Compare commits

..

28 Commits
0.5.0 ... 0.6.2

Author SHA1 Message Date
ad0ace4da3 chore(release): 0.6.2
Some checks reported errors
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
2022-05-26 13:05:14 -05:00
3f1265e3ec Merge branch 'master' of ssh://gitea.deepak.science:2222/physics/deepdog
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-05-26 13:04:28 -05:00
969f01e9c5 deps: updates deps 2022-05-26 13:02:21 -05:00
b282ffa800 Merge pull request 'chore(deps): update dependency mypy to ^0.960' (#12) from renovate/mypy-0.x into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #12
2022-05-26 12:48:42 +00:00
91e9e5198e chore(deps): update dependency mypy to ^0.960
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-26 01:32:51 +00:00
d7e0f13ca5 feat: adds better import api for real data run
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-05-22 16:47:26 -05:00
74de2b0433 chore(release): 0.6.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2022-05-22 15:35:29 -05:00
c036028902 deps: updates to pdme 0.8.3
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-05-22 15:35:11 -05:00
690ad9e288 Merge pull request 'feat: adds new runner for real spectra' (#11) from realdata into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #11
2022-05-22 20:32:59 +00:00
bd56f24774 feat: adds new runner for real spectra
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-22 15:26:39 -05:00
362388363f chore(release): 0.6.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2022-05-21 19:27:13 -05:00
252b4a4414 Merge pull request 'multi' (#8) from multi into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #8
2022-05-22 00:24:07 +00:00
bb21355f5e style: fmt
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-21 19:18:13 -05:00
df8977655d feat: Uses multidipole for bayes run, with more verbose output
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-21 19:15:46 -05:00
5d0a7a4be0 feat!: bayes run now handles multidipoles with changes to output file format etc.
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-07 18:45:58 -05:00
67a9721c31 style: don't use unused exception var
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-07 14:49:09 -05:00
b5e0ecb528 fix: fixes crash when dipole count is smaller than expected max during file write 2022-05-07 14:46:56 -05:00
feeb03b27c chore: Updates to pdme 0.8.2
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-07 11:24:15 -05:00
b7da3d61cc fix: another bug fix for csv generation
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-30 19:56:17 -05:00
9afa209864 fix: fixes format string in csv output for headers
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-30 19:52:46 -05:00
ae8977bb1e feat!: logs multiple dipoles better maybe
Some checks are pending
gitea-physics/deepdog/pipeline/head Build started...
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-30 18:49:48 -05:00
0caad05e3c fix: moves logging successes to after they've actually happened
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-04-30 18:14:26 -05:00
eec926aaac fix: fixes random issue 2022-04-30 18:11:22 -05:00
23b202beb8 fix: now doesn't double randomise frequency
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2022-04-30 17:40:55 -05:00
6e29f7a702 feat!: switches over to pdme new stuff, uses models and scraps discretisations entirely 2022-04-30 17:31:36 -05:00
31070b5342 fix: whoops deleted word multiprocessing 2022-04-30 16:44:12 -05:00
101569d749 feat!: removes alt_bayes bayes distinction, which was superfluous when only alt worked 2022-04-30 16:43:37 -05:00
874d876c9d feat: adds pdme 0.7.0 for multiprocessing 2022-04-30 16:41:34 -05:00
9 changed files with 537 additions and 636 deletions

View File

@@ -2,6 +2,50 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [0.6.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.1...0.6.2) (2022-05-26)
### Features
* adds better import api for real data run ([d7e0f13](https://gitea.deepak.science:2222/physics/deepdog/commit/d7e0f13ca55197b24cb534c80f321ee76b9c4a40))
### [0.6.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.0...0.6.1) (2022-05-22)
### Features
* adds new runner for real spectra ([bd56f24](https://gitea.deepak.science:2222/physics/deepdog/commit/bd56f247748babb2ee1f2a1182d25aa968bff5a5))
## [0.6.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.5.0...0.6.0) (2022-05-22)
### ⚠ BREAKING CHANGES
* bayes run now handles multidipoles with changes to output file format etc.
* logs multiple dipoles better maybe
* switches over to pdme new stuff, uses models and scraps discretisations entirely
* removes alt_bayes bayes distinction, which was superfluous when only alt worked
### Features
* adds pdme 0.7.0 for multiprocessing ([874d876](https://gitea.deepak.science:2222/physics/deepdog/commit/874d876c9d774433b034d47c4cc0cdac41e6f2c7))
* bayes run now handles multidipoles with changes to output file format etc. ([5d0a7a4](https://gitea.deepak.science:2222/physics/deepdog/commit/5d0a7a4be09c58f8f8f859384f01d7912a98b8b9))
* logs multiple dipoles better maybe ([ae8977b](https://gitea.deepak.science:2222/physics/deepdog/commit/ae8977bb1e4d6cd71e88ea0876da8f4318e030b6))
* removes alt_bayes bayes distinction, which was superfluous when only alt worked ([101569d](https://gitea.deepak.science:2222/physics/deepdog/commit/101569d749e4f3f1842886aa2fd3321b8132278b))
* switches over to pdme new stuff, uses models and scraps discretisations entirely ([6e29f7a](https://gitea.deepak.science:2222/physics/deepdog/commit/6e29f7a702b578c266a42bba23ac973d155ada10))
* Uses multidipole for bayes run, with more verbose output ([df89776](https://gitea.deepak.science:2222/physics/deepdog/commit/df8977655de977fd3c4f7383dd9571e551eb1382))
### Bug Fixes
* another bug fix for csv generation ([b7da3d6](https://gitea.deepak.science:2222/physics/deepdog/commit/b7da3d61cc5c128cba1d2fcb3770b71b7f6fc4b8))
* fixes crash when dipole count is smaller than expected max during file write ([b5e0ecb](https://gitea.deepak.science:2222/physics/deepdog/commit/b5e0ecb52886b32d9055302eacfabb69338026b4))
* fixes format string in csv output for headers ([9afa209](https://gitea.deepak.science:2222/physics/deepdog/commit/9afa209864cdb9255988778e987fe05952848fd4))
* fixes random issue ([eec926a](https://gitea.deepak.science:2222/physics/deepdog/commit/eec926aaac654f78942b4c6b612e4d1cdcbf81dc))
* moves logging successes to after they've actually happened ([0caad05](https://gitea.deepak.science:2222/physics/deepdog/commit/0caad05e3cc6a9adba8bf937c3d2f944e1b096a3))
* now doesn't double randomise frequency ([23b202b](https://gitea.deepak.science:2222/physics/deepdog/commit/23b202beb81cb89f7f20b691e83116fa53764902))
* whoops deleted word multiprocessing ([31070b5](https://gitea.deepak.science:2222/physics/deepdog/commit/31070b5342c265d930b4c51402f42a3ee2415066))
## [0.5.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.4.0...0.5.0) (2022-04-30)

