Compare commits

..

38 Commits
0.7.3 ... 0.7.9

Author SHA1 Message Date
7aa5ad2eb9 chore(release): 0.7.9
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-21 11:23:42 -05:00
fe331bb544 Merge branch 'filter_compose'
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-21 11:21:36 -05:00
03ac85a967 chore: performance enhancement for fmt in justfile
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-21 11:21:11 -05:00
96589ff659 adds a filter for future dmc use 2024-04-21 10:55:44 -05:00
e5b5809764 build: delete do.sh
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-20 11:28:04 -05:00
1407418c60 Merge pull request 'custom_dmc' (#37) from custom_dmc into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #37
2024-03-20 16:27:19 +00:00
383b51c35d Merge branch 'master' into custom_dmc
Some checks are pending
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master Build started...
2024-03-20 11:23:39 -05:00
5b9123d128 Merge pull request 'flakeupdate' (#36) from flakeupdate into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #36
2024-03-20 16:21:41 +00:00
2b1a1c21e4 Merge branch 'master' into flakeupdate
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2024-03-20 11:18:16 -05:00
ea080ca1c7 feat: adds ability to write custom dmc filters
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-20 10:56:54 -05:00
028fe58561 build: fixes issue brekaing build with unused variable
Some checks failed
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2024-03-19 15:46:00 -05:00
b6a41872d5 just: fmt before test, better comments
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-19 15:45:15 -05:00
731dabd74d nix: adds just as dependency, and fixes tests by installing deepdog app locally 2024-03-19 15:42:43 -05:00
7950f19c2d build: adds justfile to replace do
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-19 15:42:18 -05:00
b27e504bbd lint: unneeded variable definition
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-17 18:40:46 -05:00
33106ba772 nix: updates nix things to work, rewrites flake
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-17 15:18:52 -05:00
3ae0783d00 feat: adds tarucha phase calculation, using spin qubit precession rate noise
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-17 14:11:22 -05:00
e8201865eb chore(release): 0.7.8
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-02-28 18:41:32 -06:00
5f534a60cc fix: uses correct measurements
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:41:05 -06:00
ce90f6774b chore(release): 0.7.7
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:34:13 -06:00
48e41cbd2c fix: fixes phase calculation issue with setting input array
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:33:05 -06:00
603c5607f7 chore(release): 0.7.6
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-02-28 16:49:47 -06:00
bb72e903d1 feat: adds ability to use phase measurements only for correlations
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 16:49:24 -06:00
65e1948835 fix: fixes typeerror vs indexerror on bare float as cost in subset simulation 2024-02-28 16:47:03 -06:00
310977e9b8 chore(release): 0.7.5
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-12-09 16:27:30 -06:00
b10586bf55 fmt: auto format changes
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-12-09 16:25:57 -06:00
1741807be4 feat: adds direct monte carlo package 2023-12-09 16:24:20 -06:00
9a4548def4 feat: allows disabling timestamp in subset simulation bayes results 2023-12-09 16:23:45 -06:00
b4e5f53726 feat: adds longchain logging if logging last generation
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-08-12 19:48:30 -05:00
f7559b2c4f chore(release): 0.7.4
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-07-27 17:40:50 -05:00
9a7a3ff2c7 feat: adds configurable chunk size for the initial mc level 0 SS stage cost calculation to reduce memory usage
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-27 17:39:02 -05:00
c4805806be test: fixes lint for none type
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-27 17:11:57 -05:00
161bcf42ad fix: fixes bug if case of clamping necessary 2023-07-27 17:09:52 -05:00
8e6ead416c feat: allows for deepdog bayesrun with ss to not print csv to make snapshot testing possible 2023-07-27 17:09:36 -05:00
e6defc7948 fix: fixes bug with clamped probabilities being underestimated 2023-07-27 17:05:33 -05:00
33d5da6a4f fmt: adds e203 to flake8 ignore to let black do its thing 2023-07-27 16:49:31 -05:00
1110372a55 build: more efficient doo fmt 2023-07-27 16:47:11 -05:00
e6a00d6b8f debug: adds debug logs 2023-07-27 16:25:51 -05:00
17 changed files with 1897 additions and 400 deletions

View File

@@ -1,3 +1,3 @@
[flake8]
ignore = W191, E501, W503
ignore = W191, E501, W503, E203
max-line-length = 120

