Compare commits

..

29 Commits
0.7.4 ... 0.7.9

Author SHA1 Message Date
7aa5ad2eb9 chore(release): 0.7.9
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-21 11:23:42 -05:00
fe331bb544 Merge branch 'filter_compose'
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-21 11:21:36 -05:00
03ac85a967 chore: performance enhancement for fmt in justfile
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-21 11:21:11 -05:00
96589ff659 adds a filter for future dmc use 2024-04-21 10:55:44 -05:00
e5b5809764 build: delete do.sh
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-20 11:28:04 -05:00
1407418c60 Merge pull request 'custom_dmc' (#37) from custom_dmc into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #37
2024-03-20 16:27:19 +00:00
383b51c35d Merge branch 'master' into custom_dmc
Some checks are pending
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master Build started...
2024-03-20 11:23:39 -05:00
5b9123d128 Merge pull request 'flakeupdate' (#36) from flakeupdate into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #36
2024-03-20 16:21:41 +00:00
2b1a1c21e4 Merge branch 'master' into flakeupdate
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2024-03-20 11:18:16 -05:00
ea080ca1c7 feat: adds ability to write custom dmc filters
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-20 10:56:54 -05:00
028fe58561 build: fixes issue brekaing build with unused variable
Some checks failed
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2024-03-19 15:46:00 -05:00
b6a41872d5 just: fmt before test, better comments
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-19 15:45:15 -05:00
731dabd74d nix: adds just as dependency, and fixes tests by installing deepdog app locally 2024-03-19 15:42:43 -05:00
7950f19c2d build: adds justfile to replace do
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-19 15:42:18 -05:00
b27e504bbd lint: unneeded variable definition
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-17 18:40:46 -05:00
33106ba772 nix: updates nix things to work, rewrites flake
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-17 15:18:52 -05:00
3ae0783d00 feat: adds tarucha phase calculation, using spin qubit precession rate noise
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-17 14:11:22 -05:00
e8201865eb chore(release): 0.7.8
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-02-28 18:41:32 -06:00
5f534a60cc fix: uses correct measurements
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:41:05 -06:00
ce90f6774b chore(release): 0.7.7
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:34:13 -06:00
48e41cbd2c fix: fixes phase calculation issue with setting input array
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:33:05 -06:00
603c5607f7 chore(release): 0.7.6
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-02-28 16:49:47 -06:00
bb72e903d1 feat: adds ability to use phase measurements only for correlations
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 16:49:24 -06:00
65e1948835 fix: fixes typeerror vs indexerror on bare float as cost in subset simulation 2024-02-28 16:47:03 -06:00
310977e9b8 chore(release): 0.7.5
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-12-09 16:27:30 -06:00
b10586bf55 fmt: auto format changes
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-12-09 16:25:57 -06:00
1741807be4 feat: adds direct monte carlo package 2023-12-09 16:24:20 -06:00
9a4548def4 feat: allows disabling timestamp in subset simulation bayes results 2023-12-09 16:23:45 -06:00
b4e5f53726 feat: adds longchain logging if logging last generation
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-08-12 19:48:30 -05:00
15 changed files with 1491 additions and 399 deletions

View File

@@ -2,6 +2,49 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [0.7.9](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.8...0.7.9) (2024-04-21)
### Features
* adds ability to write custom dmc filters ([ea080ca](https://gitea.deepak.science:2222/physics/deepdog/commit/ea080ca1c7068042ce1e0a222d317f785a6b05f4))
* adds tarucha phase calculation, using spin qubit precession rate noise ([3ae0783](https://gitea.deepak.science:2222/physics/deepdog/commit/3ae0783d00cbe6a76439c1d671f2cff621d8d0a8))
### [0.7.8](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.7...0.7.8) (2024-02-29)
### Bug Fixes
* uses correct measurements ([5f534a6](https://gitea.deepak.science:2222/physics/deepdog/commit/5f534a60cc7c4838fcacee11a7e58b97d34e154a))
### [0.7.7](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.6...0.7.7) (2024-02-29)
### Bug Fixes
* fixes phase calculation issue with setting input array ([48e41cb](https://gitea.deepak.science:2222/physics/deepdog/commit/48e41cbd2c58d4c4d2747822d618d7d55257643d))
### [0.7.6](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.5...0.7.6) (2024-02-28)
### Features
* adds ability to use phase measurements only for correlations ([bb72e90](https://gitea.deepak.science:2222/physics/deepdog/commit/bb72e903d14704a3783daf2dbc1797b90880aa85))
### Bug Fixes
* fixes typeerror vs indexerror on bare float as cost in subset simulation ([65e1948](https://gitea.deepak.science:2222/physics/deepdog/commit/65e19488359d7f5656660da7da8f32ed474989c3))
### [0.7.5](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.4...0.7.5) (2023-12-09)
### Features
* adds direct monte carlo package ([1741807](https://gitea.deepak.science:2222/physics/deepdog/commit/1741807be43d08fb51bc94518dd3b67585c04c20))
* adds longchain logging if logging last generation ([b4e5f53](https://gitea.deepak.science:2222/physics/deepdog/commit/b4e5f5372682fc64c3734a96c4a899e018f127ce))
* allows disabling timestamp in subset simulation bayes results ([9a4548d](https://gitea.deepak.science:2222/physics/deepdog/commit/9a4548def45a01f1f518135d4237c3dc09dcc342))
### [0.7.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.3...0.7.4) (2023-07-27)

