Compare commits

..

99 Commits

Author SHA1 Message Date
0f44495a30 chore(deps): update dependency mypy to ^0.991
Some checks failed
renovate/artifacts Artifact file update failure
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2024-04-29 01:30:53 +00:00
e5f7085324 chore(release): 0.8.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-28 04:27:47 -05:00
578481324b chore(release): 0.8.1 2024-04-28 04:27:32 -05:00
bf8ac9850d release: fixes standard version updater which didn't allow minor version to be multidigit 2024-04-28 04:27:06 -05:00
ab408b6412 chore(release): 0.8.1 2024-04-28 04:19:08 -05:00
4aa0a6f234 chore(release): 0.8.0
Some checks failed
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag There was a failure building this commit
2024-04-28 04:08:02 -05:00
f9646e3386 fix!: fixes the spin qubit frequency phase shift calculation which had an index problem 2024-04-28 04:07:35 -05:00
3b612b960e chore(release): 0.7.10
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-27 23:06:24 -05:00
b0ad4bead0 feat: better management of cli wrapper 2024-04-27 23:04:33 -05:00
4b2e573715 feat: adds cli probs 2024-04-27 18:43:25 -05:00
12e6916ab2 doc: documentation for myself because i'll forget otherwise
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-27 12:25:39 -05:00
1e76f63725 git: ignores local_scripts directory as place to run stuff while developing
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-25 16:18:14 -05:00
7aa5ad2eb9 chore(release): 0.7.9
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-04-21 11:23:42 -05:00
fe331bb544 Merge branch 'filter_compose'
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-21 11:21:36 -05:00
03ac85a967 chore: performance enhancement for fmt in justfile
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-04-21 11:21:11 -05:00
96589ff659 adds a filter for future dmc use 2024-04-21 10:55:44 -05:00
e5b5809764 build: delete do.sh
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-20 11:28:04 -05:00
1407418c60 Merge pull request 'custom_dmc' (#37) from custom_dmc into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #37
2024-03-20 16:27:19 +00:00
383b51c35d Merge branch 'master' into custom_dmc
Some checks are pending
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master Build started...
2024-03-20 11:23:39 -05:00
5b9123d128 Merge pull request 'flakeupdate' (#36) from flakeupdate into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #36
2024-03-20 16:21:41 +00:00
2b1a1c21e4 Merge branch 'master' into flakeupdate
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2024-03-20 11:18:16 -05:00
ea080ca1c7 feat: adds ability to write custom dmc filters
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-20 10:56:54 -05:00
028fe58561 build: fixes issue brekaing build with unused variable
Some checks failed
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2024-03-19 15:46:00 -05:00
b6a41872d5 just: fmt before test, better comments
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-19 15:45:15 -05:00
731dabd74d nix: adds just as dependency, and fixes tests by installing deepdog app locally 2024-03-19 15:42:43 -05:00
7950f19c2d build: adds justfile to replace do
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-19 15:42:18 -05:00
b27e504bbd lint: unneeded variable definition
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-03-17 18:40:46 -05:00
33106ba772 nix: updates nix things to work, rewrites flake
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-17 15:18:52 -05:00
3ae0783d00 feat: adds tarucha phase calculation, using spin qubit precession rate noise
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2024-03-17 14:11:22 -05:00
e8201865eb chore(release): 0.7.8
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-02-28 18:41:32 -06:00
5f534a60cc fix: uses correct measurements
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:41:05 -06:00
ce90f6774b chore(release): 0.7.7
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:34:13 -06:00
48e41cbd2c fix: fixes phase calculation issue with setting input array
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 18:33:05 -06:00
603c5607f7 chore(release): 0.7.6
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2024-02-28 16:49:47 -06:00
bb72e903d1 feat: adds ability to use phase measurements only for correlations
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2024-02-28 16:49:24 -06:00
65e1948835 fix: fixes typeerror vs indexerror on bare float as cost in subset simulation 2024-02-28 16:47:03 -06:00
310977e9b8 chore(release): 0.7.5
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-12-09 16:27:30 -06:00
b10586bf55 fmt: auto format changes
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-12-09 16:25:57 -06:00
1741807be4 feat: adds direct monte carlo package 2023-12-09 16:24:20 -06:00
9a4548def4 feat: allows disabling timestamp in subset simulation bayes results 2023-12-09 16:23:45 -06:00
b4e5f53726 feat: adds longchain logging if logging last generation
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-08-12 19:48:30 -05:00
f7559b2c4f chore(release): 0.7.4
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-07-27 17:40:50 -05:00
9a7a3ff2c7 feat: adds configurable chunk size for the initial mc level 0 SS stage cost calculation to reduce memory usage
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-27 17:39:02 -05:00
c4805806be test: fixes lint for none type
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-27 17:11:57 -05:00
161bcf42ad fix: fixes bug if case of clamping necessary 2023-07-27 17:09:52 -05:00
8e6ead416c feat: allows for deepdog bayesrun with ss to not print csv to make snapshot testing possible 2023-07-27 17:09:36 -05:00
e6defc7948 fix: fixes bug with clamped probabilities being underestimated 2023-07-27 17:05:33 -05:00
33d5da6a4f fmt: adds e203 to flake8 ignore to let black do its thing 2023-07-27 16:49:31 -05:00
1110372a55 build: more efficient doo fmt 2023-07-27 16:47:11 -05:00
e6a00d6b8f debug: adds debug logs 2023-07-27 16:25:51 -05:00
57cd746e5c chore(release): 0.7.3
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-07-26 20:27:39 -05:00
878e16286b deps: updates pytest-cov
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-26 20:23:48 -05:00
4726ccfb8c fmt: formatting 2023-07-26 20:21:53 -05:00
598dad1e6d feat: adds utility options and avoids memory leak