View File

@@ -2,6 +2,63 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [0.7.9](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.8...0.7.9) (2024-04-21)
### Features
* adds ability to write custom dmc filters ([ea080ca](https://gitea.deepak.science:2222/physics/deepdog/commit/ea080ca1c7068042ce1e0a222d317f785a6b05f4))
* adds tarucha phase calculation, using spin qubit precession rate noise ([3ae0783](https://gitea.deepak.science:2222/physics/deepdog/commit/3ae0783d00cbe6a76439c1d671f2cff621d8d0a8))
### [0.7.8](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.7...0.7.8) (2024-02-29)
### Bug Fixes
* uses correct measurements ([5f534a6](https://gitea.deepak.science:2222/physics/deepdog/commit/5f534a60cc7c4838fcacee11a7e58b97d34e154a))
### [0.7.7](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.6...0.7.7) (2024-02-29)
### Bug Fixes
* fixes phase calculation issue with setting input array ([48e41cb](https://gitea.deepak.science:2222/physics/deepdog/commit/48e41cbd2c58d4c4d2747822d618d7d55257643d))
### [0.7.6](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.5...0.7.6) (2024-02-28)
### Features
* adds ability to use phase measurements only for correlations ([bb72e90](https://gitea.deepak.science:2222/physics/deepdog/commit/bb72e903d14704a3783daf2dbc1797b90880aa85))
### Bug Fixes
* fixes typeerror vs indexerror on bare float as cost in subset simulation ([65e1948](https://gitea.deepak.science:2222/physics/deepdog/commit/65e19488359d7f5656660da7da8f32ed474989c3))
### [0.7.5](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.4...0.7.5) (2023-12-09)
### Features
* adds direct monte carlo package ([1741807](https://gitea.deepak.science:2222/physics/deepdog/commit/1741807be43d08fb51bc94518dd3b67585c04c20))
* adds longchain logging if logging last generation ([b4e5f53](https://gitea.deepak.science:2222/physics/deepdog/commit/b4e5f5372682fc64c3734a96c4a899e018f127ce))
* allows disabling timestamp in subset simulation bayes results ([9a4548d](https://gitea.deepak.science:2222/physics/deepdog/commit/9a4548def45a01f1f518135d4237c3dc09dcc342))
### [0.7.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.3...0.7.4) (2023-07-27)
### Features
* adds configurable chunk size for the initial mc level 0 SS stage cost calculation to reduce memory usage ([9a7a3ff](https://gitea.deepak.science:2222/physics/deepdog/commit/9a7a3ff2c7ebe81d5e10647ce39844c372ff7b07))
* allows for deepdog bayesrun with ss to not print csv to make snapshot testing possible ([8e6ead4](https://gitea.deepak.science:2222/physics/deepdog/commit/8e6ead416c9eba56f568f648d0df44caaa510cfe))
### Bug Fixes
* fixes bug if case of clamping necessary ([161bcf4](https://gitea.deepak.science:2222/physics/deepdog/commit/161bcf42addf331661c3929073688b9f2c13502c))
* fixes bug with clamped probabilities being underestimated ([e6defc7](https://gitea.deepak.science:2222/physics/deepdog/commit/e6defc794871a48ac331023eb477bd235b78d6d0))
### [0.7.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.2...0.7.3) (2023-07-27)

View File

@@ -71,6 +71,9 @@ class BayesRunWithSubspaceSimulation:
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
ss_initial_costs_chunk_size=100,
write_output_to_bayesruncsv=True,
use_timestamp_for_output=True,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
@@ -108,8 +111,11 @@ class BayesRunWithSubspaceSimulation:
self.probabilities = [1 / self.model_count] * self.model_count
if use_timestamp_for_output:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.bayesrunwithss.csv"
else:
self.filename = f"{filename_slug}.bayesrunwithss.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
@@ -135,14 +141,22 @@ class BayesRunWithSubspaceSimulation:
self.ss_default_w_log_step = ss_default_w_log_step
self.ss_default_upper_w_log_step = ss_default_upper_w_log_step
self.ss_dump_last_generation = ss_dump_last_generation
self.ss_initial_costs_chunk_size = ss_initial_costs_chunk_size
self.run_count = run_count
def go(self) -> None:
self.write_output_to_csv = write_output_to_bayesruncsv
def go(self) -> Sequence:
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writeheader()
return_result = []
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
@@ -174,6 +188,7 @@ class BayesRunWithSubspaceSimulation:
self.ss_default_r_step,
self.ss_default_w_log_step,
self.ss_default_upper_w_log_step,
initial_cost_chunk_size=self.ss_initial_costs_chunk_size,
keep_probs_list=False,
dump_last_generation_to_file=self.ss_dump_last_generation,
)
@@ -199,7 +214,11 @@ class BayesRunWithSubspaceSimulation:
for (name, result) in zip(self.model_names, results):
if result.over_target_likelihood is None:
clamped_likelihood = result.probs_list[-1][0] / CLAMPING_FACTOR
if result.lowest_likelihood is None:
_logger.error(f"result {result} looks bad")
clamped_likelihood = 10**-15
else:
clamped_likelihood = result.lowest_likelihood / CLAMPING_FACTOR
_logger.warning(
f"got a none result, clamping to {clamped_likelihood}"
)
@@ -222,7 +241,9 @@ class BayesRunWithSubspaceSimulation:
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
return_result.append(row)
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
@@ -236,3 +257,5 @@ class BayesRunWithSubspaceSimulation:
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break
return return_result

