Compare commits
22 Commits
Author | SHA1 | Date | |
---|---|---|---|
74de2b0433
|
|||
c036028902
|
|||
690ad9e288 | |||
bd56f24774
|
|||
362388363f
|
|||
252b4a4414 | |||
bb21355f5e
|
|||
df8977655d
|
|||
5d0a7a4be0
|
|||
67a9721c31
|
|||
b5e0ecb528
|
|||
feeb03b27c
|
|||
b7da3d61cc
|
|||
9afa209864
|
|||
ae8977bb1e
|
|||
0caad05e3c
|
|||
eec926aaac
|
|||
23b202beb8
|
|||
6e29f7a702
|
|||
31070b5342
|
|||
101569d749
|
|||
874d876c9d
|
37
CHANGELOG.md
37
CHANGELOG.md
@@ -2,6 +2,43 @@
|
||||
|
||||
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
|
||||
|
||||
### [0.6.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.0...0.6.1) (2022-05-22)
|
||||
|
||||
|
||||
### Features
|
||||
|
||||
* adds new runner for real spectra ([bd56f24](https://gitea.deepak.science:2222/physics/deepdog/commit/bd56f247748babb2ee1f2a1182d25aa968bff5a5))
|
||||
|
||||
## [0.6.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.5.0...0.6.0) (2022-05-22)
|
||||
|
||||
|
||||
### ⚠ BREAKING CHANGES
|
||||
|
||||
* bayes run now handles multidipoles with changes to output file format etc.
|
||||
* logs multiple dipoles better maybe
|
||||
* switches over to pdme new stuff, uses models and scraps discretisations entirely
|
||||
* removes alt_bayes bayes distinction, which was superfluous when only alt worked
|
||||
|
||||
### Features
|
||||
|
||||
* adds pdme 0.7.0 for multiprocessing ([874d876](https://gitea.deepak.science:2222/physics/deepdog/commit/874d876c9d774433b034d47c4cc0cdac41e6f2c7))
|
||||
* bayes run now handles multidipoles with changes to output file format etc. ([5d0a7a4](https://gitea.deepak.science:2222/physics/deepdog/commit/5d0a7a4be09c58f8f8f859384f01d7912a98b8b9))
|
||||
* logs multiple dipoles better maybe ([ae8977b](https://gitea.deepak.science:2222/physics/deepdog/commit/ae8977bb1e4d6cd71e88ea0876da8f4318e030b6))
|
||||
* removes alt_bayes bayes distinction, which was superfluous when only alt worked ([101569d](https://gitea.deepak.science:2222/physics/deepdog/commit/101569d749e4f3f1842886aa2fd3321b8132278b))
|
||||
* switches over to pdme new stuff, uses models and scraps discretisations entirely ([6e29f7a](https://gitea.deepak.science:2222/physics/deepdog/commit/6e29f7a702b578c266a42bba23ac973d155ada10))
|
||||
* Uses multidipole for bayes run, with more verbose output ([df89776](https://gitea.deepak.science:2222/physics/deepdog/commit/df8977655de977fd3c4f7383dd9571e551eb1382))
|
||||
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
* another bug fix for csv generation ([b7da3d6](https://gitea.deepak.science:2222/physics/deepdog/commit/b7da3d61cc5c128cba1d2fcb3770b71b7f6fc4b8))
|
||||
* fixes crash when dipole count is smaller than expected max during file write ([b5e0ecb](https://gitea.deepak.science:2222/physics/deepdog/commit/b5e0ecb52886b32d9055302eacfabb69338026b4))
|
||||
* fixes format string in csv output for headers ([9afa209](https://gitea.deepak.science:2222/physics/deepdog/commit/9afa209864cdb9255988778e987fe05952848fd4))
|
||||
* fixes random issue ([eec926a](https://gitea.deepak.science:2222/physics/deepdog/commit/eec926aaac654f78942b4c6b612e4d1cdcbf81dc))
|
||||
* moves logging successes to after they've actually happened ([0caad05](https://gitea.deepak.science:2222/physics/deepdog/commit/0caad05e3cc6a9adba8bf937c3d2f944e1b096a3))
|
||||
* now doesn't double randomise frequency ([23b202b](https://gitea.deepak.science:2222/physics/deepdog/commit/23b202beb81cb89f7f20b691e83116fa53764902))
|
||||
* whoops deleted word multiprocessing ([31070b5](https://gitea.deepak.science:2222/physics/deepdog/commit/31070b5342c265d930b4c51402f42a3ee2415066))
|
||||
|
||||
## [0.5.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.4.0...0.5.0) (2022-04-30)
|
||||
|
||||
|
||||
|
@@ -1,9 +1,7 @@
|
||||
import logging
|
||||
from deepdog.meta import __version__
|
||||
from deepdog.bayes_run import BayesRun
|
||||
from deepdog.alt_bayes_run import AltBayesRun
|
||||
from deepdog.alt_bayes_run_simulpairs import AltBayesRunSimulPairs
|
||||
from deepdog.diagnostic import Diagnostic
|
||||
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
|
||||
|
||||
|
||||
def get_version():
|
||||
@@ -13,9 +11,7 @@ def get_version():
|
||||
__all__ = [
|
||||
"get_version",
|
||||
"BayesRun",
|
||||
"AltBayesRun",
|
||||
"AltBayesRunSimulPairs",
|
||||
"Diagnostic",
|
||||
"BayesRunSimulPairs",
|
||||
]
|
||||
|
||||
|
||||
|
@@ -1,307 +0,0 @@
|
||||
import pdme.inputs
|
||||
import pdme.model
|
||||
import pdme.measurement.input_types
|
||||
import pdme.measurement.oscillating_dipole
|
||||
import pdme.util.fast_v_calc
|
||||
import pdme.util.fast_nonlocal_spectrum
|
||||
from typing import Sequence, Tuple, List
|
||||
import datetime
|
||||
import csv
|
||||
import multiprocessing
|
||||
import logging
|
||||
import numpy
|
||||
|
||||
|
||||
# TODO: remove hardcode
|
||||
CHUNKSIZE = 50
|
||||
|
||||
# TODO: It's garbage to have this here duplicated from pdme.
|
||||
DotInput = Tuple[numpy.typing.ArrayLike, float]
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_a_result(input) -> int:
|
||||
discretisation, dot_inputs, lows, highs, monte_carlo_count, max_frequency = input
|
||||
sample_dipoles = discretisation.get_model().get_n_single_dipoles(
|
||||
monte_carlo_count, max_frequency
|
||||
)
|
||||
vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
|
||||
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
|
||||
|
||||
|
||||
def get_a_result_using_pairs(input) -> int:
|
||||
(
|
||||
discretisation,
|
||||
dot_inputs,
|
||||
pair_inputs,
|
||||
local_lows,
|
||||
local_highs,
|
||||
nonlocal_lows,
|
||||
nonlocal_highs,
|
||||
monte_carlo_count,
|
||||
max_frequency,
|
||||
) = input
|
||||
sample_dipoles = discretisation.get_model().get_n_single_dipoles(
|
||||
monte_carlo_count, max_frequency
|
||||
)
|
||||
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
|
||||
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
|
||||
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
|
||||
pair_inputs, sample_dipoles
|
||||
)
|
||||
nonlocal_matches = pdme.util.fast_v_calc.between(
|
||||
nonlocal_vals, nonlocal_lows, nonlocal_highs
|
||||
)
|
||||
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
|
||||
return numpy.count_nonzero(combined_matches)
|
||||
|
||||
|
||||
class AltBayesRun:
|
||||
"""
|
||||
A single Bayes run for a given set of dots.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dot_inputs : Sequence[DotInput]
|
||||
The dot inputs for this bayes run.