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-07-26 20:14:19 -05:00
01c0d7e49b chore(release): 0.7.2
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-07-24 10:44:51 -05:00
a170a3ce01 fix: fixes clamping format etc.
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-24 10:26:35 -05:00
9bb8fc50fe feat: clamps results now
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-07-24 10:24:23 -05:00
f775ed34c6 chore(release): 0.7.1
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-07-24 02:04:42 -05:00
7d0c2b22cc Merge pull request 'mcmc' (#32) from mcmc into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #32
2023-07-24 07:02:19 +00:00
d6e6876a79 fmt: fixes some linting issues
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2023-07-24 01:59:07 -05:00
fccf50eb27 fmt: formatting improvements 2023-07-24 01:55:37 -05:00
33cab9ab41 feat: adds subset simulation stuff
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
gitea-physics/deepdog/pipeline/pr-master There was a failure building this commit
2023-07-24 01:50:56 -05:00
ad521ba472 deps: upgrades pdme version to use mcmc code
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-07-23 18:46:11 -05:00
266d6dd583 chore(release): 0.7.0
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2023-05-01 10:26:01 -05:00
c573f8806d Merge pull request 'add_pairs' (#30) from add_pairs into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #30
2023-05-01 15:24:57 +00:00
a015daf5ff feat!: removes fastfilter parameter because it should never be needed
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2023-05-01 10:17:12 -05:00
a089951bbe feat: adds pair capability to real spectrum run hopefully
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-05-01 10:05:46 -05:00
7568aef842 chore(release): 0.6.7
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2023-04-13 20:26:06 -05:00
c4b6cbbb6f Merge pull request 'cap_core' (#29) from cap_core into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #29
2023-04-14 01:24:01 +00:00
1cf4454153 fix: avoids redefinition of core count in loop
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2023-04-13 20:21:17 -05:00
bf15f4a7b7 feat: adds option to cap core count for real spectrum run
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-04-13 20:17:48 -05:00
12903b2540 feat: adds option to cap core count for temp aware run 2023-04-13 20:16:33 -05:00
959b9af378 chore(release): 0.6.6
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2023-04-09 18:13:40 -05:00
8fd1b75e13 fix: removes bad logging in multiprocessing function
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-04-09 18:12:57 -05:00
17ae84879d chore(release): 0.6.5
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2023-04-09 17:42:44 -05:00
fc2880ba2f build: changes default container to be accurate
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2023-04-09 17:38:38 -05:00
589c16f25c build: removing unneeded env vars for poetry
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-04-09 17:37:23 -05:00
743c3e22ae build: use pre-built poetry image
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-04-09 17:35:37 -05:00
b3e2acd79c chore: updates maintained readme
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-04-09 17:32:44 -05:00
de1ec3e700 feat: adds temp aware guy using new pdme temp-flexible feature for bundling temp models
Some checks failed
gitea-physics/deepdog/pipeline/head There was a failure building this commit
2023-04-09 17:30:30 -05:00
f4964a19ea chore(release): 0.6.4
All checks were successful
gitea-physics/deepdog/pipeline/tag This commit looks good
gitea-physics/deepdog/pipeline/head This commit looks good
2022-08-13 15:52:17 -05:00
08d73c73e9 Merge pull request 'feat: Prints model names while running' (#21) from printnames into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #21
2022-08-13 20:49:03 +00:00
7ea1d715f6 feat: Prints model names while running
Some checks are pending
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master Build queued...
2022-08-13 11:10:00 -05:00
ed102799d1 Merge pull request 'chore(deps): update dependency mypy to ^0.971' (#18) from renovate/mypy-0.x into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #18
2022-07-20 19:07:24 +00:00
0b8d14ef48 chore(deps): update dependency mypy to ^0.971
Some checks reported errors
gitea-physics/deepdog/pipeline/pr-master This commit looks good
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
2022-07-20 01:31:30 +00:00
a5d0d257d7 Merge pull request 'nix' (#15) from nix into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #15
2022-06-13 13:47:00 +00:00
6ee995e561 Merge branch 'master' into nix
All checks were successful
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-06-13 13:23:08 +00:00
a217ad2c75 nix: updates nixpkgs and uses workaround for pdme build-system
Some checks are pending
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master Build queued...
2022-06-13 08:18:55 -05:00
039f68ee97 deps: pins specific scipy and numpy version 2022-06-13 08:16:53 -05:00
e9dd21f69b chore(release): 0.6.3
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/tag This commit looks good
2022-06-12 17:35:08 -05:00
8303fc7860 nix: flake lock 2022-06-12 10:45:01 -05:00
2418e3a263 nix: adds nix direnv stuff to gitignore 2022-06-12 10:43:17 -05:00
73465203b2 nix: adds flake.nix 2022-06-12 10:42:45 -05:00
01ba4af229 Merge pull request 'fastfilter' (#14) from fastfilter into master
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
Reviewed-on: #14
2022-06-12 13:51:47 +00:00
2c5c122820 feat: adds fast filter variant
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-06-11 21:06:27 -05:00
0a1a27759b feat: adds tester for fast filter real spectrum 2022-06-11 12:40:32 -05:00
558a4df643 Merge pull request 'chore(deps): update dependency mypy to ^0.961' (#13) from renovate/mypy-0.x into master
Some checks reported errors
gitea-physics/deepdog/pipeline/head Something is wrong with the build of this commit
Reviewed-on: #13
2022-06-07 22:03:11 +00:00
6f141af0fe chore(deps): update dependency mypy to ^0.961
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
gitea-physics/deepdog/pipeline/pr-master This commit looks good
2022-06-07 01:31:28 +00:00
2c99fcf687 deps: updates pdme
All checks were successful
gitea-physics/deepdog/pipeline/head This commit looks good
2022-06-04 12:33:05 -05:00
36 changed files with 3941 additions and 1009 deletions