View File

@@ -0,0 +1,6 @@
from deepdog.direct_monte_carlo.direct_mc import (
DirectMonteCarloRun,
DirectMonteCarloConfig,
)
__all__ = ["DirectMonteCarloRun", "DirectMonteCarloConfig"]

View File

@@ -0,0 +1,14 @@
from typing import Sequence
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
import numpy
class ComposedDMCFilter(DirectMonteCarloFilter):
def __init__(self, filters: Sequence[DirectMonteCarloFilter]):
self.filters = filters
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
current_sample = samples
for filter in self.filters:
current_sample = filter.filter_samples(current_sample)
return current_sample

View File

@@ -0,0 +1,174 @@
import pdme.model
import pdme.measurement
import pdme.measurement.input_types
import pdme.subspace_simulation
from typing import Tuple, Dict, NewType, Any
from dataclasses import dataclass
import logging
import numpy
import numpy.random
import pdme.util.fast_v_calc
_logger = logging.getLogger(__name__)
@dataclass
class DirectMonteCarloResult:
successes: int
monte_carlo_count: int
likelihood: float
@dataclass
class DirectMonteCarloConfig:
monte_carlo_count_per_cycle: int = 10000
monte_carlo_cycles: int = 10
target_success: int = 100
max_monte_carlo_cycles_steps: int = 10
monte_carlo_seed: int = 1234
write_successes_to_file: bool = False
tag: str = ""
# Aliasing dict as a generic data container
DirectMonteCarloData = NewType("DirectMonteCarloData", Dict[str, Any])
class DirectMonteCarloFilter:
"""
Abstract class for filtering out samples matching some criteria. Initialise with data as needed,
then filter out samples as needed.
"""
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
raise NotImplementedError
class DirectMonteCarloRun:
"""
A single model Direct Monte Carlo run, currently implemented only using single threading.
An encapsulation of the steps needed for a Bayes run.
Parameters
----------
model_name_pair : Sequence[Tuple(str, pdme.model.DipoleModel)]
The model to evaluate, with name.
measurements: Sequence[pdme.measurement.DotRangeMeasurement]
The measurements as dot ranges to use as the bounds for the Monte Carlo calculation.
monte_carlo_count_per_cycle: int
The number of Monte Carlo iterations to use in a single cycle calculation.
monte_carlo_cycles: int
The number of cycles to use in each step.
Increasing monte_carlo_count_per_cycle increases memory usage (and runtime), while this increases runtime, allowing
control over memory use.
target_success: int
The number of successes to target before exiting early.
Should likely be ~100 but can go higher to.
max_monte_carlo_cycles_steps: int
The number of steps to use. Each step consists of monte_carlo_cycles cycles, each of which has monte_carlo_count_per_cycle iterations.
monte_carlo_seed: int
The seed to use for the RNG.
"""
def __init__(
self,
model_name_pair: Tuple[str, pdme.model.DipoleModel],
filter: DirectMonteCarloFilter,
config: DirectMonteCarloConfig,
):
self.model_name, self.model = model_name_pair
# self.measurements = measurements
# self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
# self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
# self.dot_inputs
# )
self.config = config
self.filter = filter
# (
# self.lows,
# self.highs,
# ) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
# self.measurements
# )
def _single_run(self, seed) -> numpy.ndarray:
rng = numpy.random.default_rng(seed)
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
self.config.monte_carlo_count_per_cycle, -1, rng
)
current_sample = sample_dipoles
return self.filter.filter_samples(current_sample)
# for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
# if len(current_sample) < 1:
# break
# vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
# numpy.array([di]), current_sample
# )
# current_sample = current_sample[
# numpy.all((vals > low) & (vals < high), axis=1)
# ]
# return current_sample
def execute(self) -> DirectMonteCarloResult:
step_count = 0
total_success = 0
total_count = 0
count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
)
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
_logger.debug(f"Executing step {step_count}")
for cycle_i, seed in enumerate(
seed_sequence.spawn(self.config.monte_carlo_cycles)
):
cycle_success_configs = self._single_run(seed)
cycle_success_count = len(cycle_success_configs)
if cycle_success_count > 0:
_logger.debug(
f"For cycle {cycle_i} received {cycle_success_count} successes"
)
_logger.debug(cycle_success_configs)
if self.config.write_successes_to_file:
sorted_by_freq = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
dipole_config
)
for dipole_config in cycle_success_configs
]
)
dipole_count = numpy.array(cycle_success_configs).shape[1]
for n in range(dipole_count):
numpy.savetxt(
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
sorted_by_freq[:, n],
delimiter=",",
)
total_success += cycle_success_count
_logger.debug(f"At end of step {step_count} have {total_success} successes")
step_count += 1
total_count += count_per_step
return DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
)

