Compare commits

...

45 Commits

Author SHA1 Message Date
362388363f chore(release): 0.6.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2022-05-21 19:27:13 -05:00
252b4a4414 Merge pull request 'multi' (#8) from multi into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #8
2022-05-22 00:24:07 +00:00
bb21355f5e style: fmt
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-21 19:18:13 -05:00
df8977655d feat: Uses multidipole for bayes run, with more verbose output
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-21 19:15:46 -05:00
5d0a7a4be0 feat!: bayes run now handles multidipoles with changes to output file format etc.
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-07 18:45:58 -05:00
67a9721c31 style: don't use unused exception var
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-07 14:49:09 -05:00
b5e0ecb528 fix: fixes crash when dipole count is smaller than expected max during file write 2022-05-07 14:46:56 -05:00
feeb03b27c chore: Updates to pdme 0.8.2
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-05-07 11:24:15 -05:00
b7da3d61cc fix: another bug fix for csv generation
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-30 19:56:17 -05:00
9afa209864 fix: fixes format string in csv output for headers
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-30 19:52:46 -05:00
ae8977bb1e feat!: logs multiple dipoles better maybe
Some checks are pending
gitea-physics/deepdog/pipeline/head Build started...
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-30 18:49:48 -05:00
0caad05e3c fix: moves logging successes to after they've actually happened
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-04-30 18:14:26 -05:00
eec926aaac fix: fixes random issue 2022-04-30 18:11:22 -05:00
23b202beb8 fix: now doesn't double randomise frequency
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2022-04-30 17:40:55 -05:00
6e29f7a702 feat!: switches over to pdme new stuff, uses models and scraps discretisations entirely 2022-04-30 17:31:36 -05:00
31070b5342 fix: whoops deleted word multiprocessing 2022-04-30 16:44:12 -05:00
101569d749 feat!: removes alt_bayes bayes distinction, which was superfluous when only alt worked 2022-04-30 16:43:37 -05:00
874d876c9d feat: adds pdme 0.7.0 for multiprocessing 2022-04-30 16:41:34 -05:00
3dca288177 chore(release): 0.5.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2022-04-30 11:19:38 -05:00
bd0b375751 Merge pull request 'betterparallel' (#7) from betterparallel into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #7
2022-04-30 16:15:01 +00:00
0fabd8f7fb Merge branch 'master' into betterparallel
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-30 16:10:15 +00:00
3ea3d1dc56 Merge pull request 'chore(deps): update dependency mypy to ^0.950' (#6) from renovate/mypy-0.x into master
Some checks reported errors
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
Reviewed-on: #6
2022-04-30 16:08:57 +00:00
edf0ba6532 feat: has better parallelisation
Some checks are pending
gitea-physics/deepdog/pipeline/head Build started...
gitea-physics/deepdog/pipeline/pr-master Build queued...
2022-04-30 10:36:10 -05:00
a487309549 chore(deps): update dependency mypy to ^0.950
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-28 01:31:10 +00:00
42829c0327 fix: better parallelisation hopefully
Some checks reported errors
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
2022-04-24 12:13:10 -05:00
349341b405 fix: Uses correct filename arg for passed in rng
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-04-18 16:00:19 -05:00
50dbc4835e feat!: simulpairs now uses different rng calculator 2022-04-18 12:04:30 -05:00
0954429e2d fix: stronger names 2022-04-16 13:11:08 -05:00
4c06b3912c fix: uses correct filename for pairs guy
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-04-16 13:04:39 -05:00
5684af783e fmt: Adds newlines to make fmt idempotent 2022-04-16 13:04:11 -05:00
f00b29391c style: run doo fmt
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-04-16 12:55:52 -05:00
492a5e6681 fix: Makes altbayessimulpairs available in package 2022-04-16 12:55:29 -05:00
e9277c3da7 feat: adds simulpairs run 2022-04-16 12:54:30 -05:00
1e2657adad chore: adds doo fmt 2022-04-16 12:51:31 -05:00
f168666045 chore(release): 0.4.0
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2022-04-10 10:21:47 -05:00
604916a829 Merge pull request 'pairs' (#5) from pairs into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #5
2022-04-10 15:20:05 +00:00
941313a14c style: whitespace fixes
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-04-10 10:05:15 -05:00
cb64c0b7b6 Merge branch 'master' into pairs 2022-04-10 10:03:47 -05:00
ec7b4cac39 feat: Adds dynamic cycle count increases to help reach minimum success count
Some checks failed
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2022-03-28 15:46:40 -05:00
31e6cfaf51 lint: lint fixes
Some checks failed
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2022-03-28 12:28:24 -05:00
c1c711f47b fix: uses bigfix from pdme for negatives
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2022-03-28 10:52:28 -05:00
6463b135ef feat!: Adds pair calculations, with changing api format
Some checks reported errors
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
2022-03-27 19:01:14 -05:00
a283cbd670 Merge pull request 'chore(deps): update dependency mypy to ^0.942' (#3) from renovate/mypy-0.x into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #3
2022-03-25 13:15:07 +00:00
0b45172ca0 chore(deps): update dependency mypy to ^0.942
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-03-25 01:30:47 +00:00
b6383d0a47 Merge pull request 'chore(deps): update dependency mypy to ^0.941' (#2) from renovate/mypy-0.x into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #2
2022-03-19 00:54:39 +00:00
10 changed files with 826 additions and 375 deletions