|
||||
|
||||
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
|
||||
The models to evaluate.
|
||||
|
||||
actual_model_discretisation : pdme.model.Discretisation
|
||||
The discretisation for the model which is actually correct.
|
||||
|
||||
filename_slug : str
|
||||
The filename slug to include.
|
||||
|
||||
run_count: int
|
||||
The number of runs to do.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dot_positions: Sequence[numpy.typing.ArrayLike],
|
||||
frequency_range: Sequence[float],
|
||||
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
|
||||
actual_model: pdme.model.Model,
|
||||
filename_slug: str,
|
||||
run_count: int = 100,
|
||||
low_error: float = 0.9,
|
||||
high_error: float = 1.1,
|
||||
pairs_high_error=None,
|
||||
pairs_low_error=None,
|
||||
monte_carlo_count: int = 10000,
|
||||
monte_carlo_cycles: int = 10,
|
||||
target_success: int = 100,
|
||||
max_monte_carlo_cycles_steps: int = 10,
|
||||
max_frequency: float = 20,
|
||||
end_threshold: float = None,
|
||||
chunksize: int = CHUNKSIZE,
|
||||
use_pairs: bool = False,
|
||||
) -> None:
|
||||
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
|
||||
dot_positions, frequency_range
|
||||
)
|
||||
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||
self.dot_inputs
|
||||
)
|
||||
|
||||
self.use_pairs = use_pairs
|
||||
|
||||
self.dot_pair_inputs = pdme.inputs.input_pairs_with_frequency_range(
|
||||
dot_positions, frequency_range
|
||||
)
|
||||
self.dot_pair_inputs_array = (
|
||||
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
|
||||
)
|
||||
|
||||
self.discretisations = [disc for (_, disc) in discretisations_with_names]
|
||||
self.model_names = [name for (name, _) in discretisations_with_names]
|
||||
self.actual_model = actual_model
|
||||
self.model_count = len(self.discretisations)
|
||||
self.monte_carlo_count = monte_carlo_count
|
||||
self.monte_carlo_cycles = monte_carlo_cycles
|
||||
self.target_success = target_success
|
||||
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
|
||||
self.run_count = run_count
|
||||
self.low_error = low_error
|
||||
self.high_error = high_error
|
||||
if pairs_low_error is None:
|
||||
self.pairs_low_error = self.low_error
|
||||
else:
|
||||
self.pairs_low_error = pairs_low_error
|
||||
if pairs_high_error is None:
|
||||
self.pairs_high_error = self.high_error
|
||||
else:
|
||||
self.pairs_high_error = pairs_high_error
|
||||
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
|
||||
self.compensate_zeros = True
|
||||
self.chunksize = chunksize
|
||||
for name in self.model_names:
|
||||
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
||||
|
||||
self.probabilities = [1 / self.model_count] * self.model_count
|
||||
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
if self.use_pairs:
|
||||
self.filename = f"{timestamp}-{filename_slug}.altbayes.pairs.csv"
|
||||
else:
|
||||
self.filename = f"{timestamp}-{filename_slug}.altbayes.csv"
|
||||
self.max_frequency = max_frequency
|
||||
|
||||
if end_threshold is not None:
|
||||
if 0 < end_threshold < 1:
|
||||
self.end_threshold: float = end_threshold
|
||||
self.use_end_threshold = True
|
||||
_logger.info(f"Will abort early, at {self.end_threshold}.")
|
||||
else:
|
||||
raise ValueError(
|
||||
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
|
||||
)
|
||||
|
||||
def go(self) -> None:
|
||||
with open(self.filename, "a", newline="") as outfile:
|
||||
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||
writer.writeheader()
|
||||
|
||||
for run in range(1, self.run_count + 1):
|
||||
|
||||
rng = numpy.random.default_rng()
|
||||
frequency = rng.uniform(1, self.max_frequency)
|
||||
|
||||
# Generate the actual dipoles
|
||||
actual_dipoles = self.actual_model.get_dipoles(frequency)
|
||||
|
||||
dots = actual_dipoles.get_percent_range_dot_measurements(
|
||||
self.dot_inputs, self.low_error, self.high_error
|
||||
)
|
||||
(
|
||||
lows,
|
||||
highs,
|
||||
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||
dots
|
||||
)
|
||||
|
||||
pair_lows, pair_highs = (None, None)
|
||||
if self.use_pairs:
|
||||
pair_measurements = (
|
||||
actual_dipoles.get_percent_range_dot_pair_measurements(
|
||||
self.dot_pair_inputs,
|
||||
self.pairs_low_error,
|
||||
self.pairs_high_error,
|
||||
)
|
||||
)
|
||||
(
|
||||
pair_lows,
|
||||
pair_highs,
|
||||
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||
pair_measurements
|
||||
)
|
||||
|
||||
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
|
||||
|
||||
results = []
|
||||
_logger.debug("Going to iterate over discretisations now")
|
||||
for disc_count, discretisation in enumerate(self.discretisations):
|
||||
_logger.debug(f"Doing discretisation #{disc_count}")
|
||||
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
|
||||
cycle_count = 0
|
||||
cycle_success = 0
|
||||
cycles = 0
|
||||
while (cycles < self.max_monte_carlo_cycles_steps) and (
|
||||
cycle_success <= self.target_success
|
||||
):
|
||||
_logger.debug(f"Starting cycle {cycles}")
|
||||
cycles += 1
|
||||
current_success = 0
|
||||
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
|
||||
if self.use_pairs:
|
||||
current_success = sum(
|
||||
pool.imap_unordered(
|
||||
get_a_result_using_pairs,
|
||||
[
|
||||
(
|
||||
discretisation,
|
||||
self.dot_inputs_array,
|
||||
self.dot_pair_inputs_array,
|
||||
lows,
|
||||
highs,
|
||||
pair_lows,
|
||||
pair_highs,
|
||||
self.monte_carlo_count,
|
||||
self.max_frequency,
|
||||
)
|
||||
]
|
||||
* self.monte_carlo_cycles,
|
||||
self.chunksize,
|
||||
)
|
||||
)
|
||||
else:
|
||||
current_success = sum(
|
||||
pool.imap_unordered(
|
||||
get_a_result,
|
||||
[
|
||||
(
|
||||
discretisation,
|
||||
self.dot_inputs_array,
|
||||
lows,
|
||||
highs,
|
||||
self.monte_carlo_count,
|
||||
self.max_frequency,
|
||||
)
|
||||
]
|
||||
* self.monte_carlo_cycles,
|
||||
self.chunksize,
|
||||
)
|
||||
)
|
||||
|
||||
cycle_success += current_success
|
||||
results.append((cycle_count, cycle_success))
|
||||
|
||||
_logger.debug("Done, constructing output now")
|
||||
row = {
|
||||
"dipole_moment": actual_dipoles.dipoles[0].p,
|
||||
"dipole_location": actual_dipoles.dipoles[0].s,
|
||||
"dipole_frequency": actual_dipoles.dipoles[0].w,
|
||||
}
|
||||
successes: List[float] = []
|
||||
counts: List[int] = []
|
||||
for model_index, (name, (count, result)) in enumerate(
|
||||
zip(self.model_names, results)
|
||||
):
|
||||
|
||||
row[f"{name}_success"] = result
|
||||
row[f"{name}_count"] = count
|
||||
successes.append(max(result, 0.5))
|
||||
counts.append(count)
|
||||
|
||||
success_weight = sum(
|
||||
[
|
||||
(succ / count) * prob
|
||||
for succ, count, prob in zip(successes, counts, self.probabilities)
|
||||
]
|
||||
)
|
||||
new_probabilities = [
|
||||
(succ / count) * old_prob / success_weight
|
||||
for succ, count, old_prob in zip(successes, counts, self.probabilities)
|
||||
]
|
||||
self.probabilities = new_probabilities
|
||||
for name, probability in zip(self.model_names, self.probabilities):
|
||||
row[f"{name}_prob"] = probability
|
||||
_logger.info(row)
|
||||
|
||||
with open(self.filename, "a", newline="") as outfile:
|
||||
writer = csv.DictWriter(
|
||||
outfile, fieldnames=self.csv_fields, dialect="unix"
|
||||
)
|
||||
writer.writerow(row)
|
||||
|
||||
if self.use_end_threshold:
|
||||
max_prob = max(self.probabilities)
|
||||
if max_prob > self.end_threshold:
|
||||
_logger.info(
|
||||
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
|
||||
)