View File

@@ -0,0 +1,143 @@
from numpy import ndarray
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
from typing import Sequence
import pdme.measurement
import pdme.measurement.input_types
import pdme.util.fast_nonlocal_spectrum
import pdme.util.fast_v_calc
import numpy
class SingleDotPotentialFilter(DirectMonteCarloFilter):
def __init__(self, measurements: Sequence[pdme.measurement.DotRangeMeasurement]):
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
(
self.lows,
self.highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
numpy.array([di]), current_sample
)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
return current_sample
class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__(
self,
pair_phase_measurements: Sequence[pdme.measurement.DotPairRangeMeasurement],
):
self.pair_phase_measurements = pair_phase_measurements
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_phase_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
(
self.pair_phase_lows,
self.pair_phase_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.pair_phase_measurements
)
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
self, dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# Don't actually need this
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for pi, plow, phigh in zip(
self.dot_pair_inputs_array, self.pair_phase_lows, self.pair_phase_highs
):
if len(current_sample) < 1:
break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg(
self.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return current_sample

View File

@@ -66,6 +66,139 @@ def get_a_result_fast_filter_pairs(input) -> int:
return len(current_sample)
def get_a_result_fast_filter_potential_pair_phase_only(input) -> int:
(
model,
pair_inputs,
pair_phase_lows,
pair_phase_highs,
monte_carlo_count,
seed,
) = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for pi, plow, phigh in zip(pair_inputs, pair_phase_lows, pair_phase_highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_nonlocal_spectrum.signarg(
pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return len(current_sample)
def get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only(input) -> int:
(
model,
pair_inputs,
pair_phase_lows,
pair_phase_highs,
monte_carlo_count,
seed,
) = input
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# don't actually need, because we're assuming they're the same frequencies across the pair
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for pi, plow, phigh in zip(pair_inputs, pair_phase_lows, pair_phase_highs):
if len(current_sample) < 1:
break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg(
fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return len(current_sample)
def get_a_result_fast_filter(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, seed = input
@@ -108,6 +241,11 @@ class RealSpectrumRun:
run_count: int
The number of runs to do.
If pair_measurements is not None, uses pair measurement method (and single measurements too).
If pair_phase_measurements is not None, ignores measurements and uses phase measurements _only_
This is lazy design on my part.
"""
def __init__(
@@ -125,6 +263,9 @@ class RealSpectrumRun:
pair_measurements: Optional[
Sequence[pdme.measurement.DotPairRangeMeasurement]
] = None,
pair_phase_measurements: Optional[
Sequence[pdme.measurement.DotPairRangeMeasurement]
] = None,
) -> None:
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
@@ -136,6 +277,8 @@ class RealSpectrumRun:
if pair_measurements is not None:
self.pair_measurements = pair_measurements
self.use_pair_measurements = True
self.use_pair_phase_measurements = False
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_measurements
@@ -145,8 +288,22 @@ class RealSpectrumRun:
self.dot_pair_inputs
)
)
elif pair_phase_measurements is not None:
self.use_pair_measurements = False
self.use_pair_phase_measurements = True
self.pair_phase_measurements = pair_phase_measurements
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_phase_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(
self.dot_pair_inputs
)
)
else:
self.use_pair_measurements = False
self.use_pair_phase_measurements = False
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
@@ -198,6 +355,16 @@ class RealSpectrumRun:
self.pair_measurements
)
pair_phase_lows = None
pair_phase_highs = None
if self.use_pair_phase_measurements:
(
pair_phase_lows,
pair_phase_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.pair_phase_measurements
)
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
@@ -229,6 +396,7 @@ class RealSpectrumRun:
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
if self.use_pair_measurements:
_logger.debug("using pair measurements")
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter_pairs,
@@ -249,6 +417,26 @@ class RealSpectrumRun:
self.chunksize,
)
)
elif self.use_pair_phase_measurements:
_logger.debug("using pair phase measurements")
_logger.debug("specifically using tarucha")
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only,
[
(
model,
self.dot_pair_inputs_array,
pair_phase_lows,
pair_phase_highs,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
else:
current_success = sum(