View File

@@ -2,6 +2,75 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
## [0.6.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.5.0...0.6.0) (2022-05-22)
### ⚠ BREAKING CHANGES
* bayes run now handles multidipoles with changes to output file format etc.
* logs multiple dipoles better maybe
* switches over to pdme new stuff, uses models and scraps discretisations entirely
* removes alt_bayes bayes distinction, which was superfluous when only alt worked
### Features
* adds pdme 0.7.0 for multiprocessing ([874d876](https://gitea.deepak.science:2222/physics/deepdog/commit/874d876c9d774433b034d47c4cc0cdac41e6f2c7))
* bayes run now handles multidipoles with changes to output file format etc. ([5d0a7a4](https://gitea.deepak.science:2222/physics/deepdog/commit/5d0a7a4be09c58f8f8f859384f01d7912a98b8b9))
* logs multiple dipoles better maybe ([ae8977b](https://gitea.deepak.science:2222/physics/deepdog/commit/ae8977bb1e4d6cd71e88ea0876da8f4318e030b6))
* removes alt_bayes bayes distinction, which was superfluous when only alt worked ([101569d](https://gitea.deepak.science:2222/physics/deepdog/commit/101569d749e4f3f1842886aa2fd3321b8132278b))
* switches over to pdme new stuff, uses models and scraps discretisations entirely ([6e29f7a](https://gitea.deepak.science:2222/physics/deepdog/commit/6e29f7a702b578c266a42bba23ac973d155ada10))
* Uses multidipole for bayes run, with more verbose output ([df89776](https://gitea.deepak.science:2222/physics/deepdog/commit/df8977655de977fd3c4f7383dd9571e551eb1382))
### Bug Fixes
* another bug fix for csv generation ([b7da3d6](https://gitea.deepak.science:2222/physics/deepdog/commit/b7da3d61cc5c128cba1d2fcb3770b71b7f6fc4b8))
* fixes crash when dipole count is smaller than expected max during file write ([b5e0ecb](https://gitea.deepak.science:2222/physics/deepdog/commit/b5e0ecb52886b32d9055302eacfabb69338026b4))
* fixes format string in csv output for headers ([9afa209](https://gitea.deepak.science:2222/physics/deepdog/commit/9afa209864cdb9255988778e987fe05952848fd4))
* fixes random issue ([eec926a](https://gitea.deepak.science:2222/physics/deepdog/commit/eec926aaac654f78942b4c6b612e4d1cdcbf81dc))
* moves logging successes to after they've actually happened ([0caad05](https://gitea.deepak.science:2222/physics/deepdog/commit/0caad05e3cc6a9adba8bf937c3d2f944e1b096a3))
* now doesn't double randomise frequency ([23b202b](https://gitea.deepak.science:2222/physics/deepdog/commit/23b202beb81cb89f7f20b691e83116fa53764902))
* whoops deleted word multiprocessing ([31070b5](https://gitea.deepak.science:2222/physics/deepdog/commit/31070b5342c265d930b4c51402f42a3ee2415066))
## [0.5.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.4.0...0.5.0) (2022-04-30)
### ⚠ BREAKING CHANGES
* simulpairs now uses different rng calculator
### Features
* adds simulpairs run ([e9277c3](https://gitea.deepak.science:2222/physics/deepdog/commit/e9277c3da777359feb352c0b19f3bb029248ba2f))
* has better parallelisation ([edf0ba6](https://gitea.deepak.science:2222/physics/deepdog/commit/edf0ba6532c0588fce32341709cdb70e384b83f4))
* simulpairs now uses different rng calculator ([50dbc48](https://gitea.deepak.science:2222/physics/deepdog/commit/50dbc4835e60bace9e9b4ba37415f073a3c9e479))
### Bug Fixes
* better parallelisation hopefully ([42829c0](https://gitea.deepak.science:2222/physics/deepdog/commit/42829c0327e080e18be2fb75e746f6ac0d7c2f6d))
* Makes altbayessimulpairs available in package ([492a5e6](https://gitea.deepak.science:2222/physics/deepdog/commit/492a5e6681c85f95840e28cfd5d4ce4ca1d54eba))
* stronger names ([0954429](https://gitea.deepak.science:2222/physics/deepdog/commit/0954429e2d015a105ff16dfbb9e7a352bf53e5e9))
* Uses correct filename arg for passed in rng ([349341b](https://gitea.deepak.science:2222/physics/deepdog/commit/349341b405375a43b933f1fd7db4ee9fc501def3))
* uses correct filename for pairs guy ([4c06b39](https://gitea.deepak.science:2222/physics/deepdog/commit/4c06b3912c811c93c310b1d9e4c153f2014c4f8b))
## [0.4.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.3.5...0.4.0) (2022-04-10)
### ⚠ BREAKING CHANGES
* Adds pair calculations, with changing api format
### Features
* Adds dynamic cycle count increases to help reach minimum success count ([ec7b4ca](https://gitea.deepak.science:2222/physics/deepdog/commit/ec7b4cac393c15e94c513215c4f1ba32be2ae87a))
* Adds pair calculations, with changing api format ([6463b13](https://gitea.deepak.science:2222/physics/deepdog/commit/6463b135ef2d212b565864b5ac1b655e014d2194))
### Bug Fixes
* uses bigfix from pdme for negatives ([c1c711f](https://gitea.deepak.science:2222/physics/deepdog/commit/c1c711f47b574d3a9b8a24dbcbdd7f50b9be8ea9))
### [0.3.5](https://gitea.deepak.science:2222/physics/deepdog/compare/0.3.4...0.3.5) (2022-03-07)

View File

@@ -1,15 +1,18 @@
import logging
from deepdog.meta import __version__
from deepdog.bayes_run import BayesRun
from deepdog.alt_bayes_run import AltBayesRun
from deepdog.diagnostic import Diagnostic
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
def get_version():
return __version__
__all__ = ["get_version", "BayesRun", "AltBayesRun", "Diagnostic"]
__all__ = [
"get_version",
"BayesRun",
"BayesRunSimulPairs",
]
logging.getLogger(__name__).addHandler(logging.NullHandler())

View File

@@ -1,134 +0,0 @@
import pdme.model
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_result(input) -> int:
discretisation, dot_inputs, lows, highs, monte_carlo_count, max_frequency = input
sample_dipoles = discretisation.get_model().get_n_single_dipoles(monte_carlo_count, max_frequency)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
class AltBayesRun():
'''
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
'''
def __init__(self, dot_inputs: Sequence[DotInput], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int, low_error: float = 0.9, high_error: float = 1.1, monte_carlo_count: int = 10000, monte_carlo_cycles: int = 10, max_frequency: float = 20, end_threshold: float = None, chunksize: int = CHUNKSIZE) -> None:
self.dot_inputs = dot_inputs
self.dot_inputs_array = pdme.measurement.oscillating_dipole.dot_inputs_to_array(dot_inputs)
self.discretisations = [disc for (_, disc) in discretisations_with_names]
self.model_names = [name for (name, _) in discretisations_with_names]
self.actual_model = actual_model
self.model_count = len(self.discretisations)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.altbayes.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(f"end_threshold should be between 0 and 1, but is actually {end_threshold}")
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
rng = numpy.random.default_rng()
frequency = rng.uniform(1, self.max_frequency)
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(self.dot_inputs, self.low_error, self.high_error)
lows, highs = pdme.measurement.oscillating_dipole.dot_range_measurements_low_high_arrays(dots)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
results = []
_logger.debug("Going to iterate over discretisations now")
for disc_count, discretisation in enumerate(self.discretisations):
_logger.debug(f"Doing discretisation #{disc_count}")
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
results.append(sum(
pool.imap_unordered(get_a_result, [(discretisation, self.dot_inputs_array, lows, highs, self.monte_carlo_count, self.max_frequency)] * self.monte_carlo_cycles, self.chunksize)
))
_logger.debug("Done, constructing output now")
row = {
"dipole_moment": actual_dipoles.dipoles[0].p,
"dipole_location": actual_dipoles.dipoles[0].s,
"dipole_frequency": actual_dipoles.dipoles[0].w
}
successes: List[float] = []
counts: List[int] = []
for model_index, (name, result) in enumerate(zip(self.model_names, results)):
row[f"{name}_success"] = result
row[f"{name}_count"] = self.monte_carlo_count * self.monte_carlo_cycles
successes.append(max(result, 0.5))
counts.append(self.monte_carlo_count * self.monte_carlo_cycles)
success_weight = sum([(succ / count) * prob for succ, count, prob in zip(successes, counts, self.probabilities)])
new_probabilities = [(succ / count) * old_prob / success_weight for succ, count, old_prob in zip(successes, counts, self.probabilities)]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
if max_prob > self.end_threshold:
_logger.info(f"Aborting early, because {max_prob} is greater than {self.end_threshold}")
break

