Moving complex quad file to comlpex integrate

This commit is contained in:
2020-07-14 08:22:07 -05:00
parent b3545e3f1b
commit 8b8a06490a
12 changed files with 132 additions and 24 deletions

View File

@@ -31,7 +31,7 @@ class LindhardDielectric(object):
# converts u from inverse vacuum wavelength to inverse mean free path
u = u_inverse_wavelength * self.v_f / self.c_light
if u < LINDHARD_SERIES_THRESHOLD * self.c_light / self.omega:
if u < LINDHARD_SERIES_THRESHOLD * self.v_f / self.omega:
return eps_series(u)
else:
return eps_full_lindhard(u)

View File

@@ -35,7 +35,7 @@ def i2(w, wp, k, v):
def a(w, k, v, t):
return pynam.util.complex_quad.complex_quadrature(
return pynam.util.complex_quad.complex_quad(
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
1 - w, 1
)[0]
@@ -46,7 +46,7 @@ def b_int(wp, w, k, v, t):
def b(w, k, v, t, b_max=np.inf):
return pynam.util.complex_quad.complex_quadrature(
return pynam.util.complex_quad.complex_quad(
lambda wp: b_int(wp, w, k, v, t), 1, b_max
)[0]

View File

@@ -41,7 +41,7 @@ def i2(w, wp, k, v):
def a(w, k, v, t):
result = pynam.util.complex_quad.complex_quadrature(
result = pynam.util.complex_quad.complex_quad(
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
1 - w, 1,
epsabs=1e-10
@@ -55,7 +55,7 @@ def b_int(wp, w, k, v, t):
def b(w, k, v, t, b_max=np.inf):
return pynam.util.complex_quadrature(
return pynam.util.complex_quad(
lambda wp: b_int(wp, w, k, v, t), 1, b_max
)[0]

0
pynam/noise/__init__.py Normal file
View File

45
pynam/noise/zeta.py Normal file
View File

@@ -0,0 +1,45 @@
import pynam.util
from typing import Callable
import numpy as np
def get_zeta_p_integrand(eps: Callable[[float], complex]) -> Callable[[float, float], complex]:
""" Gets the integrand function zeta_p_integrand(u, y).
Returns zeta_p_integrand(u, y), a complex valued function of two momenta in units of vacuum wavelength.
:param eps:
:return:
"""
def zeta_p_integrand(u: float, y: float) -> complex:
"""
Here y and u are in units of vacuum wavelength, coming from Ford-Weber / from the EWJN noise expressions.
:param u:
:param y:
:return:
"""
u2 = u ** 2
y2 = y ** 2
k2 = u2 + y2
k = np.sqrt(k2)
eps_value = eps(k)
term_1 = y2 / (eps_value - k2)
term_2 = u2 / eps_value
return (term_1 + term_2) / k2
return zeta_p_integrand
# def get_zeta_p_function(eps: Callable[[float], complex]):
# def zeta_p(u: float) -> complex:
# zeta_p_integrand = get_zeta_integrand(eps)
#
# integral_result = pynam.util.complex_quad(zeta_p_integrand, 0, np.inf)
#
# print(integral_result)
# integral = integral_result[0]
#
# return integral * 2j
#
# return zeta_p

View File

@@ -1 +1 @@
from pynam.util.complex_quad import complex_quadrature
from pynam.util.complex_quad import complex_quad, complex_quadrature

View File

@@ -0,0 +1,29 @@
import numpy as np
from scipy.integrate import quad, quadrature
def complex_quad(func, a, b, **kwargs):
def real_func(x):
return np.real(func(x))
def imag_func(x):
return np.imag(func(x))
real_integral = quad(real_func, a, b, **kwargs)
imag_integral = quad(imag_func, a, b, **kwargs)
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]
def complex_quadrature(func, a, b, **kwargs):
def real_func(x):
return np.real(func(x))
def imag_func(x):
return np.imag(func(x))
real_integral = quadrature(real_func, a, b, **kwargs)
imag_integral = quadrature(imag_func, a, b, **kwargs)
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]

View File

@@ -1,16 +0,0 @@
import numpy as np
from scipy.integrate import quad
def complex_quadrature(func, a, b, **kwargs):
def real_func(x):
return np.real(func(x))
def imag_func(x):
return np.imag(func(x))
real_integral = quad(real_func, a, b, **kwargs)
imag_integral = quad(imag_func, a, b, **kwargs)
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]