feat: adds full text to maxwell relation problem statement
This commit is contained in:
parent
c7443c0f2a
commit
e9cee5abf6
37
tex/3.11.tex
37
tex/3.11.tex
@ -62,7 +62,22 @@
|
||||
\left. \pdv{C_P}{P} \right|_{T} = - T \left. \pdv[2]{V}{T} \right|_{P}
|
||||
\end{equation}
|
||||
\item \begin{equation}
|
||||
\left. \pdv{E}{T} \right|_{P} = - \frac{T}{C_P} \left. \pdv{S}{P} \right|_{T}
|
||||
\left. \pdv{E}{P} \right|_{T} = - T \left. \pdv{V}{T} \right|_{P} - P \left. \pdv{V}{P} \right|_T
|
||||
\end{equation}
|
||||
\item \begin{equation}
|
||||
\left. \pdv{E}{T} \right|_{P} = C_P - P \left. \pdv{V}{T} \right|_P
|
||||
\end{equation}
|
||||
\item \begin{equation}
|
||||
\left. \pdv{T}{V} \right|_{S} = - \frac{T}{C_V} \left. \pdv{S}{V} \right|_T
|
||||
\end{equation}
|
||||
\item \begin{equation}
|
||||
\left. \pdv{T}{P} \right|_{S} = - \frac{T}{C_P} \left. \pdv{S}{P} \right|_{T}
|
||||
\end{equation}
|
||||
\item \begin{equation}
|
||||
\left. \pdv{V}{T} \right|_{P} = - \frac{C_P}{T} \left. \pdv{T}{V} \right|_{S} \left. \pdv{V}{P} \right|_S
|
||||
\end{equation}
|
||||
\item \begin{equation}
|
||||
\left. \pdv{P}{V} \right|_{S} = \left. \pdv{P}{V} \right|_{T} - \frac{T}{C_V} \left( \left. \pdv{P}{T} \right|_V \right)^2
|
||||
\end{equation}
|
||||
\end{enumerate}
|
||||
|
||||
@ -125,6 +140,26 @@
|
||||
\left. \pdv{C_P}{P} \right|_{T} = - T \left. \pdv[2]{V}{T} \right|_{P}
|
||||
\end{equation}
|
||||
|
||||
By definition:
|
||||
\begin{equation}
|
||||
C_P = T \left. \pdv{S}{T} \right|_{P}
|
||||
\end{equation}
|
||||
|
||||
Let's start by looking at the expression and do the commutativity of derivatives thing (again subscripting for what we're holding constant).
|
||||
\begin{align}
|
||||
T \pdv[2]{S}{P_T}{T_P} &= T \pdv[2]{S}{T_P}{P_T} \\
|
||||
\pdv{C_P}{P_T} &= T \pdv[2]{S}{T_P}{P_T} \\
|
||||
\pdv{C_P}{P_T} &= - T \pdv[2]{V}{T_P}
|
||||
\end{align}
|
||||
where on the right hand side we've used our result from part (a).
|
||||
|
||||
\subsection{(c)}
|
||||
|
||||
Want
|
||||
\begin{equation}
|
||||
\left. \pdv{E}{T} \right|_{P} = - \frac{T}{C_P} \left. \pdv{S}{P} \right|_{T}
|
||||
\end{equation}
|
||||
|
||||
\newpage
|
||||
\listoftodos
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user