View File

@@ -40,6 +40,7 @@ class SubsetSimulation:
default_upper_w_log_step=4,
keep_probs_list=True,
dump_last_generation_to_file=False,
initial_cost_chunk_size=100,
):
name, model = model_name_pair
self.model_name = name
@@ -85,6 +86,8 @@ class SubsetSimulation:
self.keep_probs_list = keep_probs_list
self.dump_last_generations = dump_last_generation_to_file
self.initial_cost_chunk_size = initial_cost_chunk_size
def execute(self) -> SubsetSimulationResult:
probs_list = []
@@ -96,7 +99,20 @@ class SubsetSimulation:
)
# _logger.debug(sample_dipoles)
# _logger.debug(sample_dipoles.shape)
costs = self.cost_function_to_use(sample_dipoles)
raw_costs = []
_logger.debug(
f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}"
)
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size):
_logger.debug(f"doing chunk {x}")
raw_costs.extend(
self.cost_function_to_use(
sample_dipoles[x : x + self.initial_cost_chunk_size]
)
)
costs = numpy.array(raw_costs)
_logger.debug(f"costs: {costs}")
sorted_indexes = costs.argsort()[::-1]
@@ -120,7 +136,7 @@ class SubsetSimulation:
mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
for i in range(self.m_max):
next_seeds = all_chains[-self.n_c:]
next_seeds = all_chains[-self.n_c :]
if self.dump_last_generations:
_logger.info("writing out csv file")
@@ -133,6 +149,37 @@ class SubsetSimulation:
delimiter=",",
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
all_long_chains = []
for seed_index, (c, s) in enumerate(
next_seeds[:: len(next_seeds) // 20]
):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(f"\t{seed_index}: doing long chain on the next seed")
long_chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
1000,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
)
for _, chained in long_chain:
all_long_chains.append(chained)
all_long_chains_array = numpy.array(all_long_chains)
for n in range(self.model.n):
_logger.info(f"{all_long_chains_array[:, n].shape}")
numpy.savetxt(
f"long_chain_generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
all_long_chains_array[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
@@ -148,11 +195,14 @@ class SubsetSimulation:
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
_logger.debug("Starting the MCMC")
all_chains = []
for c, s in next_seeds:
for seed_index, (c, s) in enumerate(next_seeds):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(
f"\t{seed_index}: getting another chain from the next seed"
)
chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
@@ -165,13 +215,14 @@ class SubsetSimulation:
for cost, chained in chain:
try:
filtered_cost = cost[0]
except IndexError:
except (IndexError, TypeError):
filtered_cost = cost
all_chains.append((filtered_cost, chained))
_logger.debug("finished mcmc")
# _logger.debug(all_chains)
all_chains.sort(key=lambda c: c[0], reverse=True)
_logger.debug("finished sorting all_chains")
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
@@ -240,7 +291,7 @@ class SubsetSimulation:
# _logger.info(f"\t{prob}: {prob_cost}")
probs_list.sort(key=lambda c: c[0], reverse=True)
min_likelihood = ((1) / (self.n_c * self.n_s)) / (self.n_s ** (self.m_max + 1))
min_likelihood = ((1) / (self.n_c * self.n_s)) / (self.n_s ** (self.m_max))
result = SubsetSimulationResult(
probs_list=probs_list,

38
do.sh
View File

@@ -1,38 +0,0 @@
#!/usr/bin/env bash
# Do - The Simplest Build Tool on Earth.
# Documentation and examples see https://github.com/8gears/do
set -Eeuo pipefail # -e "Automatic exit from bash shell script on error" -u "Treat unset variables and parameters as errors"
build() {
echo "I am ${FUNCNAME[0]}ing"
poetry build
}
test() {
echo "I am ${FUNCNAME[0]}ing"
poetry run flake8 deepdog tests
poetry run mypy deepdog
poetry run pytest
}
fmt() {
poetry run black .
find . -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
}
release() {
./scripts/release.sh
}
htmlcov() {
poetry run pytest --cov-report=html
}
all() {
build && test
}
"$@" # <- execute the task
[ "$#" -gt 0 ] || printf "Usage:\n\t./do.sh %s\n" "($(compgen -A function | grep '^[^_]' | paste -sd '|' -))"

