Adds figures for the dielectric functions

This commit is contained in:
2021-02-04 19:40:12 -06:00
parent bb642ae851
commit 3d74f301a1

View File

@@ -13,6 +13,8 @@
\usepackage{todonotes}
\usepackage{siunitx}
\usepackage{cleveref}
\title{EWJN from a BCS Superconductor}
\addbibresource{./bibliography.bib}
@@ -20,6 +22,7 @@
\graphicspath{{./figures/}}
\newcommand{\vf}{v_{\mathrm{F}}}
\newcommand{\qf}{q_{\mathrm{F}}}
\begin{document}
@@ -133,6 +136,23 @@ with
\end{align}
The assumption of isotropy suppresses the $q$ dependence for $\Delta$, which then is just a function of temperature, and can be described using the well-known BCS expression $\Delta \approx 3.06 \sqrt{T_c(T_c - T)}$ (see for example \cite{Tinkham}).
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{Cond1Re}
\caption{$\Re[\epsilon(q)]$ for $\omega = 1$, $\tau = 0.5$, $\omega_p = 10$, $\vf = 1$, $T = .9999 T_c$, $T_c = 3$} \label{fig:cond1Re}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{Cond1Im}
\caption{$\Im[\epsilon(q)]$ for $\omega = 1$, $\tau = 0.5$, $\omega_p = 10$, $\vf = 1$, $T = .9999 T_c$, $T_c = 3$} \label{fig:cond1Im}
\end{figure}
The Lindhard and Nam dielectric constants are compared in \cref{fig:cond1Re} and \cref{fig:cond1Im}, plotting the real and imaginary part for small representative values.
In this regime, $\omega_p > T_c > \omega$, as is typical for the frequency regime of interest, while $\tau$ is chosen to be smaller than $\omega$.
For a typical metal in this description, the Fermi wavevector $\qf$ is around the same order as $\sqrt{3}\frac{\omega_p}{\vf}$ (see discussion on this point in Solyom\cite{SolyomV3}).
We can see in \cref{fig:cond1Im} that the Lindhard dielectric function goes to zero for $q < \qf \approx 10 \sqrt{3}$.
\section{Numerical Techniques \label{sec:technical}}
The noise integral \eqref{eq:chi} can be calculated numerically, with proper care taken to handle the integrand's behaviour across the entire range.