View File

@@ -1,9 +1,8 @@
import logging
from deepdog.meta import __version__
from deepdog.bayes_run import BayesRun
from deepdog.alt_bayes_run import AltBayesRun
from deepdog.alt_bayes_run_simulpairs import AltBayesRunSimulPairs
from deepdog.diagnostic import Diagnostic
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
from deepdog.real_spectrum_run import RealSpectrumRun
def get_version():
@@ -13,9 +12,8 @@ def get_version():
__all__ = [
"get_version",
"BayesRun",
"AltBayesRun",
"AltBayesRunSimulPairs",
"Diagnostic",
"BayesRunSimulPairs",
"RealSpectrumRun",
]

View File

@@ -1,307 +0,0 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_result(input) -> int:
discretisation, dot_inputs, lows, highs, monte_carlo_count, max_frequency = input
sample_dipoles = discretisation.get_model().get_n_single_dipoles(
monte_carlo_count, max_frequency
)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
def get_a_result_using_pairs(input) -> int:
(
discretisation,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
max_frequency,
) = input
sample_dipoles = discretisation.get_model().get_n_single_dipoles(
monte_carlo_count, max_frequency
)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
return numpy.count_nonzero(combined_matches)
class AltBayesRun:
"""
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
actual_model: pdme.model.Model,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
pairs_high_error=None,
pairs_low_error=None,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
use_pairs: bool = False,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.use_pairs = use_pairs
self.dot_pair_inputs = pdme.inputs.input_pairs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
self.discretisations = [disc for (_, disc) in discretisations_with_names]
self.model_names = [name for (name, _) in discretisations_with_names]
self.actual_model = actual_model
self.model_count = len(self.discretisations)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
if pairs_low_error is None:
self.pairs_low_error = self.low_error
else:
self.pairs_low_error = pairs_low_error
if pairs_high_error is None:
self.pairs_high_error = self.high_error
else:
self.pairs_high_error = pairs_high_error
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
if self.use_pairs:
self.filename = f"{timestamp}-{filename_slug}.altbayes.pairs.csv"
else:
self.filename = f"{timestamp}-{filename_slug}.altbayes.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
rng = numpy.random.default_rng()
frequency = rng.uniform(1, self.max_frequency)
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
pair_lows, pair_highs = (None, None)
if self.use_pairs:
pair_measurements = (
actual_dipoles.get_percent_range_dot_pair_measurements(
self.dot_pair_inputs,
self.pairs_low_error,
self.pairs_high_error,
)
)
(
pair_lows,
pair_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
pair_measurements
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
results = []
_logger.debug("Going to iterate over discretisations now")
for disc_count, discretisation in enumerate(self.discretisations):
_logger.debug(f"Doing discretisation #{disc_count}")
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
if self.use_pairs:
current_success = sum(
pool.imap_unordered(
get_a_result_using_pairs,
[
(
discretisation,
self.dot_inputs_array,
self.dot_pair_inputs_array,
lows,
highs,
pair_lows,
pair_highs,
self.monte_carlo_count,
self.max_frequency,
)
]
* self.monte_carlo_cycles,
self.chunksize,
)
)
else:
current_success = sum(
pool.imap_unordered(
get_a_result,
[
(
discretisation,
self.dot_inputs_array,
lows,
highs,
self.monte_carlo_count,
self.max_frequency,
)
]
* self.monte_carlo_cycles,
self.chunksize,
)
)
cycle_success += current_success
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row = {
"dipole_moment": actual_dipoles.dipoles[0].p,
"dipole_location": actual_dipoles.dipoles[0].s,
"dipole_frequency": actual_dipoles.dipoles[0].w,
}
successes: List[float] = []
counts: List[int] = []
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum(
[
(succ / count) * prob
for succ, count, prob in zip(successes, counts, self.probabilities)
]
)
new_probabilities = [
(succ / count) * old_prob / success_weight
for succ, count, old_prob in zip(successes, counts, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break