View File

@@ -73,6 +73,7 @@ class BayesRunWithSubspaceSimulation:
ss_dump_last_generation=False,
ss_initial_costs_chunk_size=100,
write_output_to_bayesruncsv=True,
use_timestamp_for_output=True,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
@@ -110,8 +111,11 @@ class BayesRunWithSubspaceSimulation:
self.probabilities = [1 / self.model_count] * self.model_count
if use_timestamp_for_output:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.bayesrunwithss.csv"
else:
self.filename = f"{filename_slug}.bayesrunwithss.csv"
self.max_frequency = max_frequency
if end_threshold is not None:

View File

@@ -0,0 +1,6 @@
from deepdog.direct_monte_carlo.direct_mc import (
DirectMonteCarloRun,
DirectMonteCarloConfig,
)
__all__ = ["DirectMonteCarloRun", "DirectMonteCarloConfig"]

View File

@@ -0,0 +1,14 @@
from typing import Sequence
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
import numpy
class ComposedDMCFilter(DirectMonteCarloFilter):
def __init__(self, filters: Sequence[DirectMonteCarloFilter]):
self.filters = filters
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
current_sample = samples
for filter in self.filters:
current_sample = filter.filter_samples(current_sample)
return current_sample

View File

@@ -0,0 +1,174 @@
import pdme.model
import pdme.measurement
import pdme.measurement.input_types
import pdme.subspace_simulation
from typing import Tuple, Dict, NewType, Any
from dataclasses import dataclass
import logging
import numpy
import numpy.random
import pdme.util.fast_v_calc
_logger = logging.getLogger(__name__)
@dataclass
class DirectMonteCarloResult:
successes: int
monte_carlo_count: int
likelihood: float
@dataclass
class DirectMonteCarloConfig:
monte_carlo_count_per_cycle: int = 10000
monte_carlo_cycles: int = 10
target_success: int = 100
max_monte_carlo_cycles_steps: int = 10
monte_carlo_seed: int = 1234
write_successes_to_file: bool = False
tag: str = ""
# Aliasing dict as a generic data container
DirectMonteCarloData = NewType("DirectMonteCarloData", Dict[str, Any])
class DirectMonteCarloFilter:
"""
Abstract class for filtering out samples matching some criteria. Initialise with data as needed,
then filter out samples as needed.
"""
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
raise NotImplementedError
class DirectMonteCarloRun:
"""
A single model Direct Monte Carlo run, currently implemented only using single threading.
An encapsulation of the steps needed for a Bayes run.
Parameters
----------
model_name_pair : Sequence[Tuple(str, pdme.model.DipoleModel)]
The model to evaluate, with name.
measurements: Sequence[pdme.measurement.DotRangeMeasurement]
The measurements as dot ranges to use as the bounds for the Monte Carlo calculation.
monte_carlo_count_per_cycle: int
The number of Monte Carlo iterations to use in a single cycle calculation.
monte_carlo_cycles: int
The number of cycles to use in each step.
Increasing monte_carlo_count_per_cycle increases memory usage (and runtime), while this increases runtime, allowing
control over memory use.
target_success: int
The number of successes to target before exiting early.
Should likely be ~100 but can go higher to.
max_monte_carlo_cycles_steps: int
The number of steps to use. Each step consists of monte_carlo_cycles cycles, each of which has monte_carlo_count_per_cycle iterations.
monte_carlo_seed: int
The seed to use for the RNG.
"""
def __init__(
self,
model_name_pair: Tuple[str, pdme.model.DipoleModel],
filter: DirectMonteCarloFilter,
config: DirectMonteCarloConfig,
):
self.model_name, self.model = model_name_pair