|
||||
break
|
@@ -1,17 +1,19 @@
|
||||
import pdme.inputs
|
||||
import pdme.model
|
||||
import pdme.measurement.input_types
|
||||
import pdme.measurement.oscillating_dipole
|
||||
import pdme.util.fast_v_calc
|
||||
import pdme.util.fast_nonlocal_spectrum
|
||||
from typing import Sequence, Tuple, List
|
||||
import datetime
|
||||
import itertools
|
||||
import csv
|
||||
import multiprocessing
|
||||
import logging
|
||||
import numpy
|
||||
import scipy.optimize
|
||||
import multiprocessing
|
||||
|
||||
|
||||
# TODO: remove hardcode
|
||||
COST_THRESHOLD = 1e-10
|
||||
|
||||
CHUNKSIZE = 50
|
||||
|
||||
# TODO: It's garbage to have this here duplicated from pdme.
|
||||
DotInput = Tuple[numpy.typing.ArrayLike, float]
|
||||
@@ -20,10 +22,40 @@ DotInput = Tuple[numpy.typing.ArrayLike, float]
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_a_result(
|
||||
discretisation, dots, index
|
||||
) -> Tuple[Tuple[int, ...], scipy.optimize.OptimizeResult]:
|
||||
return (index, discretisation.solve_for_index(dots, index))
|
||||
def get_a_result(input) -> int:
|
||||
model, dot_inputs, lows, highs, monte_carlo_count, max_frequency, seed = input
|
||||
|
||||
rng = numpy.random.default_rng(seed)
|
||||
sample_dipoles = model.get_monte_carlo_dipole_inputs(
|
||||
monte_carlo_count, max_frequency, rng_to_use=rng
|
||||
)
|
||||
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
|
||||
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
|
||||
|
||||
|
||||
def get_a_result_using_pairs(input) -> int:
|
||||
(
|
||||
model,
|
||||
dot_inputs,
|
||||
pair_inputs,
|
||||
local_lows,
|
||||
local_highs,
|
||||
nonlocal_lows,
|
||||
nonlocal_highs,
|
||||
monte_carlo_count,
|
||||
max_frequency,
|
||||
) = input
|
||||
sample_dipoles = model.get_n_single_dipoles(monte_carlo_count, max_frequency)
|
||||
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
|
||||
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
|
||||
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
|
||||
pair_inputs, sample_dipoles
|
||||
)
|
||||
nonlocal_matches = pdme.util.fast_v_calc.between(
|
||||
nonlocal_vals, nonlocal_lows, nonlocal_highs
|
||||
)
|
||||
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
|
||||
return numpy.count_nonzero(combined_matches)
|
||||
|
||||
|
||||
class BayesRun:
|
||||
@@ -35,11 +67,11 @@ class BayesRun:
|
||||
dot_inputs : Sequence[DotInput]
|
||||
The dot inputs for this bayes run.
|
||||
|
||||
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
|
||||
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
|
||||
The models to evaluate.
|
||||
|
||||
actual_model_discretisation : pdme.model.Discretisation
|
||||
The discretisation for the model which is actually correct.
|
||||
actual_model : pdme.model.DipoleModel
|
||||
The model which is actually correct.
|
||||
|
||||
filename_slug : str
|
||||
The filename slug to include.
|
||||
@@ -50,29 +82,66 @@ class BayesRun:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dot_inputs: Sequence[DotInput],
|
||||
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
|
||||
actual_model: pdme.model.Model,
|
||||
dot_positions: Sequence[numpy.typing.ArrayLike],
|
||||
frequency_range: Sequence[float],
|
||||
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
||||
actual_model: pdme.model.DipoleModel,
|
||||
filename_slug: str,
|
||||
run_count: int,
|
||||
max_frequency: float = None,
|
||||
run_count: int = 100,
|
||||
low_error: float = 0.9,
|
||||
high_error: float = 1.1,
|
||||
monte_carlo_count: int = 10000,
|
||||
monte_carlo_cycles: int = 10,
|
||||
target_success: int = 100,
|
||||
max_monte_carlo_cycles_steps: int = 10,
|
||||
max_frequency: float = 20,
|
||||
end_threshold: float = None,
|
||||
chunksize: int = CHUNKSIZE,
|
||||
) -> None:
|
||||
self.dot_inputs = dot_inputs
|
||||
self.discretisations = [disc for (_, disc) in discretisations_with_names]
|
||||
self.model_names = [name for (name, _) in discretisations_with_names]
|
||||
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
|
||||
dot_positions, frequency_range
|
||||
)
|
||||
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||
self.dot_inputs
|
||||
)
|
||||
|
||||
self.models = [model for (_, model) in models_with_names]
|
||||
self.model_names = [name for (name, _) in models_with_names]
|
||||
self.actual_model = actual_model
|
||||
self.model_count = len(self.discretisations)
|
||||
|
||||
self.n: int
|
||||
try:
|
||||
self.n = self.actual_model.n # type: ignore
|
||||
except AttributeError:
|
||||
self.n = 1
|
||||
|
||||
self.model_count = len(self.models)
|
||||
self.monte_carlo_count = monte_carlo_count
|
||||
self.monte_carlo_cycles = monte_carlo_cycles
|
||||
self.target_success = target_success
|
||||
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
|
||||
self.run_count = run_count
|
||||
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
|
||||
self.low_error = low_error
|
||||
self.high_error = high_error
|
||||
|
||||
self.csv_fields = []
|
||||
for i in range(self.n):
|
||||
self.csv_fields.extend(
|
||||
[
|
||||
f"dipole_moment_{i+1}",
|
||||
f"dipole_location_{i+1}",
|
||||
f"dipole_frequency_{i+1}",
|
||||
]
|
||||
)
|
||||
self.compensate_zeros = True
|
||||
self.chunksize = chunksize
|
||||
for name in self.model_names:
|
||||
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
||||
|
||||
self.probabilities = [1 / self.model_count] * self.model_count
|
||||
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
self.filename = f"{timestamp}-{filename_slug}.csv"
|
||||
self.filename = f"{timestamp}-{filename_slug}.bayesrun.csv"
|
||||
self.max_frequency = max_frequency
|
||||
|
||||
if end_threshold is not None:
|
||||
@@ -91,52 +160,95 @@ class BayesRun:
|
||||
writer.writeheader()
|
||||
|
||||
for run in range(1, self.run_count + 1):
|
||||
frequency: float = run
|
||||
if self.max_frequency is not None and self.max_frequency > 1:
|
||||
rng = numpy.random.default_rng()
|
||||
frequency = rng.uniform(1, self.max_frequency)
|
||||
dipoles = self.actual_model.get_dipoles(frequency)
|
||||
|
||||
dots = dipoles.get_dot_measurements(self.dot_inputs)
|
||||
_logger.info(f"Going to work on dipole at {dipoles.dipoles}")
|
||||
# Generate the actual dipoles
|
||||
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
|
||||
|
||||
dots = actual_dipoles.get_percent_range_dot_measurements(
|
||||
self.dot_inputs, self.low_error, self.high_error
|
||||
)
|
||||
(
|
||||
lows,
|
||||
highs,
|
||||
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||
dots
|
||||
)
|
||||
|
||||
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
|
||||
|
||||
# define a new seed sequence for each run
|
||||
seed_sequence = numpy.random.SeedSequence(run)
|
||||
|
||||
results = []
|
||||
_logger.debug("Going to iterate over discretisations now")
|
||||
for disc_count, discretisation in enumerate(self.discretisations):
|
||||
_logger.debug(f"Doing discretisation #{disc_count}")
|
||||
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
|
||||
results.append(
|
||||
pool.starmap(
|
||||
get_a_result,
|
||||
zip(
|
||||
itertools.repeat(discretisation),
|
||||
itertools.repeat(dots),
|
||||
discretisation.all_indices(),
|
||||
),
|
||||
_logger.debug("Going to iterate over models now")
|
||||
for model_count, model in enumerate(self.models):
|
||||
_logger.debug(f"Doing model #{model_count}")
|
||||
core_count = multiprocessing.cpu_count() - 1 or 1
|
||||
with multiprocessing.Pool(core_count) as pool:
|
||||
cycle_count = 0
|
||||
cycle_success = 0
|
||||
cycles = 0
|
||||
while (cycles < self.max_monte_carlo_cycles_steps) and (
|
||||
cycle_success <= self.target_success
|
||||
):
|
||||
_logger.debug(f"Starting cycle {cycles}")