View File

@@ -1,17 +1,19 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import itertools
import csv
import multiprocessing
import logging
import numpy
import scipy.optimize
import multiprocessing
# TODO: remove hardcode
COST_THRESHOLD = 1e-10
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
@@ -20,10 +22,40 @@ DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_result(
discretisation, dots, index
) -> Tuple[Tuple[int, ...], scipy.optimize.OptimizeResult]:
return (index, discretisation.solve_for_index(dots, index))
def get_a_result(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, max_frequency, seed = input
rng = numpy.random.default_rng(seed)
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, max_frequency, rng_to_use=rng
)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
def get_a_result_using_pairs(input) -> int:
(
model,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
max_frequency,
) = input
sample_dipoles = model.get_n_single_dipoles(monte_carlo_count, max_frequency)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
return numpy.count_nonzero(combined_matches)
class BayesRun:
@@ -35,11 +67,11 @@ class BayesRun:
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
@@ -50,29 +82,66 @@ class BayesRun:
def __init__(
self,
dot_inputs: Sequence[DotInput],
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
actual_model: pdme.model.Model,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
run_count: int,
max_frequency: float = None,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
) -> None:
self.dot_inputs = dot_inputs
self.discretisations = [disc for (_, disc) in discretisations_with_names]
self.model_names = [name for (name, _) in discretisations_with_names]
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.model_count = len(self.discretisations)
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
self.low_error = low_error
self.high_error = high_error
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.csv"
self.filename = f"{timestamp}-{filename_slug}.bayesrun.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
@@ -91,52 +160,95 @@ class BayesRun:
writer.writeheader()
for run in range(1, self.run_count + 1):
frequency: float = run
if self.max_frequency is not None and self.max_frequency > 1:
rng = numpy.random.default_rng()
frequency = rng.uniform(1, self.max_frequency)
dipoles = self.actual_model.get_dipoles(frequency)
dots = dipoles.get_dot_measurements(self.dot_inputs)
_logger.info(f"Going to work on dipole at {dipoles.dipoles}")
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(run)
results = []
_logger.debug("Going to iterate over discretisations now")
for disc_count, discretisation in enumerate(self.discretisations):
_logger.debug(f"Doing discretisation #{disc_count}")
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
results.append(
pool.starmap(
get_a_result,
zip(
itertools.repeat(discretisation),
itertools.repeat(dots),
discretisation.all_indices(),
),
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
current_success = sum(
pool.imap_unordered(
get_a_result,
[
(
model,
self.dot_inputs_array,
lows,
highs,
self.monte_carlo_count,
self.max_frequency,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row = {
"dipole_moment": dipoles.dipoles[0].p,
"dipole_location": dipoles.dipoles[0].s,
"dipole_frequency": dipoles.dipoles[0].w,
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row[f"dipole_moment_{i+1}"] = current_dipoles.p
row[f"dipole_location_{i+1}"] = current_dipoles.s
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
successes: List[float] = []
counts: List[int] = []
for model_index, (name, result) in enumerate(
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
count = 0
success = 0
for idx, val in result:
count += 1
if val.success and val.cost <= COST_THRESHOLD:
success += 1
row[f"{name}_success"] = success
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(success, 0.5))
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum(

View File

@@ -25,7 +25,7 @@ _logger = logging.getLogger(__name__)
def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
(
discretisation,
model,
dot_inputs,
pair_inputs,
local_lows,
@@ -42,16 +42,12 @@ def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
local_total = 0
combined_total = 0
sample_dipoles = discretisation.get_model().get_n_single_dipoles(
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, max_frequency, rng_to_use=rng
)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(
dot_inputs, sample_dipoles
)
local_matches = pdme.util.fast_v_calc.between(
local_vals, local_lows, local_highs
)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
@@ -64,7 +60,7 @@ def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
return numpy.array([local_total, combined_total])
class AltBayesRunSimulPairs:
class BayesRunSimulPairs:
"""
A dual pairs-nonpairs Bayes run for a given set of dots.
@@ -73,11 +69,11 @@ class AltBayesRunSimulPairs:
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
actual_model : pdme.model.DipoleModel
The modoel for the model which is actually correct.
filename_slug : str
The filename slug to include.
@@ -90,8 +86,8 @@ class AltBayesRunSimulPairs:
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
actual_model: pdme.model.Model,
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
@@ -120,10 +116,17 @@ class AltBayesRunSimulPairs:
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
self.discretisations = [disc for (_, disc) in discretisations_with_names]
self.model_names = [name for (name, _) in discretisations_with_names]
self.models = [mod for (_, mod) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.model_count = len(self.discretisations)
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
@@ -139,7 +142,16 @@ class AltBayesRunSimulPairs:
self.pairs_high_error = self.high_error
else:
self.pairs_high_error = pairs_high_error
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
@@ -174,11 +186,8 @@ class AltBayesRunSimulPairs:
for run in range(1, self.run_count + 1):
rng = numpy.random.default_rng()
frequency = rng.uniform(1, self.max_frequency)
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(frequency)
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
@@ -208,9 +217,9 @@ class AltBayesRunSimulPairs:
results_pairs = []
results_no_pairs = []
_logger.debug("Going to iterate over discretisations now")
for disc_count, discretisation in enumerate(self.discretisations):
_logger.debug(f"Doing discretisation #{disc_count}")
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
@@ -223,7 +232,7 @@ class AltBayesRunSimulPairs:
<= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
_logger.debug(f"(pair, no_pair) successes are {(cycle_success_pairs, cycle_success_no_pairs)}")
cycles += 1
current_success_pairs = 0
current_success_no_pairs = 0
@@ -241,7 +250,7 @@ class AltBayesRunSimulPairs:
get_a_simul_result_using_pairs,
[
(
discretisation,
model,
self.dot_inputs_array,
self.dot_pair_inputs_array,
lows,
@@ -264,20 +273,36 @@ class AltBayesRunSimulPairs:
cycle_success_no_pairs += current_success_no_pairs
cycle_success_pairs += current_success_pairs
_logger.debug(
f"(pair, no_pair) successes are {(cycle_success_pairs, cycle_success_no_pairs)}"
)
results_pairs.append((cycle_count, cycle_success_pairs))
results_no_pairs.append((cycle_count, cycle_success_no_pairs))
_logger.debug("Done, constructing output now")
row_pairs = {
"dipole_moment": actual_dipoles.dipoles[0].p,
"dipole_location": actual_dipoles.dipoles[0].s,
"dipole_frequency": actual_dipoles.dipoles[0].w,
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
row_no_pairs = {
"dipole_moment": actual_dipoles.dipoles[0].p,
"dipole_location": actual_dipoles.dipoles[0].s,
"dipole_frequency": actual_dipoles.dipoles[0].w,
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
row_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
row_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
row_no_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
row_no_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
row_no_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
successes_pairs: List[float] = []
successes_no_pairs: List[float] = []
counts: List[int] = []