# self.measurements = measurements
# self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
# self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
# self.dot_inputs
# )
self.config = config
self.filter = filter
# (
# self.lows,
# self.highs,
# ) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
# self.measurements
# )
def _single_run(self, seed) -> numpy.ndarray:
rng = numpy.random.default_rng(seed)
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
self.config.monte_carlo_count_per_cycle, -1, rng
)
current_sample = sample_dipoles
return self.filter.filter_samples(current_sample)
# for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
# if len(current_sample) < 1:
# break
# vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
# numpy.array([di]), current_sample
# )
# current_sample = current_sample[
# numpy.all((vals > low) & (vals < high), axis=1)
# ]
# return current_sample
def execute(self) -> DirectMonteCarloResult:
step_count = 0
total_success = 0
total_count = 0
count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
)
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
_logger.debug(f"Executing step {step_count}")
for cycle_i, seed in enumerate(
seed_sequence.spawn(self.config.monte_carlo_cycles)
):
cycle_success_configs = self._single_run(seed)
cycle_success_count = len(cycle_success_configs)
if cycle_success_count > 0:
_logger.debug(
f"For cycle {cycle_i} received {cycle_success_count} successes"
)
_logger.debug(cycle_success_configs)
if self.config.write_successes_to_file:
sorted_by_freq = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
dipole_config
)
for dipole_config in cycle_success_configs
]
)
dipole_count = numpy.array(cycle_success_configs).shape[1]
for n in range(dipole_count):
numpy.savetxt(
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
sorted_by_freq[:, n],
delimiter=",",
)
total_success += cycle_success_count
_logger.debug(f"At end of step {step_count} have {total_success} successes")
step_count += 1
total_count += count_per_step
return DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
)

View File

@@ -0,0 +1,143 @@
from numpy import ndarray
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
from typing import Sequence
import pdme.measurement
import pdme.measurement.input_types
import pdme.util.fast_nonlocal_spectrum
import pdme.util.fast_v_calc
import numpy
class SingleDotPotentialFilter(DirectMonteCarloFilter):
def __init__(self, measurements: Sequence[pdme.measurement.DotRangeMeasurement]):
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
(
self.lows,
self.highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
numpy.array([di]), current_sample
)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
return current_sample
class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__(
self,
pair_phase_measurements: Sequence[pdme.measurement.DotPairRangeMeasurement],
):
self.pair_phase_measurements = pair_phase_measurements
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_phase_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
(
self.pair_phase_lows,
self.pair_phase_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.pair_phase_measurements
)
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
self, dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# Don't actually need this
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for pi, plow, phigh in zip(
self.dot_pair_inputs_array, self.pair_phase_lows, self.pair_phase_highs
):
if len(current_sample) < 1:
break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg(
self.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return current_sample