|
||||
cycles += 1
|
||||
current_success = 0
|
||||
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
|
||||
|
||||
# generate a seed from the sequence for each core.
|
||||
# note this needs to be inside the loop for monte carlo cycle steps!
|
||||
# that way we get more stuff.
|
||||
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
|
||||
|
||||
current_success = sum(
|
||||
pool.imap_unordered(
|
||||
get_a_result,
|
||||
[
|
||||
(
|
||||
model,
|
||||
self.dot_inputs_array,
|
||||
lows,
|
||||
highs,
|
||||
self.monte_carlo_count,
|
||||
self.max_frequency,
|
||||
seed,
|
||||
)
|
||||
for seed in seeds
|
||||
],
|
||||
self.chunksize,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
cycle_success += current_success
|
||||
_logger.debug(f"current running successes: {cycle_success}")
|
||||
results.append((cycle_count, cycle_success))
|
||||
|
||||
_logger.debug("Done, constructing output now")
|
||||
row = {
|
||||
"dipole_moment": dipoles.dipoles[0].p,
|
||||
"dipole_location": dipoles.dipoles[0].s,
|
||||
"dipole_frequency": dipoles.dipoles[0].w,
|
||||
"dipole_moment_1": actual_dipoles.dipoles[0].p,
|
||||
"dipole_location_1": actual_dipoles.dipoles[0].s,
|
||||
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
|
||||
}
|
||||
for i in range(1, self.n):
|
||||
try:
|
||||
current_dipoles = actual_dipoles.dipoles[i]
|
||||
row[f"dipole_moment_{i+1}"] = current_dipoles.p
|
||||
row[f"dipole_location_{i+1}"] = current_dipoles.s
|
||||
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
|
||||
except IndexError:
|
||||
_logger.info(f"Not writing anymore, saw end after {i}")
|
||||
break
|
||||
|
||||
successes: List[float] = []
|
||||
counts: List[int] = []
|
||||
for model_index, (name, result) in enumerate(
|
||||
for model_index, (name, (count, result)) in enumerate(
|
||||
zip(self.model_names, results)
|
||||
):
|
||||
count = 0
|
||||
success = 0
|
||||
for idx, val in result:
|
||||
count += 1
|
||||
if val.success and val.cost <= COST_THRESHOLD:
|
||||
success += 1
|
||||
|
||||
row[f"{name}_success"] = success
|
||||
row[f"{name}_success"] = result
|
||||
row[f"{name}_count"] = count
|
||||
successes.append(max(success, 0.5))
|
||||
successes.append(max(result, 0.5))
|
||||
counts.append(count)
|
||||
|
||||
success_weight = sum(
|
||||
|
@@ -25,7 +25,7 @@ _logger = logging.getLogger(__name__)
|
||||
|
||||
def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
|
||||
(
|
||||
discretisation,
|
||||
model,
|
||||
dot_inputs,
|
||||
pair_inputs,
|
||||
local_lows,
|
||||
@@ -42,16 +42,12 @@ def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
|
||||
local_total = 0
|
||||
combined_total = 0
|
||||
|
||||
sample_dipoles = discretisation.get_model().get_n_single_dipoles(
|
||||
sample_dipoles = model.get_monte_carlo_dipole_inputs(
|
||||
monte_carlo_count, max_frequency, rng_to_use=rng
|
||||
)
|
||||
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(
|
||||
dot_inputs, sample_dipoles
|
||||
)
|
||||
local_matches = pdme.util.fast_v_calc.between(
|
||||
local_vals, local_lows, local_highs
|
||||
)
|
||||
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
|
||||
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
|
||||
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
|
||||
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
|
||||
pair_inputs, sample_dipoles
|
||||
)
|
||||
nonlocal_matches = pdme.util.fast_v_calc.between(
|
||||
@@ -64,7 +60,7 @@ def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
|
||||
return numpy.array([local_total, combined_total])
|
||||
|
||||
|
||||
class AltBayesRunSimulPairs:
|
||||
class BayesRunSimulPairs:
|
||||
"""
|
||||
A dual pairs-nonpairs Bayes run for a given set of dots.
|
||||
|
||||
@@ -73,11 +69,11 @@ class AltBayesRunSimulPairs:
|
||||
dot_inputs : Sequence[DotInput]
|
||||
The dot inputs for this bayes run.
|
||||
|
||||
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
|
||||
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
|
||||
The models to evaluate.
|
||||
|
||||
actual_model_discretisation : pdme.model.Discretisation
|
||||
The discretisation for the model which is actually correct.
|
||||
actual_model : pdme.model.DipoleModel
|
||||
The modoel for the model which is actually correct.
|
||||
|
||||
filename_slug : str
|
||||
The filename slug to include.