View File

@@ -1,3 +1,3 @@
[flake8]
ignore = W191, E501, W503
ignore = W191, E501, W503, E203
max-line-length = 120

6
.gitignore vendored
View File

@@ -114,6 +114,10 @@ ENV/
env.bak/
venv.bak/
# direnv
.envrc
.direnv
# Spyder project settings
.spyderproject
.spyproject
@@ -139,3 +143,5 @@ dmypy.json
cython_debug/
*.csv
local_scripts/

View File

@@ -2,6 +2,166 @@
All notable changes to this project will be documented in this file. See [standard-version](https://github.com/conventional-changelog/standard-version) for commit guidelines.
### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28)
### [0.8.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.8.0...0.8.1) (2024-04-28)
## [0.8.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.10...0.8.0) (2024-04-28)
### ⚠ BREAKING CHANGES
* fixes the spin qubit frequency phase shift calculation which had an index problem
### Bug Fixes
* fixes the spin qubit frequency phase shift calculation which had an index problem ([f9646e3](https://gitea.deepak.science:2222/physics/deepdog/commit/f9646e33868e1a0da8ab663230c0c692ac25bb74))
### [0.7.10](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.9...0.7.10) (2024-04-28)
### Features
* adds cli probs ([4b2e573](https://gitea.deepak.science:2222/physics/deepdog/commit/4b2e57371546731137b011461849bb849d4d4e0f))
* better management of cli wrapper ([b0ad4be](https://gitea.deepak.science:2222/physics/deepdog/commit/b0ad4bead0d4762eb7f848f6e557f6d9b61200b9))
### [0.7.9](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.8...0.7.9) (2024-04-21)
### Features
* adds ability to write custom dmc filters ([ea080ca](https://gitea.deepak.science:2222/physics/deepdog/commit/ea080ca1c7068042ce1e0a222d317f785a6b05f4))
* adds tarucha phase calculation, using spin qubit precession rate noise ([3ae0783](https://gitea.deepak.science:2222/physics/deepdog/commit/3ae0783d00cbe6a76439c1d671f2cff621d8d0a8))
### [0.7.8](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.7...0.7.8) (2024-02-29)
### Bug Fixes
* uses correct measurements ([5f534a6](https://gitea.deepak.science:2222/physics/deepdog/commit/5f534a60cc7c4838fcacee11a7e58b97d34e154a))
### [0.7.7](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.6...0.7.7) (2024-02-29)
### Bug Fixes
* fixes phase calculation issue with setting input array ([48e41cb](https://gitea.deepak.science:2222/physics/deepdog/commit/48e41cbd2c58d4c4d2747822d618d7d55257643d))
### [0.7.6](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.5...0.7.6) (2024-02-28)
### Features
* adds ability to use phase measurements only for correlations ([bb72e90](https://gitea.deepak.science:2222/physics/deepdog/commit/bb72e903d14704a3783daf2dbc1797b90880aa85))
### Bug Fixes
* fixes typeerror vs indexerror on bare float as cost in subset simulation ([65e1948](https://gitea.deepak.science:2222/physics/deepdog/commit/65e19488359d7f5656660da7da8f32ed474989c3))
### [0.7.5](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.4...0.7.5) (2023-12-09)
### Features
* adds direct monte carlo package ([1741807](https://gitea.deepak.science:2222/physics/deepdog/commit/1741807be43d08fb51bc94518dd3b67585c04c20))
* adds longchain logging if logging last generation ([b4e5f53](https://gitea.deepak.science:2222/physics/deepdog/commit/b4e5f5372682fc64c3734a96c4a899e018f127ce))
* allows disabling timestamp in subset simulation bayes results ([9a4548d](https://gitea.deepak.science:2222/physics/deepdog/commit/9a4548def45a01f1f518135d4237c3dc09dcc342))
### [0.7.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.3...0.7.4) (2023-07-27)
### Features
* adds configurable chunk size for the initial mc level 0 SS stage cost calculation to reduce memory usage ([9a7a3ff](https://gitea.deepak.science:2222/physics/deepdog/commit/9a7a3ff2c7ebe81d5e10647ce39844c372ff7b07))
* allows for deepdog bayesrun with ss to not print csv to make snapshot testing possible ([8e6ead4](https://gitea.deepak.science:2222/physics/deepdog/commit/8e6ead416c9eba56f568f648d0df44caaa510cfe))
### Bug Fixes
* fixes bug if case of clamping necessary ([161bcf4](https://gitea.deepak.science:2222/physics/deepdog/commit/161bcf42addf331661c3929073688b9f2c13502c))
* fixes bug with clamped probabilities being underestimated ([e6defc7](https://gitea.deepak.science:2222/physics/deepdog/commit/e6defc794871a48ac331023eb477bd235b78d6d0))
### [0.7.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.2...0.7.3) (2023-07-27)
### Features
* adds utility options and avoids memory leak ([598dad1](https://gitea.deepak.science:2222/physics/deepdog/commit/598dad1e6dc8fc0b7a5b4a90c8e17bf744e8d98c))
### [0.7.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.1...0.7.2) (2023-07-24)
### Features
* clamps results now ([9bb8fc5](https://gitea.deepak.science:2222/physics/deepdog/commit/9bb8fc50fe1bd1a285a333c5a396bfb6ac3176cf))
### Bug Fixes
* fixes clamping format etc. ([a170a3c](https://gitea.deepak.science:2222/physics/deepdog/commit/a170a3ce01adcec356e5aaab9abcc0ec4accd64b))
### [0.7.1](https://gitea.deepak.science:2222/physics/deepdog/compare/0.7.0...0.7.1) (2023-07-24)
### Features
* adds subset simulation stuff ([33cab9a](https://gitea.deepak.science:2222/physics/deepdog/commit/33cab9ab4179cec13ae9e591a8ffc32df4dda989))
## [0.7.0](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.7...0.7.0) (2023-05-01)
### ⚠ BREAKING CHANGES
* removes fastfilter parameter because it should never be needed
### Features
* adds pair capability to real spectrum run hopefully ([a089951](https://gitea.deepak.science:2222/physics/deepdog/commit/a089951bbefcd8a0b2efeb49b7a8090412cbb23d))
* removes fastfilter parameter because it should never be needed ([a015daf](https://gitea.deepak.science:2222/physics/deepdog/commit/a015daf5ff6fa5f6155c8d7e02981b588840a5b0))
### [0.6.7](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.6...0.6.7) (2023-04-14)
### Features
* adds option to cap core count for real spectrum run ([bf15f4a](https://gitea.deepak.science:2222/physics/deepdog/commit/bf15f4a7b7f59504983624e7d512ed7474372032))
* adds option to cap core count for temp aware run ([12903b2](https://gitea.deepak.science:2222/physics/deepdog/commit/12903b2540cefb040174d230bc0d04719a6dc1b7))
### Bug Fixes
* avoids redefinition of core count in loop ([1cf4454](https://gitea.deepak.science:2222/physics/deepdog/commit/1cf44541531541088198bd4599d467df3e1acbcf))
### [0.6.6](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.5...0.6.6) (2023-04-09)
### Bug Fixes
* removes bad logging in multiprocessing function ([8fd1b75](https://gitea.deepak.science:2222/physics/deepdog/commit/8fd1b75e1378301210bfa8f14dd09174bbd21414))
### [0.6.5](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.4...0.6.5) (2023-04-09)
### Features
* adds temp aware guy using new pdme temp-flexible feature for bundling temp models ([de1ec3e](https://gitea.deepak.science:2222/physics/deepdog/commit/de1ec3e70062d418e0d4c89716905cc9313d2e26))
### [0.6.4](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.3...0.6.4) (2022-08-13)
### Features
* Prints model names while running ([7ea1d71](https://gitea.deepak.science:2222/physics/deepdog/commit/7ea1d715f67e81c9fa841c5a62f1cc700ff7363d))
### [0.6.3](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.2...0.6.3) (2022-06-12)
### Features
* adds fast filter variant ([2c5c122](https://gitea.deepak.science:2222/physics/deepdog/commit/2c5c1228209e51d17253f07470e2f1e6dc6872d7))
* adds tester for fast filter real spectrum ([0a1a277](https://gitea.deepak.science:2222/physics/deepdog/commit/0a1a27759b0d4ab01da214b76ab14bf2b1fe00e3))
### [0.6.2](https://gitea.deepak.science:2222/physics/deepdog/compare/0.6.1...0.6.2) (2022-05-26)