145
flake.lock generated
View File

@@ -1,28 +1,33 @@
{
"nodes": {
"flake-utils": {
"inputs": {
"systems": "systems"
},
"locked": {
"lastModified": 1648297722,
"narHash": "sha256-W+qlPsiZd8F3XkzXOzAoR+mpFqzm3ekQkJNa+PIh1BQ=",
"lastModified": 1710146030,
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
"type": "github"
}
},
"flake-utils_2": {
"inputs": {
"systems": "systems_2"
},
"locked": {
"lastModified": 1653893745,
"narHash": "sha256-0jntwV3Z8//YwuOjzhV2sgJJPt+HY6KhU7VZUL0fKZQ=",
"lastModified": 1705309234,
"narHash": "sha256-uNRRNRKmJyCRC/8y1RqBkqWBLM034y4qN7EprSdmgyA=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "1ed9fb1935d260de5fe1c2f7ee0ebaae17ed2fa1",
"rev": "1ef2e671c3b0c19053962c07dbda38332dcebf26",
"type": "github"
},
"original": {
@@ -31,29 +36,34 @@
"type": "github"
}
},
"nix-github-actions": {
"inputs": {
"nixpkgs": [
"poetry2nixSrc",
"nixpkgs"
]
},
"locked": {
"lastModified": 1703863825,
"narHash": "sha256-rXwqjtwiGKJheXB43ybM8NwWB8rO2dSRrEqes0S7F5Y=",
"owner": "nix-community",
"repo": "nix-github-actions",
"rev": "5163432afc817cf8bd1f031418d1869e4c9d5547",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "nix-github-actions",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1655087213,
"narHash": "sha256-4R5oQ+OwGAAcXWYrxC4gFMTUSstGxaN8kN7e8hkum/8=",
"lastModified": 1710703777,
"narHash": "sha256-M4CNAgjrtvrxIWIAc98RTYcVFoAgwUhrYekeiMScj18=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
"type": "github"
}
},
"nixpkgs_2": {
"locked": {
"lastModified": 1655046959,
"narHash": "sha256-gxqHZKq1ReLDe6ZMJSbmSZlLY95DsVq5o6jQihhzvmw=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "07bf3d25ce1da3bee6703657e6a787a4c6cdcea9",
"rev": "fc7885fbcea4b782142e06ce2d4d08cf92862004",
"type": "github"
},
"original": {
@@ -62,23 +72,27 @@
"type": "github"
}
},
"poetry2nix": {
"poetry2nixSrc": {
"inputs": {
"flake-utils": "flake-utils_2",
"nixpkgs": "nixpkgs_2"
"nix-github-actions": "nix-github-actions",
"nixpkgs": [
"nixpkgs"
],
"systems": "systems_3",
"treefmt-nix": "treefmt-nix"
},
"locked": {
"lastModified": 1654921554,
"narHash": "sha256-hkfMdQAHSwLWlg0sBVvgrQdIiBP45U1/ktmFpY4g2Mo=",
"lastModified": 1708589824,
"narHash": "sha256-2GOiFTkvs5MtVF65sC78KNVxQSmsxtk0WmV1wJ9V2ck=",
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
"rev": "3c92540611f42d3fb2d0d084a6c694cd6544b609",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
"type": "github"
}
},
@@ -86,7 +100,72 @@
"inputs": {
"flake-utils": "flake-utils",
"nixpkgs": "nixpkgs",
"poetry2nix": "poetry2nix"
"poetry2nixSrc": "poetry2nixSrc"
}
},
"systems": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_2": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_3": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"id": "systems",
"type": "indirect"
}
},
"treefmt-nix": {
"inputs": {
"nixpkgs": [
"poetry2nixSrc",
"nixpkgs"
]
},
"locked": {
"lastModified": 1708335038,
"narHash": "sha256-ETLZNFBVCabo7lJrpjD6cAbnE11eDOjaQnznmg/6hAE=",
"owner": "numtide",
"repo": "treefmt-nix",
"rev": "e504621290a1fd896631ddbc5e9c16f4366c9f65",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "treefmt-nix",
"type": "github"
}
}
},

View File

@@ -1,63 +1,46 @@
{
description = "Application packaged using poetry2nix";
inputs.flake-utils.url = "github:numtide/flake-utils?rev=0f8662f1319ad6abf89b3380dd2722369fc51ade";
inputs.nixpkgs.url = "github:NixOS/nixpkgs?rev=37b6b161e536fddca54424cf80662bce735bdd1e";
inputs.poetry2nix.url = "github:nix-community/poetry2nix?rev=7b71679fa7df00e1678fc3f1d1d4f5f372341b63";
inputs.flake-utils.url = "github:numtide/flake-utils";
inputs.nixpkgs.url = "github:NixOS/nixpkgs";
inputs.poetry2nixSrc = {
url = "github:nix-community/poetry2nix";
inputs.nixpkgs.follows = "nixpkgs";
};
outputs = { self, nixpkgs, flake-utils, poetry2nix }:
{
# Nixpkgs overlay providing the application
overlay = nixpkgs.lib.composeManyExtensions [
poetry2nix.overlay
(final: prev: {
# The application
deepdog = prev.poetry2nix.mkPoetryApplication {
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
# …
# workaround https://github.com/nix-community/poetry2nix/issues/568
pdme = super.pdme.overridePythonAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
});
});
projectDir = ./.;
};
deepdogEnv = prev.poetry2nix.mkPoetryEnv {
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
# …
# workaround https://github.com/nix-community/poetry2nix/issues/568
pdme = super.pdme.overridePythonAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
});
});
projectDir = ./.;
};
})
];
} // (flake-utils.lib.eachDefaultSystem (system:
outputs = { self, nixpkgs, flake-utils, poetry2nixSrc }:
flake-utils.lib.eachDefaultSystem (system:
let
pkgs = import nixpkgs {
inherit system;
overlays = [ self.overlay ];
pkgs = nixpkgs.legacyPackages.${system};
poetry2nix = poetry2nixSrc.lib.mkPoetry2Nix { inherit pkgs; };
in {
packages = {
deepdogApp = poetry2nix.mkPoetryApplication {
projectDir = self;
python = pkgs.python39;
preferWheels = true;
};
in
{
apps = {
deepdog = pkgs.deepdog;
deepdogEnv = poetry2nix.mkPoetryEnv {
projectDir = self;
python = pkgs.python39;
preferWheels = true;
overrides = poetry2nix.overrides.withDefaults (self: super: {
});
};
defaultApp = pkgs.deepdog;
devShell = pkgs.mkShell {
default = self.packages.${system}.deepdogEnv;
};
devShells.default = pkgs.mkShell {
inputsFrom = [ self.packages.${system}.deepdogEnv ];
buildInputs = [
pkgs.poetry
pkgs.deepdogEnv
pkgs.deepdog
self.packages.${system}.deepdogEnv
self.packages.${system}.deepdogApp
pkgs.just
];
shellHook = ''
export DO_NIX_CUSTOM=1
'';
packages = [ pkgs.nodejs-16_x ];
};
}));
}
);
}