View File

@@ -1,17 +1,19 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import itertools
import csv
import multiprocessing
import logging
import numpy
import scipy.optimize
import multiprocessing
# TODO: remove hardcode
COST_THRESHOLD = 1e-10
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
@@ -20,43 +22,126 @@ DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_result(discretisation, dots, index) -> Tuple[Tuple[int, ...], scipy.optimize.OptimizeResult]:
return (index, discretisation.solve_for_index(dots, index))
def get_a_result(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, max_frequency, seed = input
rng = numpy.random.default_rng(seed)
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, max_frequency, rng_to_use=rng
)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
class BayesRun():
'''
def get_a_result_using_pairs(input) -> int:
(
model,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
max_frequency,
) = input
sample_dipoles = model.get_n_single_dipoles(monte_carlo_count, max_frequency)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoles(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
return numpy.count_nonzero(combined_matches)
class BayesRun:
"""
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
'''
def __init__(self, dot_inputs: Sequence[DotInput], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], actual_model: pdme.model.Model, filename_slug: str, run_count: int, max_frequency: float = None, end_threshold: float = None) -> None:
self.dot_inputs = dot_inputs
self.discretisations = [disc for (_, disc) in discretisations_with_names]
self.model_names = [name for (name, _) in discretisations_with_names]
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.model_count = len(self.discretisations)
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.csv_fields = ["dipole_moment", "dipole_location", "dipole_frequency"]
self.low_error = low_error
self.high_error = high_error
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.csv"
self.filename = f"{timestamp}-{filename_slug}.bayesrun.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
@@ -65,7 +150,9 @@ class BayesRun():
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(f"end_threshold should be between 0 and 1, but is actually {end_threshold}")
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
@@ -73,56 +160,122 @@ class BayesRun():
writer.writeheader()
for run in range(1, self.run_count + 1):
frequency: float = run
if self.max_frequency is not None and self.max_frequency > 1:
rng = numpy.random.default_rng()
frequency = rng.uniform(1, self.max_frequency)
dipoles = self.actual_model.get_dipoles(frequency)
dots = dipoles.get_dot_measurements(self.dot_inputs)
_logger.info(f"Going to work on dipole at {dipoles.dipoles}")
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(run)
results = []
_logger.debug("Going to iterate over discretisations now")
for disc_count, discretisation in enumerate(self.discretisations):
_logger.debug(f"Doing discretisation #{disc_count}")
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
results.append(pool.starmap(get_a_result, zip(itertools.repeat(discretisation), itertools.repeat(dots), discretisation.all_indices())))
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
current_success = sum(
pool.imap_unordered(
get_a_result,
[
(
model,
self.dot_inputs_array,
lows,
highs,
self.monte_carlo_count,
self.max_frequency,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row = {
"dipole_moment": dipoles.dipoles[0].p,
"dipole_location": dipoles.dipoles[0].s,
"dipole_frequency": dipoles.dipoles[0].w
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row[f"dipole_moment_{i+1}"] = current_dipoles.p
row[f"dipole_location_{i+1}"] = current_dipoles.s
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
successes: List[float] = []
counts: List[int] = []
for model_index, (name, result) in enumerate(zip(self.model_names, results)):
count = 0
success = 0
for idx, val in result:
count += 1
if val.success and val.cost <= COST_THRESHOLD:
success += 1
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
row[f"{name}_success"] = success
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(success, 0.5))
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum([(succ / count) * prob for succ, count, prob in zip(successes, counts, self.probabilities)])
new_probabilities = [(succ / count) * old_prob / success_weight for succ, count, old_prob in zip(successes, counts, self.probabilities)]
success_weight = sum(
[
(succ / count) * prob
for succ, count, prob in zip(successes, counts, self.probabilities)
]
)
new_probabilities = [
(succ / count) * old_prob / success_weight
for succ, count, old_prob in zip(successes, counts, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
if max_prob > self.end_threshold:
_logger.info(f"Aborting early, because {max_prob} is greater than {self.end_threshold}")
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break

View File

@@ -0,0 +1,382 @@
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List
import datetime
import csv
import multiprocessing
import logging
import numpy
import numpy.random
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
_logger = logging.getLogger(__name__)
def get_a_simul_result_using_pairs(input) -> numpy.ndarray:
(
model,
dot_inputs,
pair_inputs,
local_lows,
local_highs,
nonlocal_lows,
nonlocal_highs,
monte_carlo_count,
monte_carlo_cycles,
max_frequency,
seed,
) = input
rng = numpy.random.default_rng(seed)
local_total = 0
combined_total = 0
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, max_frequency, rng_to_use=rng
)
local_vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
local_matches = pdme.util.fast_v_calc.between(local_vals, local_lows, local_highs)
nonlocal_vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
pair_inputs, sample_dipoles
)
nonlocal_matches = pdme.util.fast_v_calc.between(
nonlocal_vals, nonlocal_lows, nonlocal_highs
)
combined_matches = numpy.logical_and(local_matches, nonlocal_matches)
local_total += numpy.count_nonzero(local_matches)
combined_total += numpy.count_nonzero(combined_matches)
return numpy.array([local_total, combined_total])
class BayesRunSimulPairs:
"""
A dual pairs-nonpairs Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The modoel for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
run_count: int = 100,
low_error: float = 0.9,
high_error: float = 1.1,
pairs_high_error=None,
pairs_low_error=None,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
max_frequency: float = 20,
end_threshold: float = None,
chunksize: int = CHUNKSIZE,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.dot_pair_inputs = pdme.inputs.input_pairs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
self.models = [mod for (_, mod) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.run_count = run_count
self.low_error = low_error
self.high_error = high_error
if pairs_low_error is None:
self.pairs_low_error = self.low_error
else:
self.pairs_low_error = pairs_low_error
if pairs_high_error is None:
self.pairs_high_error = self.high_error
else:
self.pairs_high_error = pairs_high_error
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
self.probabilities_no_pairs = [1 / self.model_count] * self.model_count
self.probabilities_pairs = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename_pairs = f"{timestamp}-{filename_slug}.simulpairs.yespairs.csv"
self.filename_no_pairs = f"{timestamp}-{filename_slug}.simulpairs.noopairs.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
def go(self) -> None:
with open(self.filename_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
with open(self.filename_no_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
dots = actual_dipoles.get_percent_range_dot_measurements(
self.dot_inputs, self.low_error, self.high_error
)
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
dots
)
pair_lows, pair_highs = (None, None)
pair_measurements = actual_dipoles.get_percent_range_dot_pair_measurements(
self.dot_pair_inputs, self.pairs_low_error, self.pairs_high_error
)
(
pair_lows,
pair_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
pair_measurements
)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(run)
results_pairs = []
results_no_pairs = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success_pairs = 0
cycle_success_no_pairs = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
min(cycle_success_pairs, cycle_success_no_pairs)
<= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success_pairs = 0
current_success_no_pairs = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
_logger.debug(f"Creating {self.monte_carlo_cycles} seeds")
current_success_both = numpy.array(
sum(
pool.imap_unordered(
get_a_simul_result_using_pairs,
[
(
model,
self.dot_inputs_array,
self.dot_pair_inputs_array,
lows,
highs,
pair_lows,
pair_highs,
self.monte_carlo_count,
self.monte_carlo_cycles,
self.max_frequency,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
)
current_success_no_pairs = current_success_both[0]
current_success_pairs = current_success_both[1]
cycle_success_no_pairs += current_success_no_pairs
cycle_success_pairs += current_success_pairs
_logger.debug(
f"(pair, no_pair) successes are {(cycle_success_pairs, cycle_success_no_pairs)}"
)
results_pairs.append((cycle_count, cycle_success_pairs))
results_no_pairs.append((cycle_count, cycle_success_no_pairs))
_logger.debug("Done, constructing output now")
row_pairs = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
row_no_pairs = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
row_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
row_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
row_no_pairs[f"dipole_moment_{i+1}"] = current_dipoles.p
row_no_pairs[f"dipole_location_{i+1}"] = current_dipoles.s
row_no_pairs[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
successes_pairs: List[float] = []
successes_no_pairs: List[float] = []
counts: List[int] = []
for model_index, (
name,
(count_pair, result_pair),
(count_no_pair, result_no_pair),
) in enumerate(zip(self.model_names, results_pairs, results_no_pairs)):
row_pairs[f"{name}_success"] = result_pair
row_pairs[f"{name}_count"] = count_pair
successes_pairs.append(max(result_pair, 0.5))
row_no_pairs[f"{name}_success"] = result_no_pair
row_no_pairs[f"{name}_count"] = count_no_pair
successes_no_pairs.append(max(result_no_pair, 0.5))
counts.append(count_pair)
success_weight_pair = sum(
[
(succ / count) * prob
for succ, count, prob in zip(
successes_pairs, counts, self.probabilities_pairs
)
]
)
success_weight_no_pair = sum(
[
(succ / count) * prob
for succ, count, prob in zip(
successes_no_pairs, counts, self.probabilities_no_pairs
)
]
)
new_probabilities_pair = [
(succ / count) * old_prob / success_weight_pair
for succ, count, old_prob in zip(
successes_pairs, counts, self.probabilities_pairs
)
]
new_probabilities_no_pair = [
(succ / count) * old_prob / success_weight_no_pair
for succ, count, old_prob in zip(
successes_no_pairs, counts, self.probabilities_no_pairs
)
]
self.probabilities_pairs = new_probabilities_pair
self.probabilities_no_pairs = new_probabilities_no_pair
for name, probability_pair, probability_no_pair in zip(
self.model_names, self.probabilities_pairs, self.probabilities_no_pairs
):
row_pairs[f"{name}_prob"] = probability_pair
row_no_pairs[f"{name}_prob"] = probability_no_pair
_logger.debug(row_pairs)
_logger.debug(row_no_pairs)
with open(self.filename_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row_pairs)
with open(self.filename_no_pairs, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row_no_pairs)
if self.use_end_threshold:
max_prob = min(
max(self.probabilities_pairs), max(self.probabilities_no_pairs)
)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break