20
Jenkinsfile vendored
View File

@@ -4,7 +4,7 @@ pipeline {
label 'deepdog' // all your pods will be named with this prefix, followed by a unique id
idleMinutes 5 // how long the pod will live after no jobs have run on it
yamlFile 'jenkins/ci-agent-pod.yaml' // path to the pod definition relative to the root of our project
defaultContainer 'python' // define a default container if more than a few stages use it, will default to jnlp container
defaultContainer 'poetry' // define a default container if more than a few stages use it, will default to jnlp container
}
}
@@ -12,36 +12,30 @@ pipeline {
parallelsAlwaysFailFast()
}
environment {
POETRY_HOME="/opt/poetry"
POETRY_VERSION="1.1.12"
}
stages {
stage('Build') {
steps {
echo 'Building...'
sh 'python --version'
sh 'curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python'
sh '${POETRY_HOME}/bin/poetry --version'
sh '${POETRY_HOME}/bin/poetry install'
sh 'poetry --version'
sh 'poetry install'
}
}
stage('Test') {
parallel{
stage('pytest') {
steps {
sh '${POETRY_HOME}/bin/poetry run pytest'
sh 'poetry run pytest'
}
}
stage('lint') {
steps {
sh '${POETRY_HOME}/bin/poetry run flake8 deepdog tests'
sh 'poetry run flake8 deepdog tests'
}
}
stage('mypy') {
steps {
sh '${POETRY_HOME}/bin/poetry run mypy deepdog'
sh 'poetry run mypy deepdog'
}
}
}
@@ -57,7 +51,7 @@ pipeline {
}
steps {
echo 'Deploying...'
sh '${POETRY_HOME}/bin/poetry publish -u ${PYPI_USR} -p ${PYPI_PSW} --build'
sh 'poetry publish -u ${PYPI_USR} -p ${PYPI_PSW} --build'
}
}

