Moving complex quad file to comlpex integrate
This commit is contained in:
@@ -31,7 +31,7 @@ class LindhardDielectric(object):
|
||||
# converts u from inverse vacuum wavelength to inverse mean free path
|
||||
u = u_inverse_wavelength * self.v_f / self.c_light
|
||||
|
||||
if u < LINDHARD_SERIES_THRESHOLD * self.c_light / self.omega:
|
||||
if u < LINDHARD_SERIES_THRESHOLD * self.v_f / self.omega:
|
||||
return eps_series(u)
|
||||
else:
|
||||
return eps_full_lindhard(u)
|
||||
|
||||
@@ -35,7 +35,7 @@ def i2(w, wp, k, v):
|
||||
|
||||
|
||||
def a(w, k, v, t):
|
||||
return pynam.util.complex_quad.complex_quadrature(
|
||||
return pynam.util.complex_quad.complex_quad(
|
||||
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
|
||||
1 - w, 1
|
||||
)[0]
|
||||
@@ -46,7 +46,7 @@ def b_int(wp, w, k, v, t):
|
||||
|
||||
|
||||
def b(w, k, v, t, b_max=np.inf):
|
||||
return pynam.util.complex_quad.complex_quadrature(
|
||||
return pynam.util.complex_quad.complex_quad(
|
||||
lambda wp: b_int(wp, w, k, v, t), 1, b_max
|
||||
)[0]
|
||||
|
||||
|
||||
@@ -41,7 +41,7 @@ def i2(w, wp, k, v):
|
||||
|
||||
|
||||
def a(w, k, v, t):
|
||||
result = pynam.util.complex_quad.complex_quadrature(
|
||||
result = pynam.util.complex_quad.complex_quad(
|
||||
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
|
||||
1 - w, 1,
|
||||
epsabs=1e-10
|
||||
@@ -55,7 +55,7 @@ def b_int(wp, w, k, v, t):
|
||||
|
||||
|
||||
def b(w, k, v, t, b_max=np.inf):
|
||||
return pynam.util.complex_quadrature(
|
||||
return pynam.util.complex_quad(
|
||||
lambda wp: b_int(wp, w, k, v, t), 1, b_max
|
||||
)[0]
|
||||
|
||||
|
||||
0
pynam/noise/__init__.py
Normal file
0
pynam/noise/__init__.py
Normal file
45
pynam/noise/zeta.py
Normal file
45
pynam/noise/zeta.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import pynam.util
|
||||
|
||||
from typing import Callable
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_zeta_p_integrand(eps: Callable[[float], complex]) -> Callable[[float, float], complex]:
|
||||
""" Gets the integrand function zeta_p_integrand(u, y).
|
||||
|
||||
Returns zeta_p_integrand(u, y), a complex valued function of two momenta in units of vacuum wavelength.
|
||||
|
||||
:param eps:
|
||||
:return:
|
||||
"""
|
||||
def zeta_p_integrand(u: float, y: float) -> complex:
|
||||
"""
|
||||
Here y and u are in units of vacuum wavelength, coming from Ford-Weber / from the EWJN noise expressions.
|
||||
:param u:
|
||||
:param y:
|
||||
:return:
|
||||
"""
|
||||
u2 = u ** 2
|
||||
y2 = y ** 2
|
||||
k2 = u2 + y2
|
||||
k = np.sqrt(k2)
|
||||
eps_value = eps(k)
|
||||
term_1 = y2 / (eps_value - k2)
|
||||
term_2 = u2 / eps_value
|
||||
return (term_1 + term_2) / k2
|
||||
|
||||
return zeta_p_integrand
|
||||
|
||||
|
||||
# def get_zeta_p_function(eps: Callable[[float], complex]):
|
||||
# def zeta_p(u: float) -> complex:
|
||||
# zeta_p_integrand = get_zeta_integrand(eps)
|
||||
#
|
||||
# integral_result = pynam.util.complex_quad(zeta_p_integrand, 0, np.inf)
|
||||
#
|
||||
# print(integral_result)
|
||||
# integral = integral_result[0]
|
||||
#
|
||||
# return integral * 2j
|
||||
#
|
||||
# return zeta_p
|
||||
@@ -1 +1 @@
|
||||
from pynam.util.complex_quad import complex_quadrature
|
||||
from pynam.util.complex_quad import complex_quad, complex_quadrature
|
||||
|
||||
29
pynam/util/complex_integrate.py
Normal file
29
pynam/util/complex_integrate.py
Normal file
@@ -0,0 +1,29 @@
|
||||
import numpy as np
|
||||
from scipy.integrate import quad, quadrature
|
||||
|
||||
|
||||
def complex_quad(func, a, b, **kwargs):
|
||||
|
||||
def real_func(x):
|
||||
return np.real(func(x))
|
||||
|
||||
def imag_func(x):
|
||||
return np.imag(func(x))
|
||||
|
||||
real_integral = quad(real_func, a, b, **kwargs)
|
||||
imag_integral = quad(imag_func, a, b, **kwargs)
|
||||
|
||||
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]
|
||||
|
||||
def complex_quadrature(func, a, b, **kwargs):
|
||||
|
||||
def real_func(x):
|
||||
return np.real(func(x))
|
||||
|
||||
def imag_func(x):
|
||||
return np.imag(func(x))
|
||||
|
||||
real_integral = quadrature(real_func, a, b, **kwargs)
|
||||
imag_integral = quadrature(imag_func, a, b, **kwargs)
|
||||
|
||||
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]
|
||||
@@ -1,16 +0,0 @@
|
||||
import numpy as np
|
||||
from scipy.integrate import quad
|
||||
|
||||
|
||||
def complex_quadrature(func, a, b, **kwargs):
|
||||
|
||||
def real_func(x):
|
||||
return np.real(func(x))
|
||||
|
||||
def imag_func(x):
|
||||
return np.imag(func(x))
|
||||
|
||||
real_integral = quad(real_func, a, b, **kwargs)
|
||||
imag_integral = quad(imag_func, a, b, **kwargs)
|
||||
|
||||
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]
|
||||
Reference in New Issue
Block a user