View File

@@ -1,99 +0,0 @@
from pdme.measurement import OscillatingDipole, OscillatingDipoleArrangement
import pdme
from deepdog.bayes_run import DotInput
import datetime
import numpy
from dataclasses import dataclass
import logging
from typing import Sequence, Tuple
import csv
import itertools
import multiprocessing
_logger = logging.getLogger(__name__)
def get_a_result(discretisation, dots, index):
return (index, discretisation.solve_for_index(dots, index))
@dataclass
class SingleDipoleDiagnostic():
model: str
index: Tuple
bounds: Tuple
actual_dipole: OscillatingDipole
result_dipole: OscillatingDipole
success: bool
def __post_init__(self) -> None:
self.p_actual_x = self.actual_dipole.p[0]
self.p_actual_y = self.actual_dipole.p[1]
self.p_actual_z = self.actual_dipole.p[2]
self.s_actual_x = self.actual_dipole.s[0]
self.s_actual_y = self.actual_dipole.s[1]
self.s_actual_z = self.actual_dipole.s[2]
self.p_result_x = self.result_dipole.p[0]
self.p_result_y = self.result_dipole.p[1]
self.p_result_z = self.result_dipole.p[2]
self.s_result_x = self.result_dipole.s[0]
self.s_result_y = self.result_dipole.s[1]
self.s_result_z = self.result_dipole.s[2]
self.w_actual = self.actual_dipole.w
self.w_result = self.result_dipole.w
class Diagnostic():
'''
Represents a diagnostic for a single dipole moment given a set of discretisations.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this diagnostic.
discretisations_with_names : Sequence[Tuple(str, pdme.model.Model)]
The models to evaluate.
actual_model_discretisation : pdme.model.Discretisation
The discretisation for the model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
'''
def __init__(self, actual_dipole_moment: numpy.ndarray, actual_dipole_position: numpy.ndarray, actual_dipole_frequency: float, dot_inputs: Sequence[DotInput], discretisations_with_names: Sequence[Tuple[str, pdme.model.Discretisation]], filename_slug: str) -> None:
self.dipoles = OscillatingDipoleArrangement([OscillatingDipole(actual_dipole_moment, actual_dipole_position, actual_dipole_frequency)])
self.dots = self.dipoles.get_dot_measurements(dot_inputs)
self.discretisations_with_names = discretisations_with_names
self.model_count = len(self.discretisations_with_names)
self.csv_fields = ["model", "index", "bounds", "p_actual_x", "p_actual_y", "p_actual_z", "s_actual_x", "s_actual_y", "s_actual_z", "w_actual", "success", "p_result_x", "p_result_y", "p_result_z", "s_result_x", "s_result_y", "s_result_z", "w_result"]
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.diag.csv"
def go(self):
with open(self.filename, "a", newline="") as outfile:
# csv fields
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect='unix')
writer.writeheader()
for (name, discretisation) in self.discretisations_with_names:
_logger.info(f"Working on discretisation {name}")
results = []
with multiprocessing.Pool(multiprocessing.cpu_count() - 1 or 1) as pool:
results = pool.starmap(get_a_result, zip(itertools.repeat(discretisation), itertools.repeat(self.dots), discretisation.all_indices()))
with open(self.filename, "a", newline='') as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect='unix', extrasaction="ignore")
for idx, result in results:
bounds = discretisation.bounds(idx)
actual_success = result.success and result.cost <= 1e-10
diag_row = SingleDipoleDiagnostic(name, idx, bounds, self.dipoles.dipoles[0], discretisation.model.solution_as_dipoles(result.normalised_x)[0], actual_success)
row = vars(diag_row)
_logger.debug(f"Writing result {row}")
writer.writerow(row)

View File

@@ -1,3 +1,3 @@
from importlib.metadata import version
__version__ = version('deepdog')
__version__ = version("deepdog")

5
do.sh
View File

@@ -16,6 +16,11 @@ test() {
poetry run pytest
}
fmt() {
poetry run black .
find . -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
}
release() {
./scripts/release.sh
}