|
||||
@@ -90,8 +86,8 @@ class AltBayesRunSimulPairs:
|
||||
self,
|
||||
dot_positions: Sequence[numpy.typing.ArrayLike],
|
||||
frequency_range: Sequence[float],
|
||||
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
|
||||
actual_model: pdme.model.Model,
|
||||
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
||||
actual_model: pdme.model.DipoleModel,
|
||||
filename_slug: str,
|
||||
run_count: int = 100,
|
||||
low_error: float = 0.9,
|
||||
@@ -120,10 +116,17 @@ class AltBayesRunSimulPairs:
|
||||
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
|
||||
)
|
||||
|
||||
self.discretisations = [disc for (_, disc) in discretisations_with_names]
|
||||
self.model_names = [name for (name, _) in discretisations_with_names]
|
||||
self.models = [mod for (_, mod) in models_with_names]
|
||||
self.model_names = [name for (name, _) in models_with_names]
|
||||
self.actual_model = actual_model
|
||||
self.model_count = len(self.discretisations)
|
||||
|
||||
self.n: int
|
||||
try:
|
||||
self.n = self.actual_model.n # type: ignore
|
||||
except AttributeError:
|
||||
self.n = 1
|
||||
|
||||
self.model_count = len(self.models)
|
||||
self.monte_carlo_count = monte_carlo_count
|
||||
self.monte_carlo_cycles = monte_carlo_cycles
|
||||
self.target_success = target_success
|
||||
@@ -139,7 +142,16 @@ class AltBayesRunSimulPairs:
|
||||
self.pairs_high_error = self.high_error
|
||||
else:
|
||||
self.pairs_high_error = pairs_high_error
|
||||
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
|
||||
|
||||
self.csv_fields = []
|
||||
for i in range(self.n):
|
||||
self.csv_fields.extend(
|
||||
[
|
||||
f"dipole_moment_{i+1}",
|
||||
f"dipole_location_{i+1}",
|
||||
f"dipole_frequency_{i+1}",
|
||||
]
|
||||
)
|
||||
self.compensate_zeros = True
|
||||
self.chunksize = chunksize
|
||||
for name in self.model_names:
|
||||
@@ -174,11 +186,8 @@ class AltBayesRunSimulPairs:
|
||||
|
||||
for run in range(1, self.run_count + 1):
|
||||
|
||||
rng = numpy.random.default_rng()
|
||||
frequency = rng.uniform(1, self.max_frequency)
|
||||
|
||||
# Generate the actual dipoles
|
||||
actual_dipoles = self.actual_model.get_dipoles(frequency)
|
||||
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
|
||||
|
||||
dots = actual_dipoles.get_percent_range_dot_measurements(
|
||||
self.dot_inputs, self.low_error, self.high_error
|
||||
@@ -208,9 +217,9 @@ class AltBayesRunSimulPairs:
|
||||
|
||||
results_pairs = []
|
||||
results_no_pairs = []
|
||||
_logger.debug("Going to iterate over discretisations now")
|
||||
for disc_count, discretisation in enumerate(self.discretisations):
|
||||
_logger.debug(f"Doing discretisation #{disc_count}")
|
||||
_logger.debug("Going to iterate over models now")
|
||||
for model_count, model in enumerate(self.models):
|
||||
_logger.debug(f"Doing model #{model_count}")
|
||||
|
||||
core_count = multiprocessing.cpu_count() - 1 or 1
|
||||
with multiprocessing.Pool(core_count) as pool:
|
||||
@@ -223,7 +232,7 @@ class AltBayesRunSimulPairs:
|
||||
<= self.target_success
|
||||
):
|
||||
_logger.debug(f"Starting cycle {cycles}")
|
||||
_logger.debug(f"(pair, no_pair) successes are {(cycle_success_pairs, cycle_success_no_pairs)}")
|
||||
|
||||
cycles += 1
|
||||
current_success_pairs = 0
|
||||
current_success_no_pairs = 0
|
||||
@@ -241,7 +250,7 @@ class AltBayesRunSimulPairs:
|
||||
get_a_simul_result_using_pairs,
|
||||
[
|
||||
(
|
||||
discretisation,
|
||||
model,
|
||||
self.dot_inputs_array,
|
||||
self.dot_pair_inputs_array,
|
||||
lows,
|
||||
@@ -264,20 +273,36 @@ class AltBayesRunSimulPairs:
|
||||
|
||||
cycle_success_no_pairs += current_success_no_pairs
|
||||
cycle_success_pairs += current_success_pairs
|
||||
_logger.debug(
|
||||
f"(pair, no_pair) successes are {(cycle_success_pairs, cycle_success_no_pairs)}"
|
||||
)
|
||||
results_pairs.append((cycle_count, cycle_success_pairs))
|
||||
results_no_pairs.append((cycle_count, cycle_success_no_pairs))
|
||||
|
||||
_logger.debug("Done, constructing output now")
|
||||
row_pairs = {
|
||||
"dipole_moment": actual_dipoles.dipoles[0].p,
|
||||
"dipole_location": actual_dipoles.dipoles[0].s,
|
||||
"dipole_frequency": actual_dipoles.dipoles[0].w,
|
||||
"dipole_moment_1": actual_dipoles.dipoles[0].p,
|
||||
"dipole_location_1": actual_dipoles.dipoles[0].s,
|
||||
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
|
||||
}
|
||||
row_no_pairs = {
|
||||
"dipole_moment": actual_dipoles.dipoles[0].p,
|
||||
"dipole_location": actual_dipoles.dipoles[0].s,
|
||||
"dipole_frequency": actual_dipoles.dipoles[0].w,
|
||||
"dipole_moment_1": actual_dipoles.dipoles[0].p,
|
||||
"dipole_location_1": actual_dipoles.dipoles[0].s,
|
||||
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
|
||||
}
|
||||
for i in range(1, self.n):
|
||||
try:
|
||||
current_dipoles = actual_dipoles.dipoles[i]
|
||||
row_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
|
||||
row_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
|
||||
row_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
|
||||
row_no_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
|
||||
row_no_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
|
||||
row_no_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
|
||||
except IndexError:
|
||||
_logger.info(f"Not writing anymore, saw end after {i}")
|
||||
break
|
||||
|
||||
successes_pairs: List[float] = []
|
||||
successes_no_pairs: List[float] = []
|
||||
counts: List[int] = []
|
@@ -1,160 +0,0 @@
|
||||
from pdme.measurement import OscillatingDipole, OscillatingDipoleArrangement
|
||||
import pdme
|
||||
from deepdog.bayes_run import DotInput
|
||||
import datetime
|
||||
import numpy
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
from typing import Sequence, Tuple
|
||||
import csv
|
||||
import itertools
|
||||
import multiprocessing
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_a_result(discretisation, dots, index):
|
||||
return (index, discretisation.solve_for_index(dots, index))
|
||||
|
||||
|
||||
@dataclass
|
||||
class SingleDipoleDiagnostic:
|
||||
model: str
|
||||
index: Tuple
|
||||
bounds: Tuple
|
||||
actual_dipole: OscillatingDipole
|
||||
result_dipole: OscillatingDipole
|
||||
success: bool
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
self.p_actual_x = self.actual_dipole.p[0]
|
||||
self.p_actual_y = self.actual_dipole.p[1]
|
||||
self.p_actual_z = self.actual_dipole.p[2]
|
||||
self.s_actual_x = self.actual_dipole.s[0]
|
||||
self.s_actual_y = self.actual_dipole.s[1]
|
||||
self.s_actual_z = self.actual_dipole.s[2]
|
||||
self.p_result_x = self.result_dipole.p[0]
|
||||
self.p_result_y = self.result_dipole.p[1]
|
||||
self.p_result_z = self.result_dipole.p[2]
|
||||
self.s_result_x = self.result_dipole.s[0]
|
||||
self.s_result_y = self.result_dipole.s[1]
|
||||
self.s_result_z = self.result_dipole.s[2]
|
||||
self.w_actual = self.actual_dipole.w
|
||||
self.w_result = self.result_dipole.w
|
||||
|
||||
|
||||
class Diagnostic:
|
||||
"""
|
||||
Represents a diagnostic for a single dipole moment given a set of discretisations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dot_inputs : Sequence[DotInput]
|
||||
The dot inputs for this diagnostic.
|
||||
|
||||
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
|
||||
The models to evaluate.
|
||||
|
||||
actual_model_discretisation : pdme.model.Discretisation
|
||||
The discretisation for the model which is actually correct.
|
||||
|
||||
filename_slug : str
|
||||
The filename slug to include.