View File

@@ -66,6 +66,139 @@ def get_a_result_fast_filter_pairs(input) -> int:
return len(current_sample)
def get_a_result_fast_filter_potential_pair_phase_only(input) -> int:
(
model,
pair_inputs,
pair_phase_lows,
pair_phase_highs,
monte_carlo_count,
seed,
) = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for pi, plow, phigh in zip(pair_inputs, pair_phase_lows, pair_phase_highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_nonlocal_spectrum.signarg(
pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return len(current_sample)
def get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only(input) -> int:
(
model,
pair_inputs,
pair_phase_lows,
pair_phase_highs,
monte_carlo_count,
seed,
) = input
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# don't actually need, because we're assuming they're the same frequencies across the pair
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for pi, plow, phigh in zip(pair_inputs, pair_phase_lows, pair_phase_highs):
if len(current_sample) < 1:
break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg(
fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return len(current_sample)
def get_a_result_fast_filter(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, seed = input
@@ -108,6 +241,11 @@ class RealSpectrumRun:
run_count: int
The number of runs to do.
If pair_measurements is not None, uses pair measurement method (and single measurements too).
If pair_phase_measurements is not None, ignores measurements and uses phase measurements _only_
This is lazy design on my part.
"""
def __init__(
@@ -125,6 +263,9 @@ class RealSpectrumRun:
pair_measurements: Optional[
Sequence[pdme.measurement.DotPairRangeMeasurement]
] = None,
pair_phase_measurements: Optional[
Sequence[pdme.measurement.DotPairRangeMeasurement]
] = None,
) -> None:
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
@@ -136,6 +277,8 @@ class RealSpectrumRun:
if pair_measurements is not None:
self.pair_measurements = pair_measurements
self.use_pair_measurements = True
self.use_pair_phase_measurements = False
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_measurements
@@ -145,8 +288,22 @@ class RealSpectrumRun:
self.dot_pair_inputs
)
)
elif pair_phase_measurements is not None:
self.use_pair_measurements = False
self.use_pair_phase_measurements = True
self.pair_phase_measurements = pair_phase_measurements
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_phase_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(
self.dot_pair_inputs
)
)
else:
self.use_pair_measurements = False
self.use_pair_phase_measurements = False
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
@@ -198,6 +355,16 @@ class RealSpectrumRun:
self.pair_measurements
)
pair_phase_lows = None
pair_phase_highs = None
if self.use_pair_phase_measurements:
(
pair_phase_lows,
pair_phase_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.pair_phase_measurements
)
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
@@ -229,6 +396,7 @@ class RealSpectrumRun:
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
if self.use_pair_measurements:
_logger.debug("using pair measurements")
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter_pairs,
@@ -249,6 +417,26 @@ class RealSpectrumRun:
self.chunksize,
)
)
elif self.use_pair_phase_measurements:
_logger.debug("using pair phase measurements")
_logger.debug("specifically using tarucha")
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only,
[
(
model,
self.dot_pair_inputs_array,
pair_phase_lows,
pair_phase_highs,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
else:
current_success = sum(

View File

@@ -101,11 +101,17 @@ class SubsetSimulation:
# _logger.debug(sample_dipoles.shape)
raw_costs = []
_logger.debug(f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}")
_logger.debug(
f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}"
)
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size):
_logger.debug(f"doing chunk {x}")
raw_costs.extend(self.cost_function_to_use(sample_dipoles[x: x + self.initial_cost_chunk_size]))
raw_costs.extend(
self.cost_function_to_use(
sample_dipoles[x : x + self.initial_cost_chunk_size]
)
)
costs = numpy.array(raw_costs)
_logger.debug(f"costs: {costs}")
@@ -143,6 +149,37 @@ class SubsetSimulation:
delimiter=",",
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
all_long_chains = []
for seed_index, (c, s) in enumerate(
next_seeds[:: len(next_seeds) // 20]
):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(f"\t{seed_index}: doing long chain on the next seed")
long_chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
1000,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
)
for _, chained in long_chain:
all_long_chains.append(chained)
all_long_chains_array = numpy.array(all_long_chains)
for n in range(self.model.n):
_logger.info(f"{all_long_chains_array[:, n].shape}")
numpy.savetxt(
f"long_chain_generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
all_long_chains_array[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
@@ -178,7 +215,7 @@ class SubsetSimulation:
for cost, chained in chain:
try:
filtered_cost = cost[0]
except IndexError:
except (IndexError, TypeError):
filtered_cost = cost
all_chains.append((filtered_cost, chained))
_logger.debug("finished mcmc")

38
do.sh
View File

@@ -1,38 +0,0 @@
#!/usr/bin/env bash
# Do - The Simplest Build Tool on Earth.
# Documentation and examples see https://github.com/8gears/do
set -Eeuo pipefail # -e "Automatic exit from bash shell script on error" -u "Treat unset variables and parameters as errors"
build() {
echo "I am ${FUNCNAME[0]}ing"
poetry build
}
test() {
echo "I am ${FUNCNAME[0]}ing"
poetry run flake8 deepdog tests
poetry run mypy deepdog
poetry run pytest
}
fmt() {
poetry run black .
find . -not \( -path "./.*" -type d -prune \) -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
}
release() {
./scripts/release.sh
}
htmlcov() {
poetry run pytest --cov-report=html
}
all() {
build && test
}
"$@" # <- execute the task
[ "$#" -gt 0 ] || printf "Usage:\n\t./do.sh %s\n" "($(compgen -A function | grep '^[^_]' | paste -sd '|' -))"