235
poetry.lock generated
View File

@@ -20,6 +20,28 @@ docs = ["furo", "sphinx", "zope.interface", "sphinx-notfound-page"]
tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface", "cloudpickle"]
tests_no_zope = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "cloudpickle"]
[[package]]
name = "black"
version = "22.3.0"
description = "The uncompromising code formatter."
category = "dev"
optional = false
python-versions = ">=3.6.2"
[package.dependencies]
click = ">=8.0.0"
mypy-extensions = ">=0.4.3"
pathspec = ">=0.9.0"
platformdirs = ">=2"
tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""}
typing-extensions = {version = ">=3.10.0.0", markers = "python_version < \"3.10\""}
[package.extras]
colorama = ["colorama (>=0.4.3)"]
d = ["aiohttp (>=3.7.4)"]
jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"]
uvloop = ["uvloop (>=0.15.2)"]
[[package]]
name = "bleach"
version = "4.1.0"
@@ -260,7 +282,7 @@ python-versions = "*"
[[package]]
name = "mypy"
version = "0.941"
version = "0.950"
description = "Optional static typing for Python"
category = "dev"
optional = false
@@ -268,7 +290,7 @@ python-versions = ">=3.6"
[package.dependencies]
mypy-extensions = ">=0.4.3"
tomli = ">=1.1.0"
tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""}
typing-extensions = ">=3.10"
[package.extras]
@@ -286,7 +308,7 @@ python-versions = "*"
[[package]]
name = "numpy"
version = "1.22.1"
version = "1.22.3"
description = "NumPy is the fundamental package for array computing with Python."
category = "main"
optional = false
@@ -303,17 +325,25 @@ python-versions = ">=3.6"
[package.dependencies]
pyparsing = ">=2.0.2,<3.0.5 || >3.0.5"
[[package]]
name = "pathspec"
version = "0.9.0"
description = "Utility library for gitignore style pattern matching of file paths."
category = "dev"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
[[package]]
name = "pdme"
version = "0.5.4"
version = "0.8.2"
description = "Python dipole model evaluator"
category = "main"
optional = false
python-versions = ">=3.8,<3.10"
[package.dependencies]
numpy = ">=1.21.1,<2.0.0"
scipy = ">=1.5,<1.6"
numpy = ">=1.22.3,<2.0.0"
scipy = ">=1.8,<1.9"
[[package]]
name = "pkginfo"
@@ -326,6 +356,18 @@ python-versions = "*"
[package.extras]
testing = ["coverage", "nose"]
[[package]]
name = "platformdirs"
version = "2.5.1"
description = "A small Python module for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
category = "dev"
optional = false
python-versions = ">=3.7"
[package.extras]
docs = ["Sphinx (>=4)", "furo (>=2021.7.5b38)", "proselint (>=0.10.2)", "sphinx-autodoc-typehints (>=1.12)"]
test = ["appdirs (==1.4.4)", "pytest (>=6)", "pytest-cov (>=2.7)", "pytest-mock (>=3.6)"]
[[package]]
name = "pluggy"
version = "1.0.0"
@@ -533,14 +575,14 @@ idna2008 = ["idna"]
[[package]]
name = "scipy"
version = "1.5.4"
version = "1.8.0"
description = "SciPy: Scientific Library for Python"
category = "main"
optional = false
python-versions = ">=3.6"
python-versions = ">=3.8,<3.11"
[package.dependencies]
numpy = ">=1.14.5"
numpy = ">=1.17.3,<1.25.0"
[[package]]
name = "secretstorage"
@@ -698,7 +740,7 @@ testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-
[metadata]
lock-version = "1.1"
python-versions = "^3.8,<3.10"
content-hash = "df9f6e340261abeea6f47328a703efca9251bfe29731652152db39095ac41ae0"
content-hash = "c1b27cf9297e4777e78a72caba5f560be87a0f3b27c001b7a05b18adfdca2d1c"
[metadata.files]
atomicwrites = [
@@ -709,6 +751,31 @@ attrs = [
{file = "attrs-21.4.0-py2.py3-none-any.whl", hash = "sha256:2d27e3784d7a565d36ab851fe94887c5eccd6a463168875832a1be79c82828b4"},
{file = "attrs-21.4.0.tar.gz", hash = "sha256:626ba8234211db98e869df76230a137c4c40a12d72445c45d5f5b716f076e2fd"},
]
black = [
{file = "black-22.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2497f9c2386572e28921fa8bec7be3e51de6801f7459dffd6e62492531c47e09"},
{file = "black-22.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5795a0375eb87bfe902e80e0c8cfaedf8af4d49694d69161e5bd3206c18618bb"},
{file = "black-22.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e3556168e2e5c49629f7b0f377070240bd5511e45e25a4497bb0073d9dda776a"},
{file = "black-22.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67c8301ec94e3bcc8906740fe071391bce40a862b7be0b86fb5382beefecd968"},
{file = "black-22.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:fd57160949179ec517d32ac2ac898b5f20d68ed1a9c977346efbac9c2f1e779d"},
{file = "black-22.3.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:cc1e1de68c8e5444e8f94c3670bb48a2beef0e91dddfd4fcc29595ebd90bb9ce"},
{file = "black-22.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2fc92002d44746d3e7db7cf9313cf4452f43e9ea77a2c939defce3b10b5c82"},
{file = "black-22.3.0-cp36-cp36m-win_amd64.whl", hash = "sha256:a6342964b43a99dbc72f72812bf88cad8f0217ae9acb47c0d4f141a6416d2d7b"},
{file = "black-22.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:328efc0cc70ccb23429d6be184a15ce613f676bdfc85e5fe8ea2a9354b4e9015"},
{file = "black-22.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:06f9d8846f2340dfac80ceb20200ea5d1b3f181dd0556b47af4e8e0b24fa0a6b"},
{file = "black-22.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4efa5fad66b903b4a5f96d91461d90b9507a812b3c5de657d544215bb7877a"},
{file = "black-22.3.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e8477ec6bbfe0312c128e74644ac8a02ca06bcdb8982d4ee06f209be28cdf163"},
{file = "black-22.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:637a4014c63fbf42a692d22b55d8ad6968a946b4a6ebc385c5505d9625b6a464"},
{file = "black-22.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:863714200ada56cbc366dc9ae5291ceb936573155f8bf8e9de92aef51f3ad0f0"},
{file = "black-22.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10dbe6e6d2988049b4655b2b739f98785a884d4d6b85bc35133a8fb9a2233176"},
{file = "black-22.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:cee3e11161dde1b2a33a904b850b0899e0424cc331b7295f2a9698e79f9a69a0"},
{file = "black-22.3.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5891ef8abc06576985de8fa88e95ab70641de6c1fca97e2a15820a9b69e51b20"},
{file = "black-22.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:30d78ba6bf080eeaf0b7b875d924b15cd46fec5fd044ddfbad38c8ea9171043a"},
{file = "black-22.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ee8f1f7228cce7dffc2b464f07ce769f478968bfb3dd1254a4c2eeed84928aad"},
{file = "black-22.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ee227b696ca60dd1c507be80a6bc849a5a6ab57ac7352aad1ffec9e8b805f21"},
{file = "black-22.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:9b542ced1ec0ceeff5b37d69838106a6348e60db7b8fdd245294dc1d26136265"},
{file = "black-22.3.0-py3-none-any.whl", hash = "sha256:bc58025940a896d7e5356952228b68f793cf5fcb342be703c3a2669a1488cb72"},
{file = "black-22.3.0.tar.gz", hash = "sha256:35020b8886c022ced9282b51b5a875b6d1ab0c387b31a065b84db7c33085ca79"},
]
bleach = [
{file = "bleach-4.1.0-py2.py3-none-any.whl", hash = "sha256:4d2651ab93271d1129ac9cbc679f524565cc8a1b791909c4a51eac4446a15994"},
{file = "bleach-4.1.0.tar.gz", hash = "sha256:0900d8b37eba61a802ee40ac0061f8c2b5dee29c1927dd1d233e075ebf5a71da"},