View File

@@ -1,160 +0,0 @@
from pdme.measurement import OscillatingDipole, OscillatingDipoleArrangement
import pdme
from deepdog.bayes_run import DotInput
import datetime
import numpy
from dataclasses import dataclass
import logging
from typing import Sequence, Tuple
import csv
import itertools
import multiprocessing
_logger = logging.getLogger(__name__)
def get_a_result(discretisation, dots, index):
return (index, discretisation.solve_for_index(dots, index))
@dataclass
class SingleDipoleDiagnostic:
model: str
index: Tuple
bounds: Tuple
actual_dipole: OscillatingDipole
result_dipole: OscillatingDipole
success: bool
def __post_init__(self) -> None:
self.p_actual_x = self.actual_dipole.p[0]
self.p_actual_y = self.actual_dipole.p[1]
self.p_actual_z = self.actual_dipole.p[2]
self.s_actual_x = self.actual_dipole.s[0]
self.s_actual_y = self.actual_dipole.s[1]
self.s_actual_z = self.actual_dipole.s[2]
self.p_result_x = self.result_dipole.p[0]
self.p_result_y = self.result_dipole.p[1]
self.p_result_z = self.result_dipole.p[2]
self.s_result_x = self.result_dipole.s[0]
self.s_result_y = self.result_dipole.s[1]
self.s_result_z = self.result_dipole.s[2]
self.w_actual = self.actual_dipole.w
self.w_result = self.result_dipole.w
class Diagnostic:
"""
Represents a diagnostic for a single dipole moment given a set of discretisations.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this diagnostic.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
actual_dipole_moment: numpy.ndarray,
actual_dipole_position: numpy.ndarray,
actual_dipole_frequency: float,
dot_inputs: Sequence[DotInput],
discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]],
filename_slug: str,
) -> None:
self.dipoles = OscillatingDipoleArrangement(
[
OscillatingDipole(
actual_dipole_moment,
actual_dipole_position,
actual_dipole_frequency,
)
]
)
self.dots = self.dipoles.get_dot_measurements(dot_inputs)
self.discretisations_with_names = discretisations_with_names
self.model_count = len(self.discretisations_with_names)
self.csv_fields = [
"model",
"index",
"bounds",
"p_actual_x",
"p_actual_y",
"p_actual_z",
"s_actual_x",
"s_actual_y",
"s_actual_z",
"w_actual",
"success",
"p_result_x",
"p_result_y",
"p_result_z",
"s_result_x",
"s_result_y",
"s_result_z",
"w_result",
]
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.diag.csv"
def go(self):
with open(self.filename, "a", newline="") as outfile:
# csv fields
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for (name, discretisation) in self.discretisations_with_names:
_logger.info(f"Working on discretisation {name}")
results = []
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
results = pool.starmap(
get_a_result,
zip(
itertools.repeat(discretisation),
itertools.repeat(self.dots),
discretisation.all_indices(),
),
)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile,
fieldnames=self.csv_fields,
dialect="unix",
extrasaction="ignore",
)
for idx, result in results:
bounds = discretisation.bounds(idx)
actual_success = result.success and result.cost <= 1e-10
diag_row = SingleDipoleDiagnostic(
name,
idx,
bounds,
self.dipoles.dipoles[0],
discretisation.model.solution_as_dipoles(result.normalised_x)[
0
],
actual_success,
)
row = vars(diag_row)
_logger.debug(f"Writing result {row}")
writer.writerow(row)

View File

@@ -0,0 +1,189 @@
import pdme.inputs
import pdme.model
import pdme.measurement
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List, Dict, Union
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
_logger = logging.getLogger(__name__)
def get_a_result(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, seed = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
class RealSpectrumRun:
"""
A bayes run given some real data.
Parameters
----------
measurements : Sequence[pdme.measurement.DotRangeMeasurement]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
measurements: Sequence[pdme.measurement.DotRangeMeasurement],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
filename_slug: str,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
chunksize: int = CHUNKSIZE,
initial_seed: int = 12345,
) -> None:
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.csv_fields = []
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
# for now initialise priors as uniform.
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.realdata.bayesrun.csv"
self.initial_seed = initial_seed
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
results = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
current_success = sum(
pool.imap_unordered(
get_a_result,
[
(
model,
self.dot_inputs_array,
lows,
highs,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row: Dict[str, Union[int, float, str]] = {}
successes: List[float] = []
counts: List[int] = []
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum(
[
(succ / count) * prob
for succ, count, prob in zip(successes, counts, self.probabilities)
]
)
new_probabilities = [
(succ / count) * old_prob / success_weight
for succ, count, old_prob in zip(successes, counts, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writerow(row)

