9 Commits
0.2.1 ... 0.3.0

Author SHA1 Message Date
775e9ce3f0 chore(release): 0.3.0
All checks were successful
gitea-physics/pyewjn/pipeline/tag This commit looks good
gitea-physics/pyewjn/pipeline/head This commit looks good
2022-03-28 21:18:55 -05:00
2b22267f36 fix: fixes stuff with nam integration
All checks were successful
gitea-physics/pyewjn/pipeline/head This commit looks good
2022-03-28 21:16:26 -05:00
20db727015 feat: adds unapproximated nam calc 2022-03-28 20:30:42 -05:00
4d59f9c09c fix: removes unnecessary None checks 2022-03-28 20:03:41 -05:00
5e830f623e fix: removes unnecessary None checks 2022-03-28 20:03:14 -05:00
d2dd960000 feat!: pushes type checking earlier in the docket
All checks were successful
gitea-physics/pyewjn/pipeline/head This commit looks good
2022-03-28 20:01:00 -05:00
71a969aeda chore: doo all now formats
All checks were successful
gitea-physics/pyewjn/pipeline/head This commit looks good
2022-03-28 19:38:06 -05:00
f73d5546ce style: spacing 2022-03-28 19:36:28 -05:00
b3ea3da54f doc: better README
All checks were successful
gitea-physics/pyewjn/pipeline/head This commit looks good
2022-03-28 19:31:06 -05:00
12 changed files with 281 additions and 43 deletions

View File

@@ -2,6 +2,25 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
## [0.3.0](https://gitea.deepak.science:2222/physics/pyewjn/compare/0.2.1...0.3.0) (2022-03-29)
### ⚠ BREAKING CHANGES
* pushes type checking earlier in the docket
### Features
* adds unapproximated nam calc ([20db727](https://gitea.deepak.science:2222/physics/pyewjn/commit/20db72701500da4bcf32205d7dd7baf7e911744a))
* pushes type checking earlier in the docket ([d2dd960](https://gitea.deepak.science:2222/physics/pyewjn/commit/d2dd9600002da3e531b9946f4c388cca0cc32930))
### Bug Fixes
* fixes stuff with nam integration ([2b22267](https://gitea.deepak.science:2222/physics/pyewjn/commit/2b22267f36294270834473b68884bdca668b65fa))
* removes unnecessary None checks ([4d59f9c](https://gitea.deepak.science:2222/physics/pyewjn/commit/4d59f9c09cfba92d5c2de54e8b4b62295a9313e4))
* removes unnecessary None checks ([5e830f6](https://gitea.deepak.science:2222/physics/pyewjn/commit/5e830f623e185c04d170ef642bbd9323b0dd7043))
### 0.2.1 (2022-03-29)

View File

@@ -1,3 +1,16 @@
# pyewjn
python port of `nam_analysis`
# pyewjn
[![Conventional Commits](https://img.shields.io/badge/Conventional%20Commits-1.0.0-green.svg?style=flat-square)](https://conventionalcommits.org)
[![PyPI](https://img.shields.io/pypi/v/pyewjn?style=flat-square)](https://pypi.org/project/pyewjn/)
[![Jenkins](https://img.shields.io/jenkins/build?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fpyewjn%2Fjob%2Fmaster&style=flat-square)](https://jenkins.deepak.science/job/gitea-physics/job/pyewjn/job/master/)
![Jenkins tests](https://img.shields.io/jenkins/tests?compact_message&jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fpyewjn%2Fjob%2Fmaster%2F&style=flat-square)
![Jenkins Coverage](https://img.shields.io/jenkins/coverage/cobertura?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fpyewjn%2Fjob%2Fmaster%2F&style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2022?style=flat-square)
python port of `nam_analysis`
## Getting started
`poetry install` to start locally
Commit using [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/), and when commits are on master, release with `doo release`.

2
do.sh
View File

@@ -30,7 +30,7 @@ release() {
}
all() {
build && test
build && fmt && test
}
"$@" # <- execute the task

View File

@@ -27,13 +27,13 @@ class CalculationParams(object):
def __init__(
self,
omega: float = None,
omega_p: float = None,
tau: float = None,
v_f: float = None,
t_rel: float = None,
t_c: float = None,
dipole_moment: float = None,
omega: float,
omega_p: float,
tau: float,
v_f: float,
t_rel: float = 0.8,
t_c: float = 1e11,
dipole_moment: float = 1,
):
"""Creates parameter object, SI units
@@ -46,6 +46,19 @@ class CalculationParams(object):
:param dipole_moment:
"""
if omega is None:
raise ValueError("omega expected to not be None")
if v_f is None:
raise ValueError("v_f expected to not be None")
if omega_p is None:
raise ValueError("omega_p expected to not be None")
if tau is None:
raise ValueError("tau expected to not be None")
if t_rel is None:
raise ValueError("relative temp expected to not be None")
if t_c is None:
raise ValueError("critical temp expected to not be None")
self.omega = omega
self.omega_p = omega_p
self.tau = tau