|
||||
|
||||
run_count: int
|
||||
The number of runs to do.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
actual_dipole_moment: numpy.ndarray,
|
||||
actual_dipole_position: numpy.ndarray,
|
||||
actual_dipole_frequency: float,
|
||||
dot_inputs: Sequence[DotInput],
|
||||
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
|
||||
filename_slug: str,
|
||||
) -> None:
|
||||
self.dipoles = OscillatingDipoleArrangement(
|
||||
[
|
||||
OscillatingDipole(
|
||||
actual_dipole_moment,
|
||||
actual_dipole_position,
|
||||
actual_dipole_frequency,
|
||||
)
|
||||
]
|
||||
)
|
||||
self.dots = self.dipoles.get_dot_measurements(dot_inputs)
|
||||
|
||||
self.discretisations_with_names = discretisations_with_names
|
||||
self.model_count = len(self.discretisations_with_names)
|
||||
|
||||
self.csv_fields = [
|
||||
"model",
|
||||
"index",
|
||||
"bounds",
|
||||
"p_actual_x",
|
||||
"p_actual_y",
|
||||
"p_actual_z",
|
||||
"s_actual_x",
|
||||
"s_actual_y",
|
||||
"s_actual_z",
|
||||
"w_actual",
|
||||
"success",
|
||||
"p_result_x",
|
||||
"p_result_y",
|
||||
"p_result_z",
|
||||
"s_result_x",
|
||||
"s_result_y",
|
||||
"s_result_z",
|
||||
"w_result",
|
||||
]
|
||||
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
self.filename = f"{timestamp}-{filename_slug}.diag.csv"
|
||||
|
||||
def go(self):
|
||||
with open(self.filename, "a", newline="") as outfile:
|
||||
# csv fields
|
||||
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||
writer.writeheader()
|
||||
|
||||
for (name, discretisation) in self.discretisations_with_names:
|
||||
_logger.info(f"Working on discretisation {name}")
|
||||
|
||||
results = []
|
||||
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
|
||||
results = pool.starmap(
|
||||
get_a_result,
|
||||
zip(
|
||||
itertools.repeat(discretisation),
|
||||
itertools.repeat(self.dots),
|
||||
discretisation.all_indices(),
|
||||
),
|
||||
)
|
||||
|
||||
with open(self.filename, "a", newline="") as outfile:
|
||||
writer = csv.DictWriter(
|
||||
outfile,
|
||||
fieldnames=self.csv_fields,
|
||||
dialect="unix",
|
||||
extrasaction="ignore",
|
||||
)
|
||||
|
||||
for idx, result in results:
|
||||
|
||||
bounds = discretisation.bounds(idx)
|
||||
|
||||
actual_success = result.success and result.cost <= 1e-10
|
||||
diag_row = SingleDipoleDiagnostic(
|
||||
name,
|
||||
idx,
|
||||
bounds,
|
||||
self.dipoles.dipoles[0],
|
||||
discretisation.model.solution_as_dipoles(result.normalised_x)[
|
||||
0
|
||||
],
|
||||
actual_success,
|
||||
)
|
||||
row = vars(diag_row)
|
||||
_logger.debug(f"Writing result {row}")
|
||||
writer.writerow(row)
|
189
deepdog/real_spectrum_run.py
Normal file
189
deepdog/real_spectrum_run.py
Normal file
@@ -0,0 +1,189 @@
|
||||
import pdme.inputs
|
||||
import pdme.model
|
||||
import pdme.measurement
|
||||
import pdme.measurement.input_types
|
||||
import pdme.measurement.oscillating_dipole
|
||||
import pdme.util.fast_v_calc
|
||||
import pdme.util.fast_nonlocal_spectrum
|
||||
from typing import Sequence, Tuple, List, Dict, Union
|
||||
import datetime
|
||||
import csv
|
||||
import multiprocessing
|
||||
import logging
|
||||
import numpy
|
||||
|
||||
|
||||
# TODO: remove hardcode
|
||||
CHUNKSIZE = 50
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_a_result(input) -> int:
|
||||
model, dot_inputs, lows, highs, monte_carlo_count, seed = input
|
||||
|
||||
rng = numpy.random.default_rng(seed)
|
||||
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
|
||||
sample_dipoles = model.get_monte_carlo_dipole_inputs(
|
||||
monte_carlo_count, None, rng_to_use=rng
|
||||
)
|
||||
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
|
||||
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
|
||||
|
||||
|
||||
class RealSpectrumRun:
|
||||
"""
|
||||
A bayes run given some real data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
measurements : Sequence[pdme.measurement.DotRangeMeasurement]
|
||||
The dot inputs for this bayes run.
|
||||
|
||||
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
|
||||
The models to evaluate.
|
||||
|
||||
actual_model : pdme.model.DipoleModel
|
||||
The model which is actually correct.
|
||||
|
||||
filename_slug : str
|
||||
The filename slug to include.
|
||||
|
||||
run_count: int
|
||||
The number of runs to do.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
measurements: Sequence[pdme.measurement.DotRangeMeasurement],
|
||||
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
|
||||
filename_slug: str,
|
||||
monte_carlo_count: int = 10000,
|
||||
monte_carlo_cycles: int = 10,
|
||||
target_success: int = 100,
|
||||
max_monte_carlo_cycles_steps: int = 10,
|
||||
chunksize: int = CHUNKSIZE,
|
||||
initial_seed: int = 12345,
|
||||
) -> None:
|
||||
self.measurements = measurements
|
||||
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
|
||||
|
||||
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
|
||||
self.dot_inputs
|
||||
)
|
||||
|
||||
self.models = [model for (_, model) in models_with_names]
|
||||
self.model_names = [name for (name, _) in models_with_names]
|
||||
self.model_count = len(self.models)
|
||||
|
||||
self.monte_carlo_count = monte_carlo_count
|
||||
self.monte_carlo_cycles = monte_carlo_cycles
|
||||
self.target_success = target_success
|
||||
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
|
||||
|
||||
self.csv_fields = []
|
||||
|
||||
self.compensate_zeros = True
|
||||
self.chunksize = chunksize
|
||||
for name in self.model_names:
|
||||
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
|
||||
|
||||
# for now initialise priors as uniform.
|
||||
self.probabilities = [1 / self.model_count] * self.model_count
|
||||
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
self.filename = f"{timestamp}-{filename_slug}.realdata.bayesrun.csv"
|
||||
self.initial_seed = initial_seed
|
||||
|
||||
def go(self) -> None:
|
||||
with open(self.filename, "a", newline="") as outfile:
|
||||
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||
writer.writeheader()
|
||||
|
||||
(
|
||||
lows,
|
||||
highs,
|
||||
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
|
||||
self.measurements
|
||||
)
|
||||
|
||||
# define a new seed sequence for each run
|
||||
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
|
||||
|
||||
results = []
|
||||
_logger.debug("Going to iterate over models now")
|
||||
for model_count, model in enumerate(self.models):
|
||||
_logger.debug(f"Doing model #{model_count}")
|
||||
core_count = multiprocessing.cpu_count() - 1 or 1
|
||||
with multiprocessing.Pool(core_count) as pool:
|
||||
cycle_count = 0
|
||||
cycle_success = 0
|
||||
cycles = 0
|
||||
while (cycles < self.max_monte_carlo_cycles_steps) and (
|
||||
cycle_success <= self.target_success
|
||||
):
|
||||
_logger.debug(f"Starting cycle {cycles}")