@@ -899,70 +966,76 @@ mccabe = [
{file = "mccabe-0.6.1.tar.gz", hash = "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f"},
]
mypy = [
{file = "mypy-0.941-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:98f61aad0bb54f797b17da5b82f419e6ce214de0aa7e92211ebee9e40eb04276"},
{file = "mypy-0.941-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6a8e1f63357851444940351e98fb3252956a15f2cabe3d698316d7a2d1f1f896"},
{file = "mypy-0.941-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b30d29251dff4c59b2e5a1fa1bab91ff3e117b4658cb90f76d97702b7a2ae699"},
{file = "mypy-0.941-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8eaf55fdf99242a1c8c792247c455565447353914023878beadb79600aac4a2a"},
{file = "mypy-0.941-cp310-cp310-win_amd64.whl", hash = "sha256:080097eee5393fd740f32c63f9343580aaa0fb1cda0128fd859dfcf081321c3d"},
{file = "mypy-0.941-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:f79137d012ff3227866222049af534f25354c07a0d6b9a171dba9f1d6a1fdef4"},
{file = "mypy-0.941-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8e5974583a77d630a5868eee18f85ac3093caf76e018c510aeb802b9973304ce"},
{file = "mypy-0.941-cp36-cp36m-win_amd64.whl", hash = "sha256:0dd441fbacf48e19dc0c5c42fafa72b8e1a0ba0a39309c1af9c84b9397d9b15a"},
{file = "mypy-0.941-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0d3bcbe146247997e03bf030122000998b076b3ac6925b0b6563f46d1ce39b50"},
{file = "mypy-0.941-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:3bada0cf7b6965627954b3a128903a87cac79a79ccd83b6104912e723ef16c7b"},
{file = "mypy-0.941-cp37-cp37m-win_amd64.whl", hash = "sha256:eea10982b798ff0ccc3b9e7e42628f932f552c5845066970e67cd6858655d52c"},
{file = "mypy-0.941-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:108f3c7e14a038cf097d2444fa0155462362c6316e3ecb2d70f6dd99cd36084d"},
{file = "mypy-0.941-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d61b73c01fc1de799226963f2639af831307fe1556b04b7c25e2b6c267a3bc76"},
{file = "mypy-0.941-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:42c216a33d2bdba08098acaf5bae65b0c8196afeb535ef4b870919a788a27259"},
{file = "mypy-0.941-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fc5ecff5a3bbfbe20091b1cad82815507f5ae9c380a3a9bf40f740c70ce30a9b"},
{file = "mypy-0.941-cp38-cp38-win_amd64.whl", hash = "sha256:bf446223b2e0e4f0a4792938e8d885e8a896834aded5f51be5c3c69566495540"},
{file = "mypy-0.941-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:745071762f32f65e77de6df699366d707fad6c132a660d1342077cbf671ef589"},
{file = "mypy-0.941-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:465a6ce9ca6268cadfbc27a2a94ddf0412568a6b27640ced229270be4f5d394d"},
{file = "mypy-0.941-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d051ce0946521eba48e19b25f27f98e5ce4dbc91fff296de76240c46b4464df0"},
{file = "mypy-0.941-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:818cfc51c25a5dbfd0705f3ac1919fff6971eb0c02e6f1a1f6a017a42405a7c0"},
{file = "mypy-0.941-cp39-cp39-win_amd64.whl", hash = "sha256:b2ce2788df0c066c2ff4ba7190fa84f18937527c477247e926abeb9b1168b8cc"},
{file = "mypy-0.941-py3-none-any.whl", hash = "sha256:3cf77f138efb31727ee7197bc824c9d6d7039204ed96756cc0f9ca7d8e8fc2a4"},
{file = "mypy-0.941.tar.gz", hash = "sha256:cbcc691d8b507d54cb2b8521f0a2a3d4daa477f62fe77f0abba41e5febb377b7"},
{file = "mypy-0.950-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cf9c261958a769a3bd38c3e133801ebcd284ffb734ea12d01457cb09eacf7d7b"},
{file = "mypy-0.950-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b5b5bd0ffb11b4aba2bb6d31b8643902c48f990cc92fda4e21afac658044f0c0"},
{file = "mypy-0.950-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5e7647df0f8fc947388e6251d728189cfadb3b1e558407f93254e35abc026e22"},
{file = "mypy-0.950-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eaff8156016487c1af5ffa5304c3e3fd183edcb412f3e9c72db349faf3f6e0eb"},
{file = "mypy-0.950-cp310-cp310-win_amd64.whl", hash = "sha256:563514c7dc504698fb66bb1cf897657a173a496406f1866afae73ab5b3cdb334"},
{file = "mypy-0.950-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:dd4d670eee9610bf61c25c940e9ade2d0ed05eb44227275cce88701fee014b1f"},
{file = "mypy-0.950-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ca75ecf2783395ca3016a5e455cb322ba26b6d33b4b413fcdedfc632e67941dc"},
{file = "mypy-0.950-cp36-cp36m-win_amd64.whl", hash = "sha256:6003de687c13196e8a1243a5e4bcce617d79b88f83ee6625437e335d89dfebe2"},
{file = "mypy-0.950-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4c653e4846f287051599ed8f4b3c044b80e540e88feec76b11044ddc5612ffed"},
{file = "mypy-0.950-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e19736af56947addedce4674c0971e5dceef1b5ec7d667fe86bcd2b07f8f9075"},
{file = "mypy-0.950-cp37-cp37m-win_amd64.whl", hash = "sha256:ef7beb2a3582eb7a9f37beaf38a28acfd801988cde688760aea9e6cc4832b10b"},
{file = "mypy-0.950-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0112752a6ff07230f9ec2f71b0d3d4e088a910fdce454fdb6553e83ed0eced7d"},
{file = "mypy-0.950-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ee0a36edd332ed2c5208565ae6e3a7afc0eabb53f5327e281f2ef03a6bc7687a"},
{file = "mypy-0.950-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:77423570c04aca807508a492037abbd72b12a1fb25a385847d191cd50b2c9605"},
{file = "mypy-0.950-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5ce6a09042b6da16d773d2110e44f169683d8cc8687e79ec6d1181a72cb028d2"},
{file = "mypy-0.950-cp38-cp38-win_amd64.whl", hash = "sha256:5b231afd6a6e951381b9ef09a1223b1feabe13625388db48a8690f8daa9b71ff"},
{file = "mypy-0.950-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0384d9f3af49837baa92f559d3fa673e6d2652a16550a9ee07fc08c736f5e6f8"},
{file = "mypy-0.950-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1fdeb0a0f64f2a874a4c1f5271f06e40e1e9779bf55f9567f149466fc7a55038"},
{file = "mypy-0.950-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:61504b9a5ae166ba5ecfed9e93357fd51aa693d3d434b582a925338a2ff57fd2"},
{file = "mypy-0.950-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a952b8bc0ae278fc6316e6384f67bb9a396eb30aced6ad034d3a76120ebcc519"},
{file = "mypy-0.950-cp39-cp39-win_amd64.whl", hash = "sha256:eaea21d150fb26d7b4856766e7addcf929119dd19fc832b22e71d942835201ef"},
{file = "mypy-0.950-py3-none-any.whl", hash = "sha256:a4d9898f46446bfb6405383b57b96737dcfd0a7f25b748e78ef3e8c576bba3cb"},
{file = "mypy-0.950.tar.gz", hash = "sha256:1b333cfbca1762ff15808a0ef4f71b5d3eed8528b23ea1c3fb50543c867d68de"},
]
mypy-extensions = [
{file = "mypy_extensions-0.4.3-py2.py3-none-any.whl", hash = "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d"},
{file = "mypy_extensions-0.4.3.tar.gz", hash = "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8"},
]
numpy = [
{file = "numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3d62d6b0870b53799204515145935608cdeb4cebb95a26800b6750e48884cc5b"},
{file = "numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:831f2df87bd3afdfc77829bc94bd997a7c212663889d56518359c827d7113b1f"},
{file = "numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d1563060e77096367952fb44fca595f2b2f477156de389ce7c0ade3aef29e21"},