54
justfile Normal file
View File

@@ -0,0 +1,54 @@
# execute default build
default: build
# builds the python module using poetry
build:
echo "building..."
poetry build
# print a message displaying whether nix is being used
checknix:
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
echo "In an interactive nix env."
else
echo "Using poetry as runner, no nix detected."
fi
# run all tests
test: fmt
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
echo "testing, using nix..."
flake8 deepdog tests
mypy deepdog
pytest
else
echo "testing..."
poetry run flake8 deepdog tests
poetry run mypy deepdog
poetry run pytest
fi
# format code
fmt:
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
black .
else
poetry run black .
fi
find deepdog -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
find tests -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
# release the app, checking that our working tree is clean and ready for release
release:
./scripts/release.sh
htmlcov:
poetry run pytest --cov-report=html

925
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,12 +1,12 @@
[tool.poetry]
name = "deepdog"
version = "0.7.3"
version = "0.7.9"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies]
python = ">=3.8.1,<3.10"
pdme = "^0.9.1"
pdme = "^0.9.3"
numpy = "1.22.3"
scipy = "1.10"
@@ -17,6 +17,7 @@ pytest-cov = "^4.1.0"
mypy = "^0.971"
python-semantic-release = "^7.24.0"
black = "^22.3.0"
syrupy = "^4.0.8"
[build-system]
requires = ["poetry-core>=1.0.0"]