142
poetry.lock generated
View File

@@ -117,14 +117,14 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
[[package]]
name = "coverage"
version = "6.3.2"
version = "6.4"
description = "Code coverage measurement for Python"
category = "dev"
optional = false
python-versions = ">=3.7"
[package.dependencies]
tomli = {version = "*", optional = true, markers = "extra == \"toml\""}
tomli = {version = "*", optional = true, markers = "python_version < \"3.11\" and extra == \"toml\""}
[package.extras]
toml = ["tomli"]
@@ -282,7 +282,7 @@ python-versions = "*"
[[package]]
name = "mypy"
version = "0.950"
version = "0.960"
description = "Optional static typing for Python"
category = "dev"
optional = false
@@ -335,7 +335,7 @@ python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
[[package]]
name = "pdme"
version = "0.6.2"
version = "0.8.4"
description = "Python dipole model evaluator"
category = "main"
optional = false
@@ -740,7 +740,7 @@ testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-
[metadata]
lock-version = "1.1"
python-versions = "^3.8,<3.10"
content-hash = "98877f53c0ca996cd6eaa2c3b7391e391d29c7a4d3f1e08159fc999a3e4ad296"
content-hash = "bbdf23a8006bc1ca6da63230964920aa6ab17446f0735eefe8fadc597ec581fb"
[metadata.files]
atomicwrites = [
@@ -853,47 +853,47 @@ colorama = [
{file = "colorama-0.4.4.tar.gz", hash = "sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b"},
]
coverage = [
{file = "coverage-6.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9b27d894748475fa858f9597c0ee1d4829f44683f3813633aaf94b19cb5453cf"},
{file = "coverage-6.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:37d1141ad6b2466a7b53a22e08fe76994c2d35a5b6b469590424a9953155afac"},
{file = "coverage-6.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9987b0354b06d4df0f4d3e0ec1ae76d7ce7cbca9a2f98c25041eb79eec766f1"},
{file = "coverage-6.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:26e2deacd414fc2f97dd9f7676ee3eaecd299ca751412d89f40bc01557a6b1b4"},
{file = "coverage-6.3.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4dd8bafa458b5c7d061540f1ee9f18025a68e2d8471b3e858a9dad47c8d41903"},
{file = "coverage-6.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:46191097ebc381fbf89bdce207a6c107ac4ec0890d8d20f3360345ff5976155c"},
{file = "coverage-6.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6f89d05e028d274ce4fa1a86887b071ae1755082ef94a6740238cd7a8178804f"},
{file = "coverage-6.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:58303469e9a272b4abdb9e302a780072c0633cdcc0165db7eec0f9e32f901e05"},
{file = "coverage-6.3.2-cp310-cp310-win32.whl", hash = "sha256:2fea046bfb455510e05be95e879f0e768d45c10c11509e20e06d8fcaa31d9e39"},
{file = "coverage-6.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:a2a8b8bcc399edb4347a5ca8b9b87e7524c0967b335fbb08a83c8421489ddee1"},
{file = "coverage-6.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f1555ea6d6da108e1999b2463ea1003fe03f29213e459145e70edbaf3e004aaa"},
{file = "coverage-6.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5f4e1edcf57ce94e5475fe09e5afa3e3145081318e5fd1a43a6b4539a97e518"},
{file = "coverage-6.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a15dc0a14008f1da3d1ebd44bdda3e357dbabdf5a0b5034d38fcde0b5c234b7"},
{file = "coverage-6.3.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21b7745788866028adeb1e0eca3bf1101109e2dc58456cb49d2d9b99a8c516e6"},
{file = "coverage-6.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:8ce257cac556cb03be4a248d92ed36904a59a4a5ff55a994e92214cde15c5bad"},
{file = "coverage-6.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b0be84e5a6209858a1d3e8d1806c46214e867ce1b0fd32e4ea03f4bd8b2e3359"},
{file = "coverage-6.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:acf53bc2cf7282ab9b8ba346746afe703474004d9e566ad164c91a7a59f188a4"},
{file = "coverage-6.3.2-cp37-cp37m-win32.whl", hash = "sha256:8bdde1177f2311ee552f47ae6e5aa7750c0e3291ca6b75f71f7ffe1f1dab3dca"},
{file = "coverage-6.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:b31651d018b23ec463e95cf10070d0b2c548aa950a03d0b559eaa11c7e5a6fa3"},
{file = "coverage-6.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:07e6db90cd9686c767dcc593dff16c8c09f9814f5e9c51034066cad3373b914d"},
{file = "coverage-6.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2c6dbb42f3ad25760010c45191e9757e7dce981cbfb90e42feef301d71540059"},
{file = "coverage-6.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c76aeef1b95aff3905fb2ae2d96e319caca5b76fa41d3470b19d4e4a3a313512"},
{file = "coverage-6.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cf5cfcb1521dc3255d845d9dca3ff204b3229401994ef8d1984b32746bb45ca"},
{file = "coverage-6.3.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8fbbdc8d55990eac1b0919ca69eb5a988a802b854488c34b8f37f3e2025fa90d"},
{file = "coverage-6.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ec6bc7fe73a938933d4178c9b23c4e0568e43e220aef9472c4f6044bfc6dd0f0"},
{file = "coverage-6.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9baff2a45ae1f17c8078452e9e5962e518eab705e50a0aa8083733ea7d45f3a6"},
{file = "coverage-6.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd9e830e9d8d89b20ab1e5af09b32d33e1a08ef4c4e14411e559556fd788e6b2"},
