B}}}
|
||||
|
||||
\title{Problem 3.8}
|
||||
\subtitle{Microcanonical energy fluctuations}
|
||||
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
|
||||
% want empty date
|
||||
\predate{}
|
||||
\date{}
|
||||
\postdate{}
|
||||
|
||||
% !TeX spellcheck = en_GB
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
This problem talks about about weakly coupling subsystems and looking at fluctuations.
|
||||
An earlier result is that
|
||||
\begin{equation}
|
||||
\sigma_{E_1}^2 = - \flatfrac{\kb}{\left(\pdv[2]{S_1}{E_1} + \pdv[2]{S_2}{E_2}\right)}
|
||||
\end{equation}
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item Show that
|
||||
\begin{equation}
|
||||
\frac{1}{\kb} \pdv[2]{S}{E} = - \frac{1}{\kb T} \frac{1}{N c_v T},
|
||||
\end{equation}
|
||||
where $c_v$ is the inverse of the total specific heat at constant volume.
|
||||
The specific heat $c_v$ is the energy needed per particle to change the temperature by one unit:
|
||||
\begin{equation}
|
||||
N c_v = \left.\left(\pdv{E}{T}\right)\right|_{V, N}
|
||||
\end{equation}
|
||||
\end{enumerate}
|
||||
|
||||
\section{Solution} \label{sec:solution}
|
||||
\subsection*{(a)}
|
||||
We start with the general case, keeping volume and particle number constant.
|
||||
To start, we use $\frac{1}{T} = \left. \pdv{S}{E} \right|_{V, N}$, so
|
||||
\begin{align}
|
||||
\frac{1}{\kb} \left.\pdv[2]{S}{E} \right|_{V, N} &= \frac{1}{\kb} \left. \pdv{}{E} \frac{1}{T} \right|_{V, N} \\
|
||||
&= \frac{1}{\kb} \left. \pdv{}{E} \frac{1}{T} \right|_{V, N} \\
|
||||
&= - \frac{1}{\kb} \left. \frac{1}{T^2} \pdv{T}{E} \right|_{V, N},
|
||||
\end{align}
|
||||
and we use the Physicist's Theorem to invert the derivative, giving us $\flatfrac{1}{N c_v} = \left.\left(\pdv{T}{E}\right)\right|_{V, N}$, so
|
||||
\begin{align}
|
||||
\frac{1}{\kb} \left.\pdv[2]{S}{E} \right|_{V, N} &= - \frac{1}{\kb} \frac{1}{T^2} \frac{1}{N c_v} \\
|
||||
\frac{1}{\kb} \left.\pdv[2]{S}{E} \right|_{V, N} &= - \frac{1}{\kb T} \frac{1}{N c_v T},
|
||||
\end{align}
|
||||
as desired.
|
||||
|
||||
\newpage
|
||||
\listoftodos
|
||||
|
||||
\end{document}
|
Loading…
x
Reference in New Issue
Block a user