View File

@@ -5,7 +5,7 @@
[![Jenkins](https://img.shields.io/jenkins/build?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster&style=flat-square)](https://jenkins.deepak.science/job/gitea-physics/job/deepdog/job/master/)
![Jenkins tests](https://img.shields.io/jenkins/tests?compact_message&jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Jenkins Coverage](https://img.shields.io/jenkins/coverage/cobertura?jobUrl=https%3A%2F%2Fjenkins.deepak.science%2Fjob%2Fgitea-physics%2Fjob%2Fdeepdog%2Fjob%2Fmaster%2F&style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2022?style=flat-square)
![Maintenance](https://img.shields.io/maintenance/yes/2024?style=flat-square)
The DiPole DiaGnostic tool.
@@ -13,6 +13,13 @@ The DiPole DiaGnostic tool.
`poetry install` to start locally
Commit using [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/), and when commits are on master, release with `doo release`.
Commit using [Conventional Commits](https://www.conventionalcommits.org/en/v1.0.0/), and when commits are on master, release with `just release`.
In general `just --list` has some of the useful stuff for figuring out what development tools there are.
Poetry as an installer is good, even better is using Nix (maybe with direnv to automatically pick up the `devShell` from `flake.nix`).
In either case `just` should handle actually calling things in a way that's agnostic to poetry as a runner or through nix.
### local scripts
`local_scripts` folder allows for scripts to be run using this code, but that probably isn't the most auditable for actual usage.
The API is still only something I'm using so there's no guarantees yet that it will be stable; overall semantic versioning should help with API breaks.

View File

@@ -3,6 +3,8 @@ from deepdog.meta import __version__
from deepdog.bayes_run import BayesRun
from deepdog.bayes_run_simulpairs import BayesRunSimulPairs
from deepdog.real_spectrum_run import RealSpectrumRun
from deepdog.temp_aware_real_spectrum_run import TempAwareRealSpectrumRun
from deepdog.bayes_run_with_ss import BayesRunWithSubspaceSimulation
def get_version():
@@ -14,6 +16,8 @@ __all__ = [
"BayesRun",
"BayesRunSimulPairs",
"RealSpectrumRun",
"TempAwareRealSpectrumRun",
"BayesRunWithSubspaceSimulation",
]