{file = "coverage-6.3.2-cp38-cp38-win32.whl", hash = "sha256:f7331dbf301b7289013175087636bbaf5b2405e57259dd2c42fdcc9fcc47325e"},
{file = "coverage-6.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:68353fe7cdf91f109fc7d474461b46e7f1f14e533e911a2a2cbb8b0fc8613cf1"},
{file = "coverage-6.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b78e5afb39941572209f71866aa0b206c12f0109835aa0d601e41552f9b3e620"},
{file = "coverage-6.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4e21876082ed887baed0146fe222f861b5815455ada3b33b890f4105d806128d"},
{file = "coverage-6.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34626a7eee2a3da12af0507780bb51eb52dca0e1751fd1471d0810539cefb536"},
{file = "coverage-6.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1ebf730d2381158ecf3dfd4453fbca0613e16eaa547b4170e2450c9707665ce7"},
{file = "coverage-6.3.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd6fe30bd519694b356cbfcaca9bd5c1737cddd20778c6a581ae20dc8c04def2"},
{file = "coverage-6.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:96f8a1cb43ca1422f36492bebe63312d396491a9165ed3b9231e778d43a7fca4"},
{file = "coverage-6.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:dd035edafefee4d573140a76fdc785dc38829fe5a455c4bb12bac8c20cfc3d69"},
{file = "coverage-6.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5ca5aeb4344b30d0bec47481536b8ba1181d50dbe783b0e4ad03c95dc1296684"},
{file = "coverage-6.3.2-cp39-cp39-win32.whl", hash = "sha256:f5fa5803f47e095d7ad8443d28b01d48c0359484fec1b9d8606d0e3282084bc4"},
{file = "coverage-6.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:9548f10d8be799551eb3a9c74bbf2b4934ddb330e08a73320123c07f95cc2d92"},
{file = "coverage-6.3.2-pp36.pp37.pp38-none-any.whl", hash = "sha256:18d520c6860515a771708937d2f78f63cc47ab3b80cb78e86573b0a760161faf"},
{file = "coverage-6.3.2.tar.gz", hash = "sha256:03e2a7826086b91ef345ff18742ee9fc47a6839ccd517061ef8fa1976e652ce9"},
{file = "coverage-6.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:50ed480b798febce113709846b11f5d5ed1e529c88d8ae92f707806c50297abf"},
{file = "coverage-6.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:26f8f92699756cb7af2b30720de0c5bb8d028e923a95b6d0c891088025a1ac8f"},
{file = "coverage-6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:60c2147921da7f4d2d04f570e1838db32b95c5509d248f3fe6417e91437eaf41"},
{file = "coverage-6.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:750e13834b597eeb8ae6e72aa58d1d831b96beec5ad1d04479ae3772373a8088"},
{file = "coverage-6.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af5b9ee0fc146e907aa0f5fb858c3b3da9199d78b7bb2c9973d95550bd40f701"},
{file = "coverage-6.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a022394996419142b33a0cf7274cb444c01d2bb123727c4bb0b9acabcb515dea"},
{file = "coverage-6.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5a78cf2c43b13aa6b56003707c5203f28585944c277c1f3f109c7b041b16bd39"},
{file = "coverage-6.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9229d074e097f21dfe0643d9d0140ee7433814b3f0fc3706b4abffd1e3038632"},
{file = "coverage-6.4-cp310-cp310-win32.whl", hash = "sha256:fb45fe08e1abc64eb836d187b20a59172053999823f7f6ef4f18a819c44ba16f"},
{file = "coverage-6.4-cp310-cp310-win_amd64.whl", hash = "sha256:3cfd07c5889ddb96a401449109a8b97a165be9d67077df6802f59708bfb07720"},
{file = "coverage-6.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:03014a74023abaf5a591eeeaf1ac66a73d54eba178ff4cb1fa0c0a44aae70383"},
{file = "coverage-6.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c82f2cd69c71698152e943f4a5a6b83a3ab1db73b88f6e769fabc86074c3b08"},
{file = "coverage-6.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7b546cf2b1974ddc2cb222a109b37c6ed1778b9be7e6b0c0bc0cf0438d9e45a6"},
{file = "coverage-6.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc173f1ce9ffb16b299f51c9ce53f66a62f4d975abe5640e976904066f3c835d"},
{file = "coverage-6.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c53ad261dfc8695062fc8811ac7c162bd6096a05a19f26097f411bdf5747aee7"},
{file = "coverage-6.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:eef5292b60b6de753d6e7f2d128d5841c7915fb1e3321c3a1fe6acfe76c38052"},
{file = "coverage-6.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:543e172ce4c0de533fa892034cce260467b213c0ea8e39da2f65f9a477425211"},
{file = "coverage-6.4-cp37-cp37m-win32.whl", hash = "sha256:00c8544510f3c98476bbd58201ac2b150ffbcce46a8c3e4fb89ebf01998f806a"},
{file = "coverage-6.4-cp37-cp37m-win_amd64.whl", hash = "sha256:b84ab65444dcc68d761e95d4d70f3cfd347ceca5a029f2ffec37d4f124f61311"},
{file = "coverage-6.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d548edacbf16a8276af13063a2b0669d58bbcfca7c55a255f84aac2870786a61"},
{file = "coverage-6.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:033ebec282793bd9eb988d0271c211e58442c31077976c19c442e24d827d356f"},
{file = "coverage-6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:742fb8b43835078dd7496c3c25a1ec8d15351df49fb0037bffb4754291ef30ce"},
{file = "coverage-6.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d55fae115ef9f67934e9f1103c9ba826b4c690e4c5bcf94482b8b2398311bf9c"},