{file = "numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69958735d5e01f7b38226a6c6e7187d72b7e4d42b6b496aca5860b611ca0c193"},
{file = "numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45a7dfbf9ed8d68fd39763940591db7637cf8817c5bce1a44f7b56c97cbe211e"},
{file = "numpy-1.22.1-cp310-cp310-win_amd64.whl", hash = "sha256:7e957ca8112c689b728037cea9c9567c27cf912741fabda9efc2c7d33d29dfa1"},
{file = "numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:800dfeaffb2219d49377da1371d710d7952c9533b57f3d51b15e61c4269a1b5b"},
{file = "numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:65f5e257987601fdfc63f1d02fca4d1c44a2b85b802f03bd6abc2b0b14648dd2"},
{file = "numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:632e062569b0fe05654b15ef0e91a53c0a95d08ffe698b66f6ba0f927ad267c2"},
{file = "numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d245a2bf79188d3f361137608c3cd12ed79076badd743dc660750a9f3074f7c"},
{file = "numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26b4018a19d2ad9606ce9089f3d52206a41b23de5dfe8dc947d2ec49ce45d015"},
{file = "numpy-1.22.1-cp38-cp38-win32.whl", hash = "sha256:f8ad59e6e341f38266f1549c7c2ec70ea0e3d1effb62a44e5c3dba41c55f0187"},
{file = "numpy-1.22.1-cp38-cp38-win_amd64.whl", hash = "sha256:60f19c61b589d44fbbab8ff126640ae712e163299c2dd422bfe4edc7ec51aa9b"},
{file = "numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:2db01d9838a497ba2aa9a87515aeaf458f42351d72d4e7f3b8ddbd1eba9479f2"},
{file = "numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bcd19dab43b852b03868796f533b5f5561e6c0e3048415e675bec8d2e9d286c1"},
{file = "numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:78bfbdf809fc236490e7e65715bbd98377b122f329457fffde206299e163e7f3"},
{file = "numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c51124df17f012c3b757380782ae46eee85213a3215e51477e559739f57d9bf6"},
{file = "numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88d54b7b516f0ca38a69590557814de2dd638d7d4ed04864826acaac5ebb8f01"},
{file = "numpy-1.22.1-cp39-cp39-win32.whl", hash = "sha256:b5ec9a5eaf391761c61fd873363ef3560a3614e9b4ead17347e4deda4358bca4"},
{file = "numpy-1.22.1-cp39-cp39-win_amd64.whl", hash = "sha256:4ac4d7c9f8ea2a79d721ebfcce81705fc3cd61a10b731354f1049eb8c99521e8"},
{file = "numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e60ef82c358ded965fdd3132b5738eade055f48067ac8a5a8ac75acc00cad31f"},
{file = "numpy-1.22.1.zip", hash = "sha256:e348ccf5bc5235fc405ab19d53bec215bb373300e5523c7b476cc0da8a5e9973"},
{file = "numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:92bfa69cfbdf7dfc3040978ad09a48091143cffb778ec3b03fa170c494118d75"},
{file = "numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8251ed96f38b47b4295b1ae51631de7ffa8260b5b087808ef09a39a9d66c97ab"},
{file = "numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48a3aecd3b997bf452a2dedb11f4e79bc5bfd21a1d4cc760e703c31d57c84b3e"},
{file = "numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3bae1a2ed00e90b3ba5f7bd0a7c7999b55d609e0c54ceb2b076a25e345fa9f4"},
{file = "numpy-1.22.3-cp310-cp310-win32.whl", hash = "sha256:f950f8845b480cffe522913d35567e29dd381b0dc7e4ce6a4a9f9156417d2430"},
{file = "numpy-1.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:08d9b008d0156c70dc392bb3ab3abb6e7a711383c3247b410b39962263576cd4"},
{file = "numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:201b4d0552831f7250a08d3b38de0d989d6f6e4658b709a02a73c524ccc6ffce"},
{file = "numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8c1f39caad2c896bc0018f699882b345b2a63708008be29b1f355ebf6f933fe"},
{file = "numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:568dfd16224abddafb1cbcce2ff14f522abe037268514dd7e42c6776a1c3f8e5"},
{file = "numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ca688e1b9b95d80250bca34b11a05e389b1420d00e87a0d12dc45f131f704a1"},
{file = "numpy-1.22.3-cp38-cp38-win32.whl", hash = "sha256:e7927a589df200c5e23c57970bafbd0cd322459aa7b1ff73b7c2e84d6e3eae62"},
{file = "numpy-1.22.3-cp38-cp38-win_amd64.whl", hash = "sha256:07a8c89a04997625236c5ecb7afe35a02af3896c8aa01890a849913a2309c676"},
{file = "numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:2c10a93606e0b4b95c9b04b77dc349b398fdfbda382d2a39ba5a822f669a0123"},
{file = "numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fade0d4f4d292b6f39951b6836d7a3c7ef5b2347f3c420cd9820a1d90d794802"},
{file = "numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bfb1bb598e8229c2d5d48db1860bcf4311337864ea3efdbe1171fb0c5da515d"},
{file = "numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97098b95aa4e418529099c26558eeb8486e66bd1e53a6b606d684d0c3616b168"},
{file = "numpy-1.22.3-cp39-cp39-win32.whl", hash = "sha256:fdf3c08bce27132395d3c3ba1503cac12e17282358cb4bddc25cc46b0aca07aa"},
{file = "numpy-1.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:639b54cdf6aa4f82fe37ebf70401bbb74b8508fddcf4797f9fe59615b8c5813a"},
{file = "numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c34ea7e9d13a70bf2ab64a2532fe149a9aced424cd05a2c4ba662fd989e3e45f"},
{file = "numpy-1.22.3.zip", hash = "sha256:dbc7601a3b7472d559dc7b933b18b4b66f9aa7452c120e87dfb33d02008c8a18"},
]
packaging = [
{file = "packaging-21.3-py3-none-any.whl", hash = "sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522"},
{file = "packaging-21.3.tar.gz", hash = "sha256:dd47c42927d89ab911e606518907cc2d3a1f38bbd026385970643f9c5b8ecfeb"},
]
pathspec = [
{file = "pathspec-0.9.0-py2.py3-none-any.whl", hash = "sha256:7d15c4ddb0b5c802d161efc417ec1a2558ea2653c2e8ad9c19098201dc1c993a"},
{file = "pathspec-0.9.0.tar.gz", hash = "sha256:e564499435a2673d586f6b2130bb5b95f04a3ba06f81b8f895b651a3c76aabb1"},
]
pdme = [
{file = "pdme-0.5.4-py3-none-any.whl", hash = "sha256:90ba75efbec04f5a505c9c5228824538510149e218372e758c15150d5967d92b"},
{file = "pdme-0.5.4.tar.gz", hash = "sha256:82bff2ccc8f38996c23b43ab7d7dc80d87a6b340492f368861e7748105b50174"},
{file = "pdme-0.8.2-py3-none-any.whl", hash = "sha256:872aa43f99d357b8e802036c6de2e529942dd24c76a830142abd0b9ff6fd869c"},
{file = "pdme-0.8.2.tar.gz", hash = "sha256:36a2bef50ab2c24a82c44bd9ded473991332358ab393f46e9e0bb0b83d538a0f"},
]
pkginfo = [
{file = "pkginfo-1.8.2-py2.py3-none-any.whl", hash = "sha256:c24c487c6a7f72c66e816ab1796b96ac6c3d14d49338293d2141664330b55ffc"},
{file = "pkginfo-1.8.2.tar.gz", hash = "sha256:542e0d0b6750e2e21c20179803e40ab50598d8066d51097a0e382cba9eb02bff"},
]
platformdirs = [
{file = "platformdirs-2.5.1-py3-none-any.whl", hash = "sha256:bcae7cab893c2d310a711b70b24efb93334febe65f8de776ee320b517471e227"},
{file = "platformdirs-2.5.1.tar.gz", hash = "sha256:7535e70dfa32e84d4b34996ea99c5e432fa29a708d0f4e394bbcb2a8faa4f16d"},
]
pluggy = [
{file = "pluggy-1.0.0-py2.py3-none-any.whl", hash = "sha256:74134bbf457f031a36d68416e1509f34bd5ccc019f0bcc952c7b909d06b37bd3"},
{file = "pluggy-1.0.0.tar.gz", hash = "sha256:4224373bacce55f955a878bf9cfa763c1e360858e330072059e10bad68531159"},
@@ -1028,31 +1101,29 @@ rfc3986 = [
{file = "rfc3986-2.0.0.tar.gz", hash = "sha256:97aacf9dbd4bfd829baad6e6309fa6573aaf1be3f6fa735c8ab05e46cecb261c"},
]
scipy = [