View File

@@ -0,0 +1,261 @@
import deepdog.subset_simulation
import pdme.inputs
import pdme.model
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List, Optional
import datetime
import csv
import logging
import numpy
import numpy.typing
# TODO: remove hardcode
CHUNKSIZE = 50
# TODO: It's garbage to have this here duplicated from pdme.
DotInput = Tuple[numpy.typing.ArrayLike, float]
CLAMPING_FACTOR = 10
_logger = logging.getLogger(__name__)
class BayesRunWithSubspaceSimulation:
"""
A single Bayes run for a given set of dots.
Parameters
----------
dot_inputs : Sequence[DotInput]
The dot inputs for this bayes run.
models_with_names : Sequence[Tuple(str, pdme.model.DipoleModel)]
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
dot_positions: Sequence[numpy.typing.ArrayLike],
frequency_range: Sequence[float],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
actual_model: pdme.model.DipoleModel,
filename_slug: str,
max_frequency: float = 20,
end_threshold: float = None,
run_count=100,
chunksize: int = CHUNKSIZE,
ss_n_c: int = 500,
ss_n_s: int = 100,
ss_m_max: int = 15,
ss_target_cost: Optional[float] = None,
ss_level_0_seed: int = 200,
ss_mcmc_seed: int = 20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
ss_initial_costs_chunk_size=100,
write_output_to_bayesruncsv=True,
use_timestamp_for_output=True,
) -> None:
self.dot_inputs = pdme.inputs.inputs_with_frequency_range(
dot_positions, frequency_range
)
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
self.models_with_names = models_with_names
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.actual_model = actual_model
self.n: int
try:
self.n = self.actual_model.n # type: ignore
except AttributeError:
self.n = 1
self.model_count = len(self.models)
self.csv_fields = []
for i in range(self.n):
self.csv_fields.extend(
[
f"dipole_moment_{i+1}",
f"dipole_location_{i+1}",
f"dipole_frequency_{i+1}",
]
)
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_likelihood", f"{name}_prob"])
self.probabilities = [1 / self.model_count] * self.model_count
if use_timestamp_for_output:
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.bayesrunwithss.csv"
else:
self.filename = f"{filename_slug}.bayesrunwithss.csv"
self.max_frequency = max_frequency
if end_threshold is not None:
if 0 < end_threshold < 1:
self.end_threshold: float = end_threshold
self.use_end_threshold = True
_logger.info(f"Will abort early, at {self.end_threshold}.")
else:
raise ValueError(
f"end_threshold should be between 0 and 1, but is actually {end_threshold}"
)
self.ss_n_c = ss_n_c
self.ss_n_s = ss_n_s
self.ss_m_max = ss_m_max
self.ss_target_cost = ss_target_cost
self.ss_level_0_seed = ss_level_0_seed
self.ss_mcmc_seed = ss_mcmc_seed
self.ss_use_adaptive_steps = ss_use_adaptive_steps
self.ss_default_phi_step = ss_default_phi_step
self.ss_default_theta_step = ss_default_theta_step
self.ss_default_r_step = ss_default_r_step
self.ss_default_w_log_step = ss_default_w_log_step
self.ss_default_upper_w_log_step = ss_default_upper_w_log_step
self.ss_dump_last_generation = ss_dump_last_generation
self.ss_initial_costs_chunk_size = ss_initial_costs_chunk_size
self.run_count = run_count
self.write_output_to_csv = write_output_to_bayesruncsv
def go(self) -> Sequence:
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writeheader()
return_result = []
for run in range(1, self.run_count + 1):
# Generate the actual dipoles
actual_dipoles = self.actual_model.get_dipoles(self.max_frequency)
measurements = actual_dipoles.get_dot_measurements(self.dot_inputs)
_logger.info(f"Going to work on dipole at {actual_dipoles.dipoles}")
# define a new seed sequence for each run
results = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models_with_names):
_logger.debug(f"Doing model #{model_count}, {model[0]}")
subset_run = deepdog.subset_simulation.SubsetSimulation(
model,
self.dot_inputs,
measurements,
self.ss_n_c,
self.ss_n_s,
self.ss_m_max,
self.ss_target_cost,
self.ss_level_0_seed,
self.ss_mcmc_seed,
self.ss_use_adaptive_steps,
self.ss_default_phi_step,
self.ss_default_theta_step,
self.ss_default_r_step,
self.ss_default_w_log_step,
self.ss_default_upper_w_log_step,
initial_cost_chunk_size=self.ss_initial_costs_chunk_size,
keep_probs_list=False,
dump_last_generation_to_file=self.ss_dump_last_generation,
)
results.append(subset_run.execute())
_logger.debug("Done, constructing output now")
row = {
"dipole_moment_1": actual_dipoles.dipoles[0].p,
"dipole_location_1": actual_dipoles.dipoles[0].s,
"dipole_frequency_1": actual_dipoles.dipoles[0].w,
}
for i in range(1, self.n):
try:
current_dipoles = actual_dipoles.dipoles[i]
row[f"dipole_moment_{i+1}"] = current_dipoles.p
row[f"dipole_location_{i+1}"] = current_dipoles.s
row[f"dipole_frequency_{i+1}"] = current_dipoles.w
except IndexError:
_logger.info(f"Not writing anymore, saw end after {i}")
break
likelihoods: List[float] = []
for (name, result) in zip(self.model_names, results):
if result.over_target_likelihood is None:
if result.lowest_likelihood is None:
_logger.error(f"result {result} looks bad")
clamped_likelihood = 10**-15
else:
clamped_likelihood = result.lowest_likelihood / CLAMPING_FACTOR
_logger.warning(
f"got a none result, clamping to {clamped_likelihood}"
)
else:
clamped_likelihood = result.over_target_likelihood
likelihoods.append(clamped_likelihood)
row[f"{name}_likelihood"] = clamped_likelihood
success_weight = sum(
[
likelihood * prob
for likelihood, prob in zip(likelihoods, self.probabilities)
]
)
new_probabilities = [
likelihood * old_prob / success_weight
for likelihood, old_prob in zip(likelihoods, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
return_result.append(row)
if self.write_output_to_csv:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(
outfile, fieldnames=self.csv_fields, dialect="unix"
)
writer.writerow(row)
if self.use_end_threshold:
max_prob = max(self.probabilities)
if max_prob > self.end_threshold:
_logger.info(
f"Aborting early, because {max_prob} is greater than {self.end_threshold}"
)
break
return return_result

0
deepdog/cli/__init__.py Normal file
View File

View File

@@ -0,0 +1,5 @@
from deepdog.cli.probs.main import wrapped_main
__all__ = [
"wrapped_main",
]

63
deepdog/cli/probs/args.py Normal file
View File

@@ -0,0 +1,63 @@
import argparse
import os
def parse_args() -> argparse.Namespace:
def dir_path(path):
if os.path.isdir(path):
return path
else:
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
parser = argparse.ArgumentParser(
"probs", description="Calculating probability from finished bayesrun"
)
parser.add_argument(
"--log_file",
type=str,
help="A filename for logging to, if not provided will only log to stderr",
default=None,
)
parser.add_argument(
"--bayesrun-directory",
"-d",
type=dir_path,
help="The directory to search for bayesrun files, defaulting to cwd if not passed",
default=".",
)
parser.add_argument(
"--indexify-json",
help="A json file with the indexify config for parsing job indexes. Will skip if not present",
default="",
)
parser.add_argument(
"--seed-index",
type=int,
help='take an integer to append as a "seed" key with range at end of indexify dict. Skip if <= 0',
default=0,
)
parser.add_argument(
"--seed-fieldname",
type=str,
help='if --seed-index is set, the fieldname to append to the indexifier. "seed" by default',
default="seed",
)
parser.add_argument(
"--coalesced-keys",
type=str,
help="A comma separated list of strings over which to coalesce data. By default coalesce over all fields within model names, ignore file level names",
default="",
)
parser.add_argument(
"--uncoalesced-outfile",
type=str,
help="output filename for uncoalesced data. If not provided, will not be written",
default=None,
)
parser.add_argument(
"--coalesced-outfile",
type=str,
help="output filename for coalesced data. If not provided, will not be written",
default=None,
)
return parser.parse_args()