{file = "coverage-6.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cd698341626f3c77784858427bad0cdd54a713115b423d22ac83a28303d1d95"},
{file = "coverage-6.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:62d382f7d77eeeaff14b30516b17bcbe80f645f5cf02bb755baac376591c653c"},
{file = "coverage-6.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:016d7f5cf1c8c84f533a3c1f8f36126fbe00b2ec0ccca47cc5731c3723d327c6"},
{file = "coverage-6.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:69432946f154c6add0e9ede03cc43b96e2ef2733110a77444823c053b1ff5166"},
{file = "coverage-6.4-cp38-cp38-win32.whl", hash = "sha256:83bd142cdec5e4a5c4ca1d4ff6fa807d28460f9db919f9f6a31babaaa8b88426"},
{file = "coverage-6.4-cp38-cp38-win_amd64.whl", hash = "sha256:4002f9e8c1f286e986fe96ec58742b93484195defc01d5cc7809b8f7acb5ece3"},
{file = "coverage-6.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e4f52c272fdc82e7c65ff3f17a7179bc5f710ebc8ce8a5cadac81215e8326740"},
{file = "coverage-6.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b5578efe4038be02d76c344007b13119b2b20acd009a88dde8adec2de4f630b5"},
{file = "coverage-6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8099ea680201c2221f8468c372198ceba9338a5fec0e940111962b03b3f716a"},
{file = "coverage-6.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a00441f5ea4504f5abbc047589d09e0dc33eb447dc45a1a527c8b74bfdd32c65"},
{file = "coverage-6.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e76bd16f0e31bc2b07e0fb1379551fcd40daf8cdf7e24f31a29e442878a827c"},
{file = "coverage-6.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:8d2e80dd3438e93b19e1223a9850fa65425e77f2607a364b6fd134fcd52dc9df"},
{file = "coverage-6.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:341e9c2008c481c5c72d0e0dbf64980a4b2238631a7f9780b0fe2e95755fb018"},
{file = "coverage-6.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:21e6686a95025927775ac501e74f5940cdf6fe052292f3a3f7349b0abae6d00f"},
{file = "coverage-6.4-cp39-cp39-win32.whl", hash = "sha256:968ed5407f9460bd5a591cefd1388cc00a8f5099de9e76234655ae48cfdbe2c3"},
{file = "coverage-6.4-cp39-cp39-win_amd64.whl", hash = "sha256:e35217031e4b534b09f9b9a5841b9344a30a6357627761d4218818b865d45055"},
{file = "coverage-6.4-pp36.pp37.pp38-none-any.whl", hash = "sha256:e637ae0b7b481905358624ef2e81d7fb0b1af55f5ff99f9ba05442a444b11e45"},
{file = "coverage-6.4.tar.gz", hash = "sha256:727dafd7f67a6e1cad808dc884bd9c5a2f6ef1f8f6d2f22b37b96cb0080d4f49"},
]
cryptography = [
{file = "cryptography-36.0.1-cp36-abi3-macosx_10_10_universal2.whl", hash = "sha256:73bc2d3f2444bcfeac67dd130ff2ea598ea5f20b40e36d19821b4df8c9c5037b"},
@@ -966,29 +966,29 @@ mccabe = [
{file = "mccabe-0.6.1.tar.gz", hash = "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f"},
]
mypy = [
{file = "mypy-0.950-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cf9c261958a769a3bd38c3e133801ebcd284ffb734ea12d01457cb09eacf7d7b"},
{file = "mypy-0.950-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b5b5bd0ffb11b4aba2bb6d31b8643902c48f990cc92fda4e21afac658044f0c0"},
{file = "mypy-0.950-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5e7647df0f8fc947388e6251d728189cfadb3b1e558407f93254e35abc026e22"},
{file = "mypy-0.950-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eaff8156016487c1af5ffa5304c3e3fd183edcb412f3e9c72db349faf3f6e0eb"},
{file = "mypy-0.950-cp310-cp310-win_amd64.whl", hash = "sha256:563514c7dc504698fb66bb1cf897657a173a496406f1866afae73ab5b3cdb334"},
{file = "mypy-0.950-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:dd4d670eee9610bf61c25c940e9ade2d0ed05eb44227275cce88701fee014b1f"},
{file = "mypy-0.950-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ca75ecf2783395ca3016a5e455cb322ba26b6d33b4b413fcdedfc632e67941dc"},
{file = "mypy-0.950-cp36-cp36m-win_amd64.whl", hash = "sha256:6003de687c13196e8a1243a5e4bcce617d79b88f83ee6625437e335d89dfebe2"},
{file = "mypy-0.950-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4c653e4846f287051599ed8f4b3c044b80e540e88feec76b11044ddc5612ffed"},
{file = "mypy-0.950-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e19736af56947addedce4674c0971e5dceef1b5ec7d667fe86bcd2b07f8f9075"},
{file = "mypy-0.950-cp37-cp37m-win_amd64.whl", hash = "sha256:ef7beb2a3582eb7a9f37beaf38a28acfd801988cde688760aea9e6cc4832b10b"},
{file = "mypy-0.950-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0112752a6ff07230f9ec2f71b0d3d4e088a910fdce454fdb6553e83ed0eced7d"},
{file = "mypy-0.950-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ee0a36edd332ed2c5208565ae6e3a7afc0eabb53f5327e281f2ef03a6bc7687a"},
{file = "mypy-0.950-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77423570c04aca807508a492037abbd72b12a1fb25a385847d191cd50b2c9605"},
{file = "mypy-0.950-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5ce6a09042b6da16d773d2110e44f169683d8cc8687e79ec6d1181a72cb028d2"},
{file = "mypy-0.950-cp38-cp38-win_amd64.whl", hash = "sha256:5b231afd6a6e951381b9ef09a1223b1feabe13625388db48a8690f8daa9b71ff"},
{file = "mypy-0.950-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0384d9f3af49837baa92f559d3fa673e6d2652a16550a9ee07fc08c736f5e6f8"},
