mirror of
https://github.com/dmallubhotla/nam_paper.git
synced 2025-12-16 09:53:32 +00:00
Adds figures for the dielectric functions
This commit is contained in:
20
paper.tex
20
paper.tex
@@ -13,6 +13,8 @@
|
||||
\usepackage{todonotes}
|
||||
\usepackage{siunitx}
|
||||
|
||||
\usepackage{cleveref}
|
||||
|
||||
\title{EWJN from a BCS Superconductor}
|
||||
|
||||
\addbibresource{./bibliography.bib}
|
||||
@@ -20,6 +22,7 @@
|
||||
\graphicspath{{./figures/}}
|
||||
|
||||
\newcommand{\vf}{v_{\mathrm{F}}}
|
||||
\newcommand{\qf}{q_{\mathrm{F}}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
@@ -133,6 +136,23 @@ with
|
||||
\end{align}
|
||||
The assumption of isotropy suppresses the $q$ dependence for $\Delta$, which then is just a function of temperature, and can be described using the well-known BCS expression $\Delta \approx 3.06 \sqrt{T_c(T_c - T)}$ (see for example \cite{Tinkham}).
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=12cm]{Cond1Re}
|
||||
\caption{$\Re[\epsilon(q)]$ for $\omega = 1$, $\tau = 0.5$, $\omega_p = 10$, $\vf = 1$, $T = .9999 T_c$, $T_c = 3$} \label{fig:cond1Re}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics[width=12cm]{Cond1Im}
|
||||
\caption{$\Im[\epsilon(q)]$ for $\omega = 1$, $\tau = 0.5$, $\omega_p = 10$, $\vf = 1$, $T = .9999 T_c$, $T_c = 3$} \label{fig:cond1Im}
|
||||
\end{figure}
|
||||
|
||||
The Lindhard and Nam dielectric constants are compared in \cref{fig:cond1Re} and \cref{fig:cond1Im}, plotting the real and imaginary part for small representative values.
|
||||
In this regime, $\omega_p > T_c > \omega$, as is typical for the frequency regime of interest, while $\tau$ is chosen to be smaller than $\omega$.
|
||||
For a typical metal in this description, the Fermi wavevector $\qf$ is around the same order as $\sqrt{3}\frac{\omega_p}{\vf}$ (see discussion on this point in Solyom\cite{SolyomV3}).
|
||||
We can see in \cref{fig:cond1Im} that the Lindhard dielectric function goes to zero for $q < \qf \approx 10 \sqrt{3}$.
|
||||
|
||||
\section{Numerical Techniques \label{sec:technical}}
|
||||
|
||||
The noise integral \eqref{eq:chi} can be calculated numerically, with proper care taken to handle the integrand's behaviour across the entire range.
|
||||
|
||||
Reference in New Issue
Block a user