178
deepdog/cli/probs/dicts.py Normal file
View File

@@ -0,0 +1,178 @@
import typing
from deepdog.results import BayesrunOutput
import logging
import csv
import tqdm
_logger = logging.getLogger(__name__)
def build_model_dict(
bayes_outputs: typing.Sequence[BayesrunOutput],
) -> typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
]:
"""
Maybe someday do something smarter with the coalescing and stuff but don't want to so i won't
"""
# assume that everything is well formatted and the keys are the same across entire list and initialise list of keys.
# model dict will contain a model_key: {calculation_dict} where each calculation_dict represents a single calculation for that model,
# the uncoalesced version, keyed by the specific file keys
model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
] = {}
_logger.info("building model dict")
for out in tqdm.tqdm(bayes_outputs, desc="reading outputs", leave=False):
for model_result in out.results:
model_key = tuple(v for v in model_result.parsed_model_keys.values())
if model_key not in model_dict:
model_dict[model_key] = {}
calculation_dict = model_dict[model_key]
calculation_key = tuple(v for v in out.data.values())
if calculation_key not in calculation_dict:
calculation_dict[calculation_key] = {
"_model_key_dict": model_result.parsed_model_keys,
"_calculation_key_dict": out.data,
"success": model_result.success,
"count": model_result.count,
}
else:
raise ValueError(
f"Got {calculation_key} twice for model_key {model_key}"
)
return model_dict
def write_uncoalesced_dict(
uncoalesced_output_filename: typing.Optional[str],
uncoalesced_model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
],
):
if uncoalesced_output_filename is None or uncoalesced_output_filename == "":
_logger.warning("Not provided a uncoalesced filename, not going to try")
return
first_value = next(iter(next(iter(uncoalesced_model_dict.values())).values()))
model_field_names = set(first_value["_model_key_dict"].keys())
calculation_field_names = set(first_value["_calculation_key_dict"].keys())
if not (set(model_field_names).isdisjoint(calculation_field_names)):
_logger.info(f"Detected model field names {model_field_names}")
_logger.info(f"Detected calculation field names {calculation_field_names}")
raise ValueError(
f"model field names {model_field_names} and calculation {calculation_field_names} have an overlap, which is possibly a problem"
)
collected_fieldnames = list(model_field_names)
collected_fieldnames.extend(calculation_field_names)
collected_fieldnames.extend(["success", "count"])
_logger.info(f"Full uncoalesced fieldnames are {collected_fieldnames}")
with open(uncoalesced_output_filename, "w", newline="") as uncoalesced_output_file:
writer = csv.DictWriter(
uncoalesced_output_file, fieldnames=collected_fieldnames
)
writer.writeheader()
for model_dict in uncoalesced_model_dict.values():
for calculation in model_dict.values():
row = calculation["_model_key_dict"].copy()
row.update(calculation["_calculation_key_dict"].copy())
row.update(
{
"success": calculation["success"],
"count": calculation["count"],
}
)
writer.writerow(row)
def coalesced_dict(
uncoalesced_model_dict: typing.Dict[
typing.Tuple, typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]]
],
minimum_count: float = 0.1,
):
"""
pass in uncoalesced dict
the minimum_count field is what we use to make sure our probs are never zero
"""
coalesced_dict = {}
# we are already iterating so for no reason because performance really doesn't matter let's count the keys ourselves
num_keys = 0
# first pass coalesce
for model_key, model_dict in uncoalesced_model_dict.items():
num_keys += 1
for calculation in model_dict.values():
if model_key not in coalesced_dict:
coalesced_dict[model_key] = {
"_model_key_dict": calculation["_model_key_dict"].copy(),
"calculations_coalesced": 0,
"count": 0,
"success": 0,
}
sub_dict = coalesced_dict[model_key]
sub_dict["calculations_coalesced"] += 1
sub_dict["count"] += calculation["count"]
sub_dict["success"] += calculation["success"]
# second pass do probability calculation
prior = 1 / num_keys
_logger.info(f"Got {num_keys} model keys, so our prior will be {prior}")
total_weight = 0
for coalesced_model_dict in coalesced_dict.values():
model_weight = (
max(minimum_count, coalesced_model_dict["success"])
/ coalesced_model_dict["count"]
) * prior
total_weight += model_weight
total_prob = 0
for coalesced_model_dict in coalesced_dict.values():
model_weight = (
max(minimum_count, coalesced_model_dict["success"])
/ coalesced_model_dict["count"]
)
prob = model_weight * prior / total_weight
coalesced_model_dict["prob"] = prob
total_prob += prob
_logger.debug(
f"Got a total probability of {total_prob}, which should be close to 1 up to float/rounding error"
)
return coalesced_dict
def write_coalesced_dict(
coalesced_output_filename: typing.Optional[str],
coalesced_model_dict: typing.Dict[typing.Tuple, typing.Dict["str", typing.Any]],
):
if coalesced_output_filename is None or coalesced_output_filename == "":
_logger.warning("Not provided a uncoalesced filename, not going to try")
return
first_value = next(iter(coalesced_model_dict.values()))
model_field_names = set(first_value["_model_key_dict"].keys())
_logger.info(f"Detected model field names {model_field_names}")
collected_fieldnames = list(model_field_names)
collected_fieldnames.extend(["calculations_coalesced", "success", "count", "prob"])
with open(coalesced_output_filename, "w", newline="") as coalesced_output_file:
writer = csv.DictWriter(coalesced_output_file, fieldnames=collected_fieldnames)
writer.writeheader()
for model_dict in coalesced_model_dict.values():
row = model_dict["_model_key_dict"].copy()
row.update(
{
"calculations_coalesced": model_dict["calculations_coalesced"],
"success": model_dict["success"],
"count": model_dict["count"],
"prob": model_dict["prob"],
}
)
writer.writerow(row)