{file = "mypy-0.950-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1fdeb0a0f64f2a874a4c1f5271f06e40e1e9779bf55f9567f149466fc7a55038"},
{file = "mypy-0.950-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:61504b9a5ae166ba5ecfed9e93357fd51aa693d3d434b582a925338a2ff57fd2"},
{file = "mypy-0.950-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a952b8bc0ae278fc6316e6384f67bb9a396eb30aced6ad034d3a76120ebcc519"},
{file = "mypy-0.950-cp39-cp39-win_amd64.whl", hash = "sha256:eaea21d150fb26d7b4856766e7addcf929119dd19fc832b22e71d942835201ef"},
{file = "mypy-0.950-py3-none-any.whl", hash = "sha256:a4d9898f46446bfb6405383b57b96737dcfd0a7f25b748e78ef3e8c576bba3cb"},
{file = "mypy-0.950.tar.gz", hash = "sha256:1b333cfbca1762ff15808a0ef4f71b5d3eed8528b23ea1c3fb50543c867d68de"},
{file = "mypy-0.960-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3a3e525cd76c2c4f90f1449fd034ba21fcca68050ff7c8397bb7dd25dd8b8248"},
{file = "mypy-0.960-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7a76dc4f91e92db119b1be293892df8379b08fd31795bb44e0ff84256d34c251"},
{file = "mypy-0.960-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ffdad80a92c100d1b0fe3d3cf1a4724136029a29afe8566404c0146747114382"},
{file = "mypy-0.960-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7d390248ec07fa344b9f365e6ed9d205bd0205e485c555bed37c4235c868e9d5"},
{file = "mypy-0.960-cp310-cp310-win_amd64.whl", hash = "sha256:925aa84369a07846b7f3b8556ccade1f371aa554f2bd4fb31cb97a24b73b036e"},
{file = "mypy-0.960-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:239d6b2242d6c7f5822163ee082ef7a28ee02e7ac86c35593ef923796826a385"},
{file = "mypy-0.960-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f1ba54d440d4feee49d8768ea952137316d454b15301c44403db3f2cb51af024"},
{file = "mypy-0.960-cp36-cp36m-win_amd64.whl", hash = "sha256:cb7752b24528c118a7403ee955b6a578bfcf5879d5ee91790667c8ea511d2085"},
{file = "mypy-0.960-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:826a2917c275e2ee05b7c7b736c1e6549a35b7ea5a198ca457f8c2ebea2cbecf"},
{file = "mypy-0.960-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:3eabcbd2525f295da322dff8175258f3fc4c3eb53f6d1929644ef4d99b92e72d"},
{file = "mypy-0.960-cp37-cp37m-win_amd64.whl", hash = "sha256:f47322796c412271f5aea48381a528a613f33e0a115452d03ae35d673e6064f8"},
{file = "mypy-0.960-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2c7f8bb9619290836a4e167e2ef1f2cf14d70e0bc36c04441e41487456561409"},
{file = "mypy-0.960-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fbfb873cf2b8d8c3c513367febde932e061a5f73f762896826ba06391d932b2a"},
{file = "mypy-0.960-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc537885891382e08129d9862553b3d00d4be3eb15b8cae9e2466452f52b0117"},
{file = "mypy-0.960-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:481f98c6b24383188c928f33dd2f0776690807e12e9989dd0419edd5c74aa53b"},
{file = "mypy-0.960-cp38-cp38-win_amd64.whl", hash = "sha256:29dc94d9215c3eb80ac3c2ad29d0c22628accfb060348fd23d73abe3ace6c10d"},
{file = "mypy-0.960-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:33d53a232bb79057f33332dbbb6393e68acbcb776d2f571ba4b1d50a2c8ba873"},
{file = "mypy-0.960-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8d645e9e7f7a5da3ec3bbcc314ebb9bb22c7ce39e70367830eb3c08d0140b9ce"},
{file = "mypy-0.960-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:85cf2b14d32b61db24ade8ac9ae7691bdfc572a403e3cb8537da936e74713275"},
{file = "mypy-0.960-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a85a20b43fa69efc0b955eba1db435e2ffecb1ca695fe359768e0503b91ea89f"},
{file = "mypy-0.960-cp39-cp39-win_amd64.whl", hash = "sha256:0ebfb3f414204b98c06791af37a3a96772203da60636e2897408517fcfeee7a8"},
{file = "mypy-0.960-py3-none-any.whl", hash = "sha256:bfd4f6536bd384c27c392a8b8f790fd0ed5c0cf2f63fc2fed7bce56751d53026"},
{file = "mypy-0.960.tar.gz", hash = "sha256:d4fccf04c1acf750babd74252e0f2db6bd2ac3aa8fe960797d9f3ef41cf2bfd4"},
]
mypy-extensions = [
{file = "mypy_extensions-0.4.3-py2.py3-none-any.whl", hash = "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d"},
@@ -1025,8 +1025,8 @@ pathspec = [
{file = "pathspec-0.9.0.tar.gz", hash = "sha256:e564499435a2673d586f6b2130bb5b95f04a3ba06f81b8f895b651a3c76aabb1"},
]
pdme = [
{file = "pdme-0.6.2-py3-none-any.whl", hash = "sha256:7e81081be243006f86c31d3590a77a529764204b3831b83a939a87025d463e26"},
{file = "pdme-0.6.2.tar.gz", hash = "sha256:59c2a3249338317f22cf268c55c90d06b563d42a9278e2826753f6d491379f67"},
{file = "pdme-0.8.4-py3-none-any.whl", hash = "sha256:984df7b7be05f1472bdb7191ed589a1557d7d0e550927fb50d48aede2eaa5536"},
{file = "pdme-0.8.4.tar.gz", hash = "sha256:8109674ddeba85c93d7ac8c008557513e94eb208e6e7ec4869abd2e9aa8033b9"},
]
pkginfo = [
{file = "pkginfo-1.8.2-py2.py3-none-any.whl", hash = "sha256:c24c487c6a7f72c66e816ab1796b96ac6c3d14d49338293d2141664330b55ffc"},

View File

@@ -1,18 +1,18 @@
[tool.poetry]
name = "deepdog"
version = "0.5.0"
version = "0.6.2"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies]
python = "^3.8,<3.10"
pdme = "0.6.2"
pdme = "^0.8.4"
[tool.poetry.dev-dependencies]
pytest = ">=6"
flake8 = "^4.0.1"
pytest-cov = "^3.0.0"
mypy = "^0.950"
mypy = "^0.960"
python-semantic-release = "^7.24.0"
black = "^22.3.0"