View File

@@ -0,0 +1,177 @@
# serializer version: 1
# name: test_basic_analysis
list([
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'dipole_frequency_1': 0.006029931414230269,
'dipole_frequency_2': 85436.78758379082,
'dipole_location_1': array([-4.76615152, -6.33160296, 5.29522808]),
'dipole_location_2': array([-4.72700391, -2.06478573, 6.52467702]),
'dipole_moment_1': array([ 860.14181416, -450.27082062, -239.60852996]),
'dipole_moment_2': array([ 908.18325588, -208.52681777, -362.93214244]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.45,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.3103448275862069,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.9,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.6206896551724138,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.06896551724137932,
'dipole_frequency_1': 102275.63477261562,
'dipole_frequency_2': 1755280.9783485082,
'dipole_location_1': array([ 4.71515397, -9.70362197, 5.43016546]),
'dipole_location_2': array([3.42476038, 3.88562934, 5.15034328]),
'dipole_moment_1': array([-502.60742674, -790.60222587, 349.7626267 ]),
'dipole_moment_2': array([-192.42708465, -434.81009148, -879.7226844 ]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.7,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.6631578947368421,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.18947368421052635,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.7,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.1473684210526316,
'dipole_frequency_1': 2896.799464036654,
'dipole_frequency_2': 9.980565189326681e-05,
'dipole_location_1': array([-4.97465789, 12.54716531, 6.06324588]),
'dipole_location_2': array([ 9.84518459, -11.1183876 , 7.35028226]),
'dipole_moment_1': array([997.67961917, 19.6376112 , 65.19004305]),
'dipole_moment_2': array([305.63093655, 440.57669389, 844.08643362]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.663157894736842,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.18947368421052635,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.1473684210526316,
'dipole_frequency_1': 1.4522667818288244,
'dipole_frequency_2': 2704.9795645301197,
'dipole_location_1': array([ 7.38183022, 16.6745801 , 7.10428414]),
'dipole_location_2': array([-8.15636906, -9.56609132, 6.34141559]),
'dipole_moment_1': array([-145.9924693 , 738.74936496, 657.97839986]),
'dipole_moment_2': array([-960.16113239, 104.96824669, -258.98314046]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.9,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.9465776293823038,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.030050083472454105,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.02337228714524208,
'dipole_frequency_1': 3827.2315421318913,
'dipole_frequency_2': 1.9301094166184413e-05,
'dipole_location_1': array([ 5.02067673, -0.9783039 , 6.1431897 ]),
'dipole_location_2': array([ 4.66628999, 10.80907459, 7.21771744]),
'dipole_moment_1': array([ 871.30659253, -299.17389491, -388.99846068]),
'dipole_moment_2': array([-189.87268624, 677.28285845, 710.79975568]),
}),
])
# ---
# name: test_bayesss_with_tighter_cost
list([
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'dipole_frequency_1': 0.006029931414230269,
'dipole_frequency_2': 85436.78758379082,
'dipole_location_1': array([-4.76615152, -6.33160296, 5.29522808]),
'dipole_location_2': array([-4.72700391, -2.06478573, 6.52467702]),
'dipole_moment_1': array([ 860.14181416, -450.27082062, -239.60852996]),
'dipole_moment_2': array([ 908.18325588, -208.52681777, -362.93214244]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.0109375,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.1044776119402985,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.03125,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.2985074626865672,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.0625,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5970149253731344,
'dipole_frequency_1': 102275.63477261562,
'dipole_frequency_2': 1755280.9783485082,
'dipole_location_1': array([ 4.71515397, -9.70362197, 5.43016546]),
'dipole_location_2': array([3.42476038, 3.88562934, 5.15034328]),
'dipole_moment_1': array([-502.60742674, -790.60222587, 349.7626267 ]),
'dipole_moment_2': array([-192.42708465, -434.81009148, -879.7226844 ]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 7.291135021404688e-05,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.021875,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.4666326413699001,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.0125,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5332944472798858,
'dipole_frequency_1': 2896.799464036654,
'dipole_frequency_2': 9.980565189326681e-05,
'dipole_location_1': array([-4.97465789, 12.54716531, 6.06324588]),
'dipole_location_2': array([ 9.84518459, -11.1183876 , 7.35028226]),
'dipole_moment_1': array([997.67961917, 19.6376112 , 65.19004305]),
'dipole_moment_2': array([305.63093655, 440.57669389, 844.08643362]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 7.291135021404688e-05,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.4666326413699001,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5332944472798858,
'dipole_frequency_1': 1.4522667818288244,
'dipole_frequency_2': 2704.9795645301197,
'dipole_location_1': array([ 7.38183022, 16.6745801 , 7.10428414]),
'dipole_location_2': array([-8.15636906, -9.56609132, 6.34141559]),
'dipole_moment_1': array([-145.9924693 , 738.74936496, 657.97839986]),
'dipole_moment_2': array([-960.16113239, 104.96824669, -258.98314046]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.175,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.00012008361740869356,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.05625,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.24702915581216964,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.15,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.7528507605704217,
'dipole_frequency_1': 3827.2315421318913,
'dipole_frequency_2': 1.9301094166184413e-05,
'dipole_location_1': array([ 5.02067673, -0.9783039 , 6.1431897 ]),
'dipole_location_2': array([ 4.66628999, 10.80907459, 7.21771744]),
'dipole_moment_1': array([ 871.30659253, -299.17389491, -388.99846068]),
'dipole_moment_2': array([-189.87268624, 677.28285845, 710.79975568]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 4.9116305003549454e-08,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.0109375,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.11316396672817797,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.028125,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.886835984155517,
'dipole_frequency_1': 1.1715179359592061e-05,
'dipole_frequency_2': 0.0019103783276337497,
'dipole_location_1': array([-0.95736547, 1.09273812, 7.47158641]),
'dipole_location_2': array([ -3.18510322, -15.64493131, 5.81623624]),
'dipole_moment_1': array([-184.64961369, 956.56786553, 225.57136075]),
'dipole_moment_2': array([ -34.63395137, 801.17771816, -597.42342885]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 1.977090156727901e-10,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.00045552157211010855,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.002734375,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.9995444782301809,
'dipole_frequency_1': 999786.9069039805,
'dipole_frequency_2': 186034.67996840767,
'dipole_location_1': array([-5.59679125, 6.3411602 , 5.33602522]),
'dipole_location_2': array([-0.03412955, -6.83522954, 5.58551513]),
'dipole_moment_1': array([826.38270589, 491.81526944, 274.24325726]),
'dipole_moment_2': array([ 202.74745884, -656.07483714, -726.95204519]),
}),
])
# ---

View File

@@ -0,0 +1,158 @@
import deepdog
import logging
import logging.config
import numpy.random
from pdme.model import (
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
)
_logger = logging.getLogger(__name__)
def fixed_z_model_func(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
n_max,
prob_occupancy,
):
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
0,
0,
n_max,
prob_occupancy,
)
def get_model(orientation):
model_funcs = {
"fixedz": fixed_z_model_func,
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
}
model = model_funcs[orientation](
-10,
10,
-17.5,
17.5,
5,
7.5,
-5,
6.5,
10**3,
2,
0.99999999,
)
model.n = 2
model.rng = numpy.random.default_rng(1234)
return (
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
model,
)
def test_basic_analysis(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=150,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1000,
)
result = square_run.go()
assert result == snapshot
def test_bayesss_with_tighter_cost(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=1.5,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1,
)
result = square_run.go()
assert result == snapshot