145
flake.lock generated
View File

@@ -1,28 +1,33 @@
{
"nodes": {
"flake-utils": {
"inputs": {
"systems": "systems"
},
"locked": {
"lastModified": 1648297722,
"narHash": "sha256-W+qlPsiZd8F3XkzXOzAoR+mpFqzm3ekQkJNa+PIh1BQ=",
"lastModified": 1710146030,
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"rev": "0f8662f1319ad6abf89b3380dd2722369fc51ade",
"type": "github"
}
},
"flake-utils_2": {
"inputs": {
"systems": "systems_2"
},
"locked": {
"lastModified": 1653893745,
"narHash": "sha256-0jntwV3Z8//YwuOjzhV2sgJJPt+HY6KhU7VZUL0fKZQ=",
"lastModified": 1705309234,
"narHash": "sha256-uNRRNRKmJyCRC/8y1RqBkqWBLM034y4qN7EprSdmgyA=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "1ed9fb1935d260de5fe1c2f7ee0ebaae17ed2fa1",
"rev": "1ef2e671c3b0c19053962c07dbda38332dcebf26",
"type": "github"
},
"original": {
@@ -31,29 +36,34 @@
"type": "github"
}
},
"nix-github-actions": {
"inputs": {
"nixpkgs": [
"poetry2nixSrc",
"nixpkgs"
]
},
"locked": {
"lastModified": 1703863825,
"narHash": "sha256-rXwqjtwiGKJheXB43ybM8NwWB8rO2dSRrEqes0S7F5Y=",
"owner": "nix-community",
"repo": "nix-github-actions",
"rev": "5163432afc817cf8bd1f031418d1869e4c9d5547",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "nix-github-actions",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1655087213,
"narHash": "sha256-4R5oQ+OwGAAcXWYrxC4gFMTUSstGxaN8kN7e8hkum/8=",
"lastModified": 1710703777,
"narHash": "sha256-M4CNAgjrtvrxIWIAc98RTYcVFoAgwUhrYekeiMScj18=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "37b6b161e536fddca54424cf80662bce735bdd1e",
"type": "github"
}
},
"nixpkgs_2": {
"locked": {
"lastModified": 1655046959,
"narHash": "sha256-gxqHZKq1ReLDe6ZMJSbmSZlLY95DsVq5o6jQihhzvmw=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "07bf3d25ce1da3bee6703657e6a787a4c6cdcea9",
"rev": "fc7885fbcea4b782142e06ce2d4d08cf92862004",
"type": "github"
},
"original": {
@@ -62,23 +72,27 @@
"type": "github"
}
},
"poetry2nix": {
"poetry2nixSrc": {
"inputs": {
"flake-utils": "flake-utils_2",
"nixpkgs": "nixpkgs_2"
"nix-github-actions": "nix-github-actions",
"nixpkgs": [
"nixpkgs"
],
"systems": "systems_3",
"treefmt-nix": "treefmt-nix"
},
"locked": {
"lastModified": 1654921554,
"narHash": "sha256-hkfMdQAHSwLWlg0sBVvgrQdIiBP45U1/ktmFpY4g2Mo=",
"lastModified": 1708589824,
"narHash": "sha256-2GOiFTkvs5MtVF65sC78KNVxQSmsxtk0WmV1wJ9V2ck=",
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
"rev": "3c92540611f42d3fb2d0d084a6c694cd6544b609",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "7b71679fa7df00e1678fc3f1d1d4f5f372341b63",
"type": "github"
}
},
@@ -86,7 +100,72 @@
"inputs": {
"flake-utils": "flake-utils",
"nixpkgs": "nixpkgs",
"poetry2nix": "poetry2nix"
"poetry2nixSrc": "poetry2nixSrc"
}
},
"systems": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_2": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_3": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"id": "systems",
"type": "indirect"
}
},
"treefmt-nix": {
"inputs": {
"nixpkgs": [
"poetry2nixSrc",
"nixpkgs"
]
},
"locked": {
"lastModified": 1708335038,
"narHash": "sha256-ETLZNFBVCabo7lJrpjD6cAbnE11eDOjaQnznmg/6hAE=",
"owner": "numtide",
"repo": "treefmt-nix",
"rev": "e504621290a1fd896631ddbc5e9c16f4366c9f65",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "treefmt-nix",
"type": "github"
}
}
},