{file = "scipy-1.5.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4f12d13ffbc16e988fa40809cbbd7a8b45bc05ff6ea0ba8e3e41f6f4db3a9e47"},
{file = "scipy-1.5.4-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:a254b98dbcc744c723a838c03b74a8a34c0558c9ac5c86d5561703362231107d"},
{file = "scipy-1.5.4-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:368c0f69f93186309e1b4beb8e26d51dd6f5010b79264c0f1e9ca00cd92ea8c9"},
{file = "scipy-1.5.4-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:4598cf03136067000855d6b44d7a1f4f46994164bcd450fb2c3d481afc25dd06"},
{file = "scipy-1.5.4-cp36-cp36m-win32.whl", hash = "sha256:e98d49a5717369d8241d6cf33ecb0ca72deee392414118198a8e5b4c35c56340"},
{file = "scipy-1.5.4-cp36-cp36m-win_amd64.whl", hash = "sha256:65923bc3809524e46fb7eb4d6346552cbb6a1ffc41be748535aa502a2e3d3389"},
{file = "scipy-1.5.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9ad4fcddcbf5dc67619379782e6aeef41218a79e17979aaed01ed099876c0e62"},
{file = "scipy-1.5.4-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:f87b39f4d69cf7d7529d7b1098cb712033b17ea7714aed831b95628f483fd012"},
{file = "scipy-1.5.4-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:25b241034215247481f53355e05f9e25462682b13bd9191359075682adcd9554"},
{file = "scipy-1.5.4-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:fa789583fc94a7689b45834453fec095245c7e69c58561dc159b5d5277057e4c"},
{file = "scipy-1.5.4-cp37-cp37m-win32.whl", hash = "sha256:d6d25c41a009e3c6b7e757338948d0076ee1dd1770d1c09ec131f11946883c54"},
{file = "scipy-1.5.4-cp37-cp37m-win_amd64.whl", hash = "sha256:2c872de0c69ed20fb1a9b9cf6f77298b04a26f0b8720a5457be08be254366c6e"},
{file = "scipy-1.5.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e360cb2299028d0b0d0f65a5c5e51fc16a335f1603aa2357c25766c8dab56938"},
{file = "scipy-1.5.4-cp38-cp38-manylinux1_i686.whl", hash = "sha256:3397c129b479846d7eaa18f999369a24322d008fac0782e7828fa567358c36ce"},
{file = "scipy-1.5.4-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:168c45c0c32e23f613db7c9e4e780bc61982d71dcd406ead746c7c7c2f2004ce"},
{file = "scipy-1.5.4-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:213bc59191da2f479984ad4ec39406bf949a99aba70e9237b916ce7547b6ef42"},
{file = "scipy-1.5.4-cp38-cp38-win32.whl", hash = "sha256:634568a3018bc16a83cda28d4f7aed0d803dd5618facb36e977e53b2df868443"},
{file = "scipy-1.5.4-cp38-cp38-win_amd64.whl", hash = "sha256:b03c4338d6d3d299e8ca494194c0ae4f611548da59e3c038813f1a43976cb437"},
{file = "scipy-1.5.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3d5db5d815370c28d938cf9b0809dade4acf7aba57eaf7ef733bfedc9b2474c4"},
{file = "scipy-1.5.4-cp39-cp39-manylinux1_i686.whl", hash = "sha256:6b0ceb23560f46dd236a8ad4378fc40bad1783e997604ba845e131d6c680963e"},
{file = "scipy-1.5.4-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:ed572470af2438b526ea574ff8f05e7f39b44ac37f712105e57fc4d53a6fb660"},
{file = "scipy-1.5.4-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:8c8d6ca19c8497344b810b0b0344f8375af5f6bb9c98bd42e33f747417ab3f57"},
{file = "scipy-1.5.4-cp39-cp39-win32.whl", hash = "sha256:d84cadd7d7998433334c99fa55bcba0d8b4aeff0edb123b2a1dfcface538e474"},
{file = "scipy-1.5.4-cp39-cp39-win_amd64.whl", hash = "sha256:cc1f78ebc982cd0602c9a7615d878396bec94908db67d4ecddca864d049112f2"},
{file = "scipy-1.5.4.tar.gz", hash = "sha256:4a453d5e5689de62e5d38edf40af3f17560bfd63c9c5bd228c18c1f99afa155b"},
{file = "scipy-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:87b01c7d5761e8a266a0fbdb9d88dcba0910d63c1c671bdb4d99d29f469e9e03"},
{file = "scipy-1.8.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:ae3e327da323d82e918e593460e23babdce40d7ab21490ddf9fc06dec6b91a18"},
{file = "scipy-1.8.0-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:16e09ef68b352d73befa8bcaf3ebe25d3941fe1a58c82909d5589856e6bc8174"},
{file = "scipy-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c17a1878d00a5dd2797ccd73623ceca9d02375328f6218ee6d921e1325e61aff"},
{file = "scipy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:937d28722f13302febde29847bbe554b89073fbb924a30475e5ed7b028898b5f"},
{file = "scipy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:8f4d059a97b29c91afad46b1737274cb282357a305a80bdd9e8adf3b0ca6a3f0"},
{file = "scipy-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:38aa39b6724cb65271e469013aeb6f2ce66fd44f093e241c28a9c6bc64fd79ed"},
{file = "scipy-1.8.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:559a8a4c03a5ba9fe3232f39ed24f86457e4f3f6c0abbeae1fb945029f092720"},
{file = "scipy-1.8.0-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:f4a6d3b9f9797eb2d43938ac2c5d96d02aed17ef170c8b38f11798717523ddba"},
{file = "scipy-1.8.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:92b2c2af4183ed09afb595709a8ef5783b2baf7f41e26ece24e1329c109691a7"},
{file = "scipy-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a279e27c7f4566ef18bab1b1e2c37d168e365080974758d107e7d237d3f0f484"},
{file = "scipy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad5be4039147c808e64f99c0e8a9641eb5d2fa079ff5894dcd8240e94e347af4"},
{file = "scipy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:3d9dd6c8b93a22bf9a3a52d1327aca7e092b1299fb3afc4f89e8eba381be7b59"},
{file = "scipy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:5e73343c5e0d413c1f937302b2e04fb07872f5843041bcfd50699aef6e95e399"},
{file = "scipy-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:de2e80ee1d925984c2504812a310841c241791c5279352be4707cdcd7c255039"},
{file = "scipy-1.8.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:c2bae431d127bf0b1da81fc24e4bba0a84d058e3a96b9dd6475dfcb3c5e8761e"},
{file = "scipy-1.8.0-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:723b9f878095ed994756fa4ee3060c450e2db0139c5ba248ee3f9628bd64e735"},
{file = "scipy-1.8.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:011d4386b53b933142f58a652aa0f149c9b9242abd4f900b9f4ea5fbafc86b89"},
{file = "scipy-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6f0cd9c0bd374ef834ee1e0f0999678d49dcc400ea6209113d81528958f97c7"},
{file = "scipy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3720d0124aced49f6f2198a6900304411dbbeed12f56951d7c66ebef05e3df6"},
{file = "scipy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:3d573228c10a3a8c32b9037be982e6440e411b443a6267b067cac72f690b8d56"},
{file = "scipy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:bb7088e89cd751acf66195d2f00cf009a1ea113f3019664032d9075b1e727b6c"},
{file = "scipy-1.8.0.tar.gz", hash = "sha256:31d4f2d6b724bc9a98e527b5849b8a7e589bf1ea630c33aa563eda912c9ff0bd"},
]
secretstorage = [
{file = "SecretStorage-3.3.1-py3-none-any.whl", hash = "sha256:422d82c36172d88d6a0ed5afdec956514b189ddbfb72fefab0c8a1cee4eaf71f"},

View File

@@ -1,19 +1,20 @@
[tool.poetry]
name = "deepdog"
version = "0.3.5"
version = "0.6.0"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies]
python = "^3.8,<3.10"
pdme = "^0.5.4"
pdme = "0.8.2"
[tool.poetry.dev-dependencies]
pytest = ">=6"
flake8 = "^4.0.1"
pytest-cov = "^3.0.0"
mypy = "^0.941"
mypy = "^0.950"
python-semantic-release = "^7.24.0"
black = "^22.3.0"
[build-system]
requires = ["poetry-core>=1.0.0"]