sethna/tex/3.15.tex

61 lines
1.5 KiB
TeX

\documentclass{article}
% set up telugu
\usepackage{fontspec}
\newfontfamily\telugufont{Potti Sreeramulu}[Script = Telugu]
\usepackage{polyglossia}
\setdefaultlanguage{english}
\setotherlanguage{telugu}
%other packages
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{physics}
\usepackage{siunitx}
\usepackage{todonotes}
\usepackage{luacode}
\usepackage{titling}
\usepackage{enumerate}
% custom deepak packages
\usepackage{luatrivially}
\usepackage{subtitling}
\usepackage{cleveref}
\begin{luacode*}
math.randomseed(31415926)
\end{luacode*}
\newcommand{\kb}{k_{\mathrm{B}}}
\title{Problem 3.15}
\subtitle{Entropy maximum and temperature}
\author{\begin{telugu}హృదయ్ దీపక్ మల్లుభొట్ల\end{telugu}}
% want empty date
\predate{}
\date{}
\postdate{}
% !TeX spellcheck = en_GB
\begin{document}
\maketitle
Explain in words why, for two weakly coupled systems
\begin{equation}
\rho(E_1) = \flatfrac{\Omega_1(E_1) \Omega_2(E - E_1)}{\Omega(E)}
\end{equation}
is intuitive for a system where all states of energy $E$ have equal probability density.
Using $S = \kb \log(\Omega)$, show in one step that maximising the probability of $E_1$ makes the two temperatures $\frac{1}{T} = \pdv{S}{E}$ the same, and hence that maximising $\rho(E_1)$ maximises the total entropy.
\section{Solution} \label{sec:solution}
Basically just a probability calculation of independent stuff, so it's intuitive.
Derivative is easy enough.
\newpage
\listoftodos
\end{document}