View File

@@ -1,4 +1,11 @@
from pyewjn.dielectric.nam_dielectric_coefficient_approximator import get_nam_dielectric
from pyewjn.dielectric.nam_dielectric_coefficient_approximator import (
get_nam_dielectric,
get_unapproximated_nam_dielectric,
)
from pyewjn.dielectric.lindhard_dielectric import get_lindhard_dielectric
__all__ = ["get_nam_dielectric", "get_lindhard_dielectric"]
__all__ = [
"get_nam_dielectric",
"get_lindhard_dielectric",
"get_unapproximated_nam_dielectric",
]

View File

@@ -11,14 +11,6 @@ class LindhardDielectric(object):
constants: CalculationConstants = CalculationConstants(),
thres=LINDHARD_SERIES_THRESHOLD,
):
if params.omega is None:
raise ValueError("omega expected to not be None")
if params.v_f is None:
raise ValueError("v_f expected to not be None")
if params.omega_p is None:
raise ValueError("omega_p expected to not be None")
if params.tau is None:
raise ValueError("tau expected to not be None")
self.series_threshold = thres
self.omega = params.omega

View File

@@ -4,9 +4,15 @@ import pyewjn.dielectric.low_k_nam
from pyewjn.baskets import CalculationParams, CalculationConstants
from typing import Tuple
from typing import Tuple, Callable
import logging
_logger = logging.getLogger(__name__)
FIXED_LARGE_MOMENTUM = 1e8
WRT_TC_THRESHOLD = 0.98
class DedimensionalisedParameters(object):
@@ -19,16 +25,24 @@ class DedimensionalisedParameters(object):
temp: float,
critical_temp: float,
c_light: float,
wrt_tc: bool = False,
):
gap = 0
if temp < critical_temp:
# else, problems will happen
gap = 3.06 * np.sqrt(critical_temp * (critical_temp - temp))
self.xi = omega / gap
self.nu = 1 / (tau * gap)
self.t = temp / gap
self.a = omega * v_f / (c_light * gap)
if wrt_tc:
scale = critical_temp
else:
scale = gap
self.xi = omega / scale
self.nu = 1 / (tau * scale)
self.t = temp / scale
self.a = omega * v_f / (c_light * scale)
self.b = sigma_n / omega
self.delta = gap / scale
class NamDielectricCoefficients(object):
@@ -60,9 +74,11 @@ def get_dedimensionalised_parameters(
temp: float,
critical_temp: float,
c_light: float,
wrt_tc: bool = False,
) -> DedimensionalisedParameters:
return DedimensionalisedParameters(
omega, sigma_n, tau, v_f, temp, critical_temp, c_light
omega, sigma_n, tau, v_f, temp, critical_temp, c_light, wrt_tc
)
@@ -123,18 +139,7 @@ def get_nam_dielectric(
params: CalculationParams,
constants: CalculationConstants = CalculationConstants(),
):
if params.omega is None:
raise ValueError("omega expected to not be None")
if params.v_f is None:
raise ValueError("v_f expected to not be None")
if params.omega_p is None:
raise ValueError("omega_p expected to not be None")
if params.tau is None:
raise ValueError("tau expected to not be None")
if params.t_rel is None:
raise ValueError("relative temp expected to not be None")
if params.t_c is None:
raise ValueError("critical temp expected to not be None")
sigma_n = params.omega_p**2 * params.tau / (4 * np.pi)
coeffs = get_nam_dielectric_coefficients(
params.omega,
@@ -146,3 +151,38 @@ def get_nam_dielectric(
constants.c_light,
)
return coeffs.eps(u_c)
def get_unapproximated_nam_dielectric(
u_c: float,
params: CalculationParams,
constants: CalculationConstants = CalculationConstants(),
) -> Callable[[float], float]:
sigma_n = params.omega_p**2 * params.tau / (4 * np.pi)
dedim = get_dedimensionalised_parameters(
params.omega,
sigma_n,
params.tau,
params.v_f,
params.t_rel * params.t_c,
params.t_c,
constants.c_light,
wrt_tc=params.t_rel > WRT_TC_THRESHOLD,
)
prefactor = 4j * np.pi * dedim.b
def eps_ret(u: float) -> float:
if u * dedim.a * 100 < abs(dedim.xi + 1j * dedim.nu):
_logger.info("Falling to low k version")
return prefactor * pyewjn.dielectric.low_k_nam.sigma_nam_alk(
dedim.xi, u * dedim.a, dedim.nu, dedim.t
)
elif u < u_c:
return prefactor * pyewjn.dielectric.sigma_nam.sigma_nam(
dedim.xi, u * dedim.a, dedim.nu, dedim.t
)
else:
return 1
return eps_ret

