Moving complex quad file to comlpex integrate
This commit is contained in:
parent
b3545e3f1b
commit
8b8a06490a
@ -31,7 +31,7 @@ class LindhardDielectric(object):
|
|||||||
# converts u from inverse vacuum wavelength to inverse mean free path
|
# converts u from inverse vacuum wavelength to inverse mean free path
|
||||||
u = u_inverse_wavelength * self.v_f / self.c_light
|
u = u_inverse_wavelength * self.v_f / self.c_light
|
||||||
|
|
||||||
if u < LINDHARD_SERIES_THRESHOLD * self.c_light / self.omega:
|
if u < LINDHARD_SERIES_THRESHOLD * self.v_f / self.omega:
|
||||||
return eps_series(u)
|
return eps_series(u)
|
||||||
else:
|
else:
|
||||||
return eps_full_lindhard(u)
|
return eps_full_lindhard(u)
|
||||||
|
@ -35,7 +35,7 @@ def i2(w, wp, k, v):
|
|||||||
|
|
||||||
|
|
||||||
def a(w, k, v, t):
|
def a(w, k, v, t):
|
||||||
return pynam.util.complex_quad.complex_quadrature(
|
return pynam.util.complex_quad.complex_quad(
|
||||||
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
|
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
|
||||||
1 - w, 1
|
1 - w, 1
|
||||||
)[0]
|
)[0]
|
||||||
@ -46,7 +46,7 @@ def b_int(wp, w, k, v, t):
|
|||||||
|
|
||||||
|
|
||||||
def b(w, k, v, t, b_max=np.inf):
|
def b(w, k, v, t, b_max=np.inf):
|
||||||
return pynam.util.complex_quad.complex_quadrature(
|
return pynam.util.complex_quad.complex_quad(
|
||||||
lambda wp: b_int(wp, w, k, v, t), 1, b_max
|
lambda wp: b_int(wp, w, k, v, t), 1, b_max
|
||||||
)[0]
|
)[0]
|
||||||
|
|
||||||
|
@ -41,7 +41,7 @@ def i2(w, wp, k, v):
|
|||||||
|
|
||||||
|
|
||||||
def a(w, k, v, t):
|
def a(w, k, v, t):
|
||||||
result = pynam.util.complex_quad.complex_quadrature(
|
result = pynam.util.complex_quad.complex_quad(
|
||||||
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
|
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v)),
|
||||||
1 - w, 1,
|
1 - w, 1,
|
||||||
epsabs=1e-10
|
epsabs=1e-10
|
||||||
@ -55,7 +55,7 @@ def b_int(wp, w, k, v, t):
|
|||||||
|
|
||||||
|
|
||||||
def b(w, k, v, t, b_max=np.inf):
|
def b(w, k, v, t, b_max=np.inf):
|
||||||
return pynam.util.complex_quadrature(
|
return pynam.util.complex_quad(
|
||||||
lambda wp: b_int(wp, w, k, v, t), 1, b_max
|
lambda wp: b_int(wp, w, k, v, t), 1, b_max
|
||||||
)[0]
|
)[0]
|
||||||
|
|
||||||
|
0
pynam/noise/__init__.py
Normal file
0
pynam/noise/__init__.py
Normal file
45
pynam/noise/zeta.py
Normal file
45
pynam/noise/zeta.py
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
import pynam.util
|
||||||
|
|
||||||
|
from typing import Callable
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def get_zeta_p_integrand(eps: Callable[[float], complex]) -> Callable[[float, float], complex]:
|
||||||
|
""" Gets the integrand function zeta_p_integrand(u, y).
|
||||||
|
|
||||||
|
Returns zeta_p_integrand(u, y), a complex valued function of two momenta in units of vacuum wavelength.
|
||||||
|
|
||||||
|
:param eps:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
def zeta_p_integrand(u: float, y: float) -> complex:
|
||||||
|
"""
|
||||||
|
Here y and u are in units of vacuum wavelength, coming from Ford-Weber / from the EWJN noise expressions.
|
||||||
|
:param u:
|
||||||
|
:param y:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
u2 = u ** 2
|
||||||
|
y2 = y ** 2
|
||||||
|
k2 = u2 + y2
|
||||||
|
k = np.sqrt(k2)
|
||||||
|
eps_value = eps(k)
|
||||||
|
term_1 = y2 / (eps_value - k2)
|
||||||
|
term_2 = u2 / eps_value
|
||||||
|
return (term_1 + term_2) / k2
|
||||||
|
|
||||||
|
return zeta_p_integrand
|
||||||
|
|
||||||
|
|
||||||
|
# def get_zeta_p_function(eps: Callable[[float], complex]):
|
||||||
|
# def zeta_p(u: float) -> complex:
|
||||||
|
# zeta_p_integrand = get_zeta_integrand(eps)
|
||||||
|
#
|
||||||
|
# integral_result = pynam.util.complex_quad(zeta_p_integrand, 0, np.inf)
|
||||||
|
#
|
||||||
|
# print(integral_result)
|
||||||
|
# integral = integral_result[0]
|
||||||
|
#
|
||||||
|
# return integral * 2j
|
||||||
|
#
|
||||||
|
# return zeta_p
|
@ -1 +1 @@
|
|||||||
from pynam.util.complex_quad import complex_quadrature
|
from pynam.util.complex_quad import complex_quad, complex_quadrature
|
||||||
|
29
pynam/util/complex_integrate.py
Normal file
29
pynam/util/complex_integrate.py
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
import numpy as np
|
||||||
|
from scipy.integrate import quad, quadrature
|
||||||
|
|
||||||
|
|
||||||
|
def complex_quad(func, a, b, **kwargs):
|
||||||
|
|
||||||
|
def real_func(x):
|
||||||
|
return np.real(func(x))