|
||||
cycles += 1
|
||||
current_success = 0
|
||||
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
|
||||
|
||||
# generate a seed from the sequence for each core.
|
||||
# note this needs to be inside the loop for monte carlo cycle steps!
|
||||
# that way we get more stuff.
|
||||
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
|
||||
|
||||
current_success = sum(
|
||||
pool.imap_unordered(
|
||||
get_a_result,
|
||||
[
|
||||
(
|
||||
model,
|
||||
self.dot_inputs_array,
|
||||
lows,
|
||||
highs,
|
||||
self.monte_carlo_count,
|
||||
seed,
|
||||
)
|
||||
for seed in seeds
|
||||
],
|
||||
self.chunksize,
|
||||
)
|
||||
)
|
||||
|
||||
cycle_success += current_success
|
||||
_logger.debug(f"current running successes: {cycle_success}")
|
||||
results.append((cycle_count, cycle_success))
|
||||
|
||||
_logger.debug("Done, constructing output now")
|
||||
row: Dict[str, Union[int, float, str]] = {}
|
||||
|
||||
successes: List[float] = []
|
||||
counts: List[int] = []
|
||||
for model_index, (name, (count, result)) in enumerate(
|
||||
zip(self.model_names, results)
|
||||
):
|
||||
|
||||
row[f"{name}_success"] = result
|
||||
row[f"{name}_count"] = count
|
||||
successes.append(max(result, 0.5))
|
||||
counts.append(count)
|
||||
|
||||
success_weight = sum(
|
||||
[
|
||||
(succ / count) * prob
|
||||
for succ, count, prob in zip(successes, counts, self.probabilities)
|
||||
]
|
||||
)
|
||||
new_probabilities = [
|
||||
(succ / count) * old_prob / success_weight
|
||||
for succ, count, old_prob in zip(successes, counts, self.probabilities)
|
||||
]
|
||||
self.probabilities = new_probabilities
|
||||
for name, probability in zip(self.model_names, self.probabilities):
|
||||
row[f"{name}_prob"] = probability
|
||||
_logger.info(row)
|
||||
|
||||
with open(self.filename, "a", newline="") as outfile:
|
||||
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
|
||||
writer.writerow(row)
|
92
poetry.lock
generated
92
poetry.lock
generated
@@ -117,7 +117,7 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
|
||||
|
||||
[[package]]
|
||||
name = "coverage"
|
||||
version = "6.3.2"
|
||||
version = "6.3.3"
|
||||
description = "Code coverage measurement for Python"
|
||||
category = "dev"
|
||||
optional = false
|
||||
@@ -335,7 +335,7 @@ python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
|
||||
|
||||
[[package]]
|
||||
name = "pdme"
|
||||
version = "0.6.2"
|
||||
version = "0.8.3"
|
||||
description = "Python dipole model evaluator"
|
||||
category = "main"
|
||||
optional = false
|
||||
@@ -740,7 +740,7 @@ testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-
|
||||
[metadata]
|
||||
lock-version = "1.1"
|
||||
python-versions = "^3.8,<3.10"
|
||||
content-hash = "98877f53c0ca996cd6eaa2c3b7391e391d29c7a4d3f1e08159fc999a3e4ad296"
|
||||
content-hash = "51f1e73f48509b868210e17760a39756b2b49f1e40c9a7ecafbcd21e0013b3d8"
|
||||
|
||||
[metadata.files]
|
||||
atomicwrites = [
|
||||
@@ -853,47 +853,47 @@ colorama = [
|
||||
{file = "colorama-0.4.4.tar.gz", hash = "sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b"},
|
||||
]
|
||||
coverage = [
|
||||
{file = "coverage-6.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9b27d894748475fa858f9597c0ee1d4829f44683f3813633aaf94b19cb5453cf"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:37d1141ad6b2466a7b53a22e08fe76994c2d35a5b6b469590424a9953155afac"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9987b0354b06d4df0f4d3e0ec1ae76d7ce7cbca9a2f98c25041eb79eec766f1"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:26e2deacd414fc2f97dd9f7676ee3eaecd299ca751412d89f40bc01557a6b1b4"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4dd8bafa458b5c7d061540f1ee9f18025a68e2d8471b3e858a9dad47c8d41903"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:46191097ebc381fbf89bdce207a6c107ac4ec0890d8d20f3360345ff5976155c"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6f89d05e028d274ce4fa1a86887b071ae1755082ef94a6740238cd7a8178804f"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:58303469e9a272b4abdb9e302a780072c0633cdcc0165db7eec0f9e32f901e05"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-win32.whl", hash = "sha256:2fea046bfb455510e05be95e879f0e768d45c10c11509e20e06d8fcaa31d9e39"},
|
||||
{file = "coverage-6.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:a2a8b8bcc399edb4347a5ca8b9b87e7524c0967b335fbb08a83c8421489ddee1"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f1555ea6d6da108e1999b2463ea1003fe03f29213e459145e70edbaf3e004aaa"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5f4e1edcf57ce94e5475fe09e5afa3e3145081318e5fd1a43a6b4539a97e518"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a15dc0a14008f1da3d1ebd44bdda3e357dbabdf5a0b5034d38fcde0b5c234b7"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21b7745788866028adeb1e0eca3bf1101109e2dc58456cb49d2d9b99a8c516e6"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:8ce257cac556cb03be4a248d92ed36904a59a4a5ff55a994e92214cde15c5bad"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b0be84e5a6209858a1d3e8d1806c46214e867ce1b0fd32e4ea03f4bd8b2e3359"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:acf53bc2cf7282ab9b8ba346746afe703474004d9e566ad164c91a7a59f188a4"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-win32.whl", hash = "sha256:8bdde1177f2311ee552f47ae6e5aa7750c0e3291ca6b75f71f7ffe1f1dab3dca"},
|
||||
{file = "coverage-6.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:b31651d018b23ec463e95cf10070d0b2c548aa950a03d0b559eaa11c7e5a6fa3"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:07e6db90cd9686c767dcc593dff16c8c09f9814f5e9c51034066cad3373b914d"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2c6dbb42f3ad25760010c45191e9757e7dce981cbfb90e42feef301d71540059"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c76aeef1b95aff3905fb2ae2d96e319caca5b76fa41d3470b19d4e4a3a313512"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cf5cfcb1521dc3255d845d9dca3ff204b3229401994ef8d1984b32746bb45ca"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8fbbdc8d55990eac1b0919ca69eb5a988a802b854488c34b8f37f3e2025fa90d"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ec6bc7fe73a938933d4178c9b23c4e0568e43e220aef9472c4f6044bfc6dd0f0"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9baff2a45ae1f17c8078452e9e5962e518eab705e50a0aa8083733ea7d45f3a6"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd9e830e9d8d89b20ab1e5af09b32d33e1a08ef4c4e14411e559556fd788e6b2"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-win32.whl", hash = "sha256:f7331dbf301b7289013175087636bbaf5b2405e57259dd2c42fdcc9fcc47325e"},
|
||||
{file = "coverage-6.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:68353fe7cdf91f109fc7d474461b46e7f1f14e533e911a2a2cbb8b0fc8613cf1"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b78e5afb39941572209f71866aa0b206c12f0109835aa0d601e41552f9b3e620"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4e21876082ed887baed0146fe222f861b5815455ada3b33b890f4105d806128d"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34626a7eee2a3da12af0507780bb51eb52dca0e1751fd1471d0810539cefb536"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1ebf730d2381158ecf3dfd4453fbca0613e16eaa547b4170e2450c9707665ce7"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd6fe30bd519694b356cbfcaca9bd5c1737cddd20778c6a581ae20dc8c04def2"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:96f8a1cb43ca1422f36492bebe63312d396491a9165ed3b9231e778d43a7fca4"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:dd035edafefee4d573140a76fdc785dc38829fe5a455c4bb12bac8c20cfc3d69"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5ca5aeb4344b30d0bec47481536b8ba1181d50dbe783b0e4ad03c95dc1296684"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-win32.whl", hash = "sha256:f5fa5803f47e095d7ad8443d28b01d48c0359484fec1b9d8606d0e3282084bc4"},