View File

@@ -0,0 +1,67 @@
import numpy as np
from numpy.lib.scimath import sqrt as csqrt
import pyewjn.util
def g(w, wp, d):
return ((wp * (w + wp)) + d**2) / (
csqrt(wp**2 - d**2) * csqrt((w + wp) ** 2 - d**2)
)
def s(k, e, v):
return (e - 1j * v) / k
def f(k, e, v):
sv = s(k, e, v)
logv = np.log(np.real_if_close((sv + 1) / (sv - 1)) + 0j)
return (1 / k) * (2 * sv + ((1 - sv**2) * logv))
def i1(w, wp, k, v, d):
gv = g(w, wp, d)
e1 = csqrt((w + wp) ** 2 - d**2)
e2 = csqrt(wp**2 - d**2)
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
f_lower = f(k, np.real(-e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
return f_upper + f_lower
def i2(w, wp, k, v, d):
gv = g(w, wp, d)
e1 = csqrt((w + wp) ** 2 - d**2)
e2 = csqrt(wp**2 - d**2)
f_upper = f(k, np.real(e1 - e2), np.imag(e1 + e2) + 2 * v) * (gv + 1)
f_lower = f(k, np.real(e1 + e2), np.imag(e1 + e2) + 2 * v) * (gv - 1)
return f_upper + f_lower
def a(w, k, v, t, d):
result = pyewjn.util.complex_quad(
lambda wp: np.tanh((w + wp) / (2 * t)) * (i1(w, wp, k, v, d)),
1 - w,
1,
epsabs=1e-10,
)
return result[0]
def b_int(wp, w, k, v, t, d):
return (np.tanh((w + wp) / (2 * t)) * i1(w, wp, k, v, d)) - (
np.tanh(wp / (2 * t)) * i2(w, wp, k, v, d)
)
def b(w, k, v, t, d, b_max=np.inf):
return pyewjn.util.complex_quad(lambda wp: b_int(wp, w, k, v, t, d), 1, b_max)[0]
def sigma_nam_keep_gap(w, k, v, t, d):
return -1j * (3 / 4) * (v / w) * (-a(w, k, v, t, d) + b(w, k, v, t, d))

View File

@@ -3,9 +3,10 @@ from scipy.integrate import quad, quadrature
def complex_quad(func, a, b, **kwargs):
'''
Extends scipy.integrate for complex functions.
'''
"""
Extends scipy.integrate for complex functions.
"""
def real_func(x):
return np.real(func(x))

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "pyewjn"
version = "0.2.1"
version = "0.3.0"
description = ""
authors = ["Deepak <dmallubhotla+github@gmail.com>"]

View File

@@ -137,3 +137,31 @@ def test_nam_eps():
np.testing.assert_allclose(
eps_to_test(1e17), 1, rtol=1e-6, err_msg="above cutoff bad"
)
def test_unapproximated_nam_eps():
u_c = 1e15
eps_to_test = pyewjn.dielectric.nam_dielectric_coefficient_approximator.get_unapproximated_nam_dielectric(
u_c,
CalculationParams(
omega=1e9, omega_p=3.54491e15, tau=1e-14, v_f=2e6, t_rel=0.8, t_c=1e11
),
)
np.testing.assert_allclose(
eps_to_test(10),
-3.789672906817707e10 + 3.257134605133221e8j,
rtol=1e-3,
err_msg="below u_l bad",
)
np.testing.assert_allclose(
eps_to_test(1e10),
-2.645743e8 + 2.293455422222e6j,
rtol=1e-3,
err_msg="linear region bad",
)
np.testing.assert_allclose(
eps_to_test(1e17), 1, rtol=1e-6, err_msg="above cutoff bad"
)

View File

@@ -0,0 +1,58 @@
import numpy as np
import pytest
import pyewjn.dielectric
import pyewjn.noise.chi
from pyewjn.baskets import CalculationParams
cutoff_to_use = 5.4596e9
@pytest.fixture
def chi_zz_e_nam():
params = CalculationParams(
omega=1e9, v_f=2e6, omega_p=3.544907701811032e15, tau=1e-14, t_rel=0.99999
)
eps_l = pyewjn.dielectric.get_nam_dielectric(cutoff_to_use, params)
return pyewjn.noise.chi.get_chi_zz_e(eps_l)
@pytest.mark.parametrize(
"test_input,expected",
[
# z chi_zz_e_nam(z)
(1e-5, 4.07695673649665e6),
(1e-6, 4.095895777068543e9),
# (1e-7, 5.012885033150058e12), commenting this one out because it seems numerically too unstable
# (1e-8, 1.441261982619894e16), commenting this one out because it seems numerically too unstable
],
)
def test_chi_zz_e_nam(chi_zz_e_nam, test_input, expected):
actual = chi_zz_e_nam(test_input)
np.testing.assert_allclose(
actual,
expected,
rtol=0.05,
err_msg="chi_zz_e is inaccurate for nam case",
verbose=True,
)
@pytest.mark.parametrize(
"test_input,expected",
[
# z chi_zz_e_nam(z)
(1e-6, 4.095895777068543e9),
],
)
def test_chi_zz_e_nam_benchmark(benchmark, chi_zz_e_nam, test_input, expected):
actual = benchmark(chi_zz_e_nam, test_input)
np.testing.assert_allclose(
actual,
expected,
rtol=0.05,
err_msg="chi_zz_e is inaccurate for nam case",
verbose=True,
)