|
||||||
|
|
||||||
|
def imag_func(x):
|
||||||
|
return np.imag(func(x))
|
||||||
|
|
||||||
|
real_integral = quad(real_func, a, b, **kwargs)
|
||||||
|
imag_integral = quad(imag_func, a, b, **kwargs)
|
||||||
|
|
||||||
|
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]
|
||||||
|
|
||||||
|
def complex_quadrature(func, a, b, **kwargs):
|
||||||
|
|
||||||
|
def real_func(x):
|
||||||
|
return np.real(func(x))
|
||||||
|
|
||||||
|
def imag_func(x):
|
||||||
|
return np.imag(func(x))
|
||||||
|
|
||||||
|
real_integral = quadrature(real_func, a, b, **kwargs)
|
||||||
|
imag_integral = quadrature(imag_func, a, b, **kwargs)
|
||||||
|
|
||||||
|
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]
|
@ -1,16 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from scipy.integrate import quad
|
|
||||||
|
|
||||||
|
|
||||||
def complex_quadrature(func, a, b, **kwargs):
|
|
||||||
|
|
||||||
def real_func(x):
|
|
||||||
return np.real(func(x))
|
|
||||||
|
|
||||||
def imag_func(x):
|
|
||||||
return np.imag(func(x))
|
|
||||||
|
|
||||||
real_integral = quad(real_func, a, b, **kwargs)
|
|
||||||
imag_integral = quad(imag_func, a, b, **kwargs)
|
|
||||||
|
|
||||||
return real_integral[0] + 1j * imag_integral[0], real_integral[1:], imag_integral[1:]
|
|
@ -22,3 +22,25 @@ def test_lindhard_dielectric(test_input, expected):
|
|||||||
eps_to_test(test_input), expected,
|
eps_to_test(test_input), expected,
|
||||||
decimal=6, err_msg='b function is off'
|
decimal=6, err_msg='b function is off'
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("test_input,expected", [
|
||||||
|
((100, 100), -883.3001542404703 + 1.2566370613549341e8j),
|
||||||
|
((100, 1e5), 5.827225842825694e7 + 3.933446612656656e7j),
|
||||||
|
((100, 1e10), 1.0084823001646925 + 2.0013975538629039e-10j),
|
||||||
|
((100, 1e7), 8483.300121667038 + 0.6340397839154446)
|
||||||
|
])
|
||||||
|
def test_zeta_pi_lindhard_dielectric(zeta_p_i_epsilon, test_input, expected):
|
||||||
|
u, y = test_input
|
||||||
|
actual = zeta_p_i_epsilon(np.sqrt(u**2 + y**2))
|
||||||
|
|
||||||
|
np.testing.assert_allclose(
|
||||||
|
actual, expected,
|
||||||
|
rtol=10**3.8, err_msg='lindhard dielectric differs from Mathematica'
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def zeta_p_i_epsilon():
|
||||||
|
params = CalculationParams(omega=1e9, omega_p=3.544907701811032e15, tau=1e-14, v_f=2e6)
|
||||||
|
return pynam.dielectric.get_lindhard_dielectric(params)
|
||||||
|
0
tests/noise/__init__.py
Normal file
0
tests/noise/__init__.py
Normal file
28
tests/noise/test_zeta.py
Normal file
28
tests/noise/test_zeta.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import pynam.dielectric
|
||||||
|
import pynam.noise.zeta
|
||||||
|
from pynam.baskets import CalculationParams
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def zeta_p_integrand_lindhard():
|
||||||
|
params = CalculationParams(omega=1e9, v_f=2e6, omega_p=3.544907701811032e15, tau=1e-14)
|
||||||
|
eps_l = pynam.dielectric.get_lindhard_dielectric(params)
|
||||||
|
return pynam.noise.zeta.get_zeta_p_integrand(eps_l)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("test_input,expected", [
|
||||||
|
# u y zeta_p_i(u, y)
|
||||||
|
((100, 100), -6.891930153028566e-13 - 7.957747045025948e-9j),
|
||||||
|
((100, 1e5), -1.0057257267146669e-10 - 4.0591966623027983e-13j),
|
||||||
|
((1e5, 100), 1.1789175285399862e-8 - 7.957833322596519e-9j)
|
||||||
|
])
|
||||||
|
def test_zeta_p_integrand_lindhard(zeta_p_integrand_lindhard, test_input, expected):
|
||||||
|
actual = zeta_p_integrand_lindhard(*test_input)
|
||||||
|
|
||||||
|
np.testing.assert_allclose(
|
||||||
|
actual, expected,
|
||||||
|
rtol=1e-7, err_msg='Zeta_p is inaccurate for Lindhard case', verbose=True
|
||||||
|
)
|
@ -1,9 +1,9 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pynam.util.complex_quad
|
import pynam.util.complex_integrate
|
||||||
|
|
||||||
|
|
||||||
def test_complex_quad():
|
def test_complex_quad():
|
||||||
actual = pynam.util.complex_quad.complex_quadrature(lambda x: x ** 2 + 1j * x ** 3, 0, 6)[0]
|
actual = pynam.util.complex_integrate.complex_quad(lambda x: x ** 2 + 1j * x ** 3, 0, 6)[0]
|
||||||
# int_1^6 dx x^2 + i x^3 should equal (1/3)6^3 + (i/4)6^4
|
# int_1^6 dx x^2 + i x^3 should equal (1/3)6^3 + (i/4)6^4
|
||||||
np.testing.assert_almost_equal(
|
np.testing.assert_almost_equal(
|
||||||
actual, (6**3)/3 + 1j*(6**4)/4,
|
actual, (6**3)/3 + 1j*(6**4)/4,
|
Loading…
x
Reference in New Issue
Block a user