View File

@@ -1,63 +1,46 @@
{
description = "Application packaged using poetry2nix";
inputs.flake-utils.url = "github:numtide/flake-utils?rev=0f8662f1319ad6abf89b3380dd2722369fc51ade";
inputs.nixpkgs.url = "github:NixOS/nixpkgs?rev=37b6b161e536fddca54424cf80662bce735bdd1e";
inputs.poetry2nix.url = "github:nix-community/poetry2nix?rev=7b71679fa7df00e1678fc3f1d1d4f5f372341b63";
inputs.flake-utils.url = "github:numtide/flake-utils";
inputs.nixpkgs.url = "github:NixOS/nixpkgs";
inputs.poetry2nixSrc = {
url = "github:nix-community/poetry2nix";
inputs.nixpkgs.follows = "nixpkgs";
};
outputs = { self, nixpkgs, flake-utils, poetry2nix }:
{
# Nixpkgs overlay providing the application
overlay = nixpkgs.lib.composeManyExtensions [
poetry2nix.overlay
(final: prev: {
# The application
deepdog = prev.poetry2nix.mkPoetryApplication {
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
# …
# workaround https://github.com/nix-community/poetry2nix/issues/568
pdme = super.pdme.overridePythonAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
});
});
projectDir = ./.;
};
deepdogEnv = prev.poetry2nix.mkPoetryEnv {
overrides = final.poetry2nix.overrides.withDefaults (self: super: {
# …
# workaround https://github.com/nix-community/poetry2nix/issues/568
pdme = super.pdme.overridePythonAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ final.python39.pkgs.poetry-core ];
});
});
projectDir = ./.;
};
})
];
} // (flake-utils.lib.eachDefaultSystem (system:
outputs = { self, nixpkgs, flake-utils, poetry2nixSrc }:
flake-utils.lib.eachDefaultSystem (system:
let
pkgs = import nixpkgs {
inherit system;
overlays = [ self.overlay ];
pkgs = nixpkgs.legacyPackages.${system};
poetry2nix = poetry2nixSrc.lib.mkPoetry2Nix { inherit pkgs; };
in {
packages = {
deepdogApp = poetry2nix.mkPoetryApplication {
projectDir = self;
python = pkgs.python39;
preferWheels = true;
};
in
{
apps = {
deepdog = pkgs.deepdog;
deepdogEnv = poetry2nix.mkPoetryEnv {
projectDir = self;
python = pkgs.python39;
preferWheels = true;
overrides = poetry2nix.overrides.withDefaults (self: super: {
});
};
defaultApp = pkgs.deepdog;
devShell = pkgs.mkShell {
default = self.packages.${system}.deepdogEnv;
};
devShells.default = pkgs.mkShell {
inputsFrom = [ self.packages.${system}.deepdogEnv ];
buildInputs = [
pkgs.poetry
pkgs.deepdogEnv
pkgs.deepdog
self.packages.${system}.deepdogEnv
self.packages.${system}.deepdogApp
pkgs.just
];
shellHook = ''
export DO_NIX_CUSTOM=1
'';
packages = [ pkgs.nodejs-16_x ];
};
}));
}
);
}

54
justfile Normal file
View File

@@ -0,0 +1,54 @@
# execute default build
default: build
# builds the python module using poetry
build:
echo "building..."
poetry build
# print a message displaying whether nix is being used
checknix:
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
echo "In an interactive nix env."
else
echo "Using poetry as runner, no nix detected."
fi
# run all tests
test: fmt
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
echo "testing, using nix..."
flake8 deepdog tests
mypy deepdog
pytest
else
echo "testing..."
poetry run flake8 deepdog tests
poetry run mypy deepdog
poetry run pytest
fi
# format code
fmt:
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
black .
else
poetry run black .
fi
find deepdog -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
find tests -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
# release the app, checking that our working tree is clean and ready for release
release:
./scripts/release.sh
htmlcov:
poetry run pytest --cov-report=html

931
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,12 +1,12 @@
[tool.poetry]
name = "deepdog"
version = "0.7.4"
version = "0.7.9"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies]
python = ">=3.8.1,<3.10"
pdme = "^0.9.1"
pdme = "^0.9.3"
numpy = "1.22.3"
scipy = "1.10"

View File

@@ -151,7 +151,7 @@ def test_bayesss_with_tighter_cost(snapshot):
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1
ss_initial_costs_chunk_size=1,
)
result = square_run.go()