|
||||
{file = "coverage-6.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:9548f10d8be799551eb3a9c74bbf2b4934ddb330e08a73320123c07f95cc2d92"},
|
||||
{file = "coverage-6.3.2-pp36.pp37.pp38-none-any.whl", hash = "sha256:18d520c6860515a771708937d2f78f63cc47ab3b80cb78e86573b0a760161faf"},
|
||||
{file = "coverage-6.3.2.tar.gz", hash = "sha256:03e2a7826086b91ef345ff18742ee9fc47a6839ccd517061ef8fa1976e652ce9"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df32ee0f4935a101e4b9a5f07b617d884a531ed5666671ff6ac66d2e8e8246d8"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:75b5dbffc334e0beb4f6c503fb95e6d422770fd2d1b40a64898ea26d6c02742d"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:114944e6061b68a801c5da5427b9173a0dd9d32cd5fcc18a13de90352843737d"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2ab88a01cd180b5640ccc9c47232e31924d5f9967ab7edd7e5c91c68eee47a69"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad8f9068f5972a46d50fe5f32c09d6ee11da69c560fcb1b4c3baea246ca4109b"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4cd696aa712e6cd16898d63cf66139dc70d998f8121ab558f0e1936396dbc579"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:c1a9942e282cc9d3ed522cd3e3cab081149b27ea3bda72d6f61f84eaf88c1a63"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c06455121a089252b5943ea682187a4e0a5cf0a3fb980eb8e7ce394b144430a9"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-win32.whl", hash = "sha256:cb5311d6ccbd22578c80028c5e292a7ab9adb91bd62c1982087fad75abe2e63d"},
|
||||
{file = "coverage-6.3.3-cp310-cp310-win_amd64.whl", hash = "sha256:6d4a6f30f611e657495cc81a07ff7aa8cd949144e7667c5d3e680d73ba7a70e4"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:79bf405432428e989cad7b8bc60581963238f7645ae8a404f5dce90236cc0293"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:338c417613f15596af9eb7a39353b60abec9d8ce1080aedba5ecee6a5d85f8d3"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db094a6a4ae6329ed322a8973f83630b12715654c197dd392410400a5bfa1a73"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1414e8b124611bf4df8d77215bd32cba6e3425da8ce9c1f1046149615e3a9a31"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:93b16b08f94c92cab88073ffd185070cdcb29f1b98df8b28e6649145b7f2c90d"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:fbc86ae8cc129c801e7baaafe3addf3c8d49c9c1597c44bdf2d78139707c3c62"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:b5ba058610e8289a07db2a57bce45a1793ec0d3d11db28c047aae2aa1a832572"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-win32.whl", hash = "sha256:8329635c0781927a2c6ae068461e19674c564e05b86736ab8eb29c420ee7dc20"},
|
||||
{file = "coverage-6.3.3-cp37-cp37m-win_amd64.whl", hash = "sha256:e5af1feee71099ae2e3b086ec04f57f9950e1be9ecf6c420696fea7977b84738"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e814a4a5a1d95223b08cdb0f4f57029e8eab22ffdbae2f97107aeef28554517e"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:61f4fbf3633cb0713437291b8848634ea97f89c7e849c2be17a665611e433f53"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3401b0d2ed9f726fadbfa35102e00d1b3547b73772a1de5508ef3bdbcb36afe7"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8586b177b4407f988731eb7f41967415b2197f35e2a6ee1a9b9b561f6323c8e9"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:892e7fe32191960da559a14536768a62e83e87bbb867e1b9c643e7e0fbce2579"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:afb03f981fadb5aed1ac6e3dd34f0488e1a0875623d557b6fad09b97a942b38a"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:cbe91bc84be4e5ef0b1480d15c7b18e29c73bdfa33e07d3725da7d18e1b0aff2"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:91502bf27cbd5c83c95cfea291ef387469f2387508645602e1ca0fd8a4ba7548"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-win32.whl", hash = "sha256:c488db059848702aff30aa1d90ef87928d4e72e4f00717343800546fdbff0a94"},
|
||||
{file = "coverage-6.3.3-cp38-cp38-win_amd64.whl", hash = "sha256:ceb6534fcdfb5c503affb6b1130db7b5bfc8a0f77fa34880146f7a5c117987d0"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cc692c9ee18f0dd3214843779ba6b275ee4bb9b9a5745ba64265bce911aefd1a"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:462105283de203df8de58a68c1bb4ba2a8a164097c2379f664fa81d6baf94b81"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc972d829ad5ef4d4c5fcabd2bbe2add84ce8236f64ba1c0c72185da3a273130"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:06f54765cdbce99901871d50fe9f41d58213f18e98b170a30ca34f47de7dd5e8"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7835f76a081787f0ca62a53504361b3869840a1620049b56d803a8cb3a9eeea3"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6f5fee77ec3384b934797f1873758f796dfb4f167e1296dc00f8b2e023ce6ee9"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:baa8be8aba3dd1e976e68677be68a960a633a6d44c325757aefaa4d66175050f"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4d06380e777dd6b35ee936f333d55b53dc4a8271036ff884c909cf6e94be8b6c"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-win32.whl", hash = "sha256:f8cabc5fd0091976ab7b020f5708335033e422de25e20ddf9416bdce2b7e07d8"},
|
||||
{file = "coverage-6.3.3-cp39-cp39-win_amd64.whl", hash = "sha256:9c9441d57b0963cf8340268ad62fc83de61f1613034b79c2b1053046af0c5284"},
|
||||
{file = "coverage-6.3.3-pp36.pp37.pp38-none-any.whl", hash = "sha256:d522f1dc49127eab0bfbba4e90fa068ecff0899bbf61bf4065c790ddd6c177fe"},
|
||||
{file = "coverage-6.3.3.tar.gz", hash = "sha256:2781c43bffbbec2b8867376d4d61916f5e9c4cc168232528562a61d1b4b01879"},
|
||||
]
|
||||
cryptography = [
|
||||
{file = "cryptography-36.0.1-cp36-abi3-macosx_10_10_universal2.whl", hash = "sha256:73bc2d3f2444bcfeac67dd130ff2ea598ea5f20b40e36d19821b4df8c9c5037b"},
|
||||
@@ -1025,8 +1025,8 @@ pathspec = [
|
||||
{file = "pathspec-0.9.0.tar.gz", hash = "sha256:e564499435a2673d586f6b2130bb5b95f04a3ba06f81b8f895b651a3c76aabb1"},
|
||||
]
|
||||
pdme = [
|
||||
{file = "pdme-0.6.2-py3-none-any.whl", hash = "sha256:7e81081be243006f86c31d3590a77a529764204b3831b83a939a87025d463e26"},
|
||||
{file = "pdme-0.6.2.tar.gz", hash = "sha256:59c2a3249338317f22cf268c55c90d06b563d42a9278e2826753f6d491379f67"},
|
||||
{file = "pdme-0.8.3-py3-none-any.whl", hash = "sha256:f100e7d41acc2cdc6777a65967bb7e52b067baa8dd595b646c0eb5505c6d1561"},
|
||||
{file = "pdme-0.8.3.tar.gz", hash = "sha256:22137e15c24815a586bfbc21a13273e3cc39c9e30f6755ea520f24d2f792a2ae"},
|
||||
]
|
||||
pkginfo = [
|
||||
{file = "pkginfo-1.8.2-py2.py3-none-any.whl", hash = "sha256:c24c487c6a7f72c66e816ab1796b96ac6c3d14d49338293d2141664330b55ffc"},
|
||||
|
@@ -1,12 +1,12 @@
|
||||
[tool.poetry]
|
||||
name = "deepdog"
|
||||
version = "0.5.0"
|
||||
version = "0.6.1"
|
||||
description = ""
|
||||
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.8,<3.10"
|
||||
pdme = "0.6.2"
|
||||
pdme = "^0.8.3"
|
||||
|
||||
[tool.poetry.dev-dependencies]
|
||||
pytest = ">=6"
|
||||
|
Reference in New Issue
Block a user