95
deepdog/cli/probs/main.py Normal file
View File

@@ -0,0 +1,95 @@
import logging
import argparse
import json
import deepdog.cli.probs.args
import deepdog.cli.probs.dicts
import deepdog.results
import deepdog.indexify
import pathlib
import tqdm
import tqdm.contrib.logging
_logger = logging.getLogger(__name__)
def set_up_logging(log_file: str):
log_pattern = "%(asctime)s | %(levelname)-7s | %(name)s:%(lineno)d | %(message)s"
if log_file is None:
handlers = [
logging.StreamHandler(),
]
else:
handlers = [logging.StreamHandler(), logging.FileHandler(log_file)]
logging.basicConfig(
level=logging.DEBUG,
format=log_pattern,
# it's okay to ignore this mypy error because who cares about logger handler types
handlers=handlers, # type: ignore
)
logging.captureWarnings(True)
def main(args: argparse.Namespace):
"""
Main function with passed in arguments and no additional logging setup in case we want to extract out later
"""
with tqdm.contrib.logging.logging_redirect_tqdm():
_logger.info(f"args: {args}")
try:
if args.coalesced_keys:
raise NotImplementedError(
"Currently not supporting coalesced keys, but maybe in future"
)
except AttributeError:
# we don't care if this is missing because we don't actually want it to be there
pass
indexifier = None
if args.indexify_json:
with open(args.indexify_json, "r") as indexify_json_file:
indexify_data = json.load(indexify_json_file)
if args.seed_index > 0:
indexify_data[args.seed_fieldname] = list(range(args.seed_index))
# _logger.debug(f"Indexifier data looks like {indexify_data}")
indexifier = deepdog.indexify.Indexifier(indexify_data)
bayes_dir = pathlib.Path(args.bayesrun_directory)
out_files = [f for f in bayes_dir.iterdir() if f.name.endswith("bayesrun.csv")]
_logger.info(
f"Reading {len(out_files)} bayesrun.csv files in directory {args.bayesrun_directory}"
)
# _logger.info(out_files)
parsed_output_files = [
deepdog.results.read_output_file(f, indexifier)
for f in tqdm.tqdm(out_files, desc="reading files", leave=False)
]
_logger.info("building uncoalesced dict")
uncoalesced_dict = deepdog.cli.probs.dicts.build_model_dict(parsed_output_files)
if "uncoalesced_outfile" in args and args.uncoalesced_outfile:
deepdog.cli.probs.dicts.write_uncoalesced_dict(
args.uncoalesced_outfile, uncoalesced_dict
)
else:
_logger.info("Skipping writing uncoalesced")
_logger.info("building coalesced dict")
coalesced = deepdog.cli.probs.dicts.coalesced_dict(uncoalesced_dict)
if "coalesced_outfile" in args and args.coalesced_outfile:
deepdog.cli.probs.dicts.write_coalesced_dict(
args.coalesced_outfile, coalesced
)
else:
_logger.info("Skipping writing coalesced")
def wrapped_main():
args = deepdog.cli.probs.args.parse_args()
set_up_logging(args.log_file)
main(args)

View File

@@ -0,0 +1,6 @@
from deepdog.direct_monte_carlo.direct_mc import (
DirectMonteCarloRun,
DirectMonteCarloConfig,
)
__all__ = ["DirectMonteCarloRun", "DirectMonteCarloConfig"]

View File

@@ -0,0 +1,14 @@
from typing import Sequence
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
import numpy
class ComposedDMCFilter(DirectMonteCarloFilter):
def __init__(self, filters: Sequence[DirectMonteCarloFilter]):
self.filters = filters
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
current_sample = samples
for filter in self.filters:
current_sample = filter.filter_samples(current_sample)
return current_sample

View File

@@ -0,0 +1,174 @@
import pdme.model
import pdme.measurement
import pdme.measurement.input_types
import pdme.subspace_simulation
from typing import Tuple, Dict, NewType, Any
from dataclasses import dataclass
import logging
import numpy
import numpy.random
import pdme.util.fast_v_calc
_logger = logging.getLogger(__name__)
@dataclass
class DirectMonteCarloResult:
successes: int
monte_carlo_count: int
likelihood: float
@dataclass
class DirectMonteCarloConfig:
monte_carlo_count_per_cycle: int = 10000
monte_carlo_cycles: int = 10
target_success: int = 100
max_monte_carlo_cycles_steps: int = 10
monte_carlo_seed: int = 1234
write_successes_to_file: bool = False
tag: str = ""
# Aliasing dict as a generic data container
DirectMonteCarloData = NewType("DirectMonteCarloData", Dict[str, Any])
class DirectMonteCarloFilter:
"""
Abstract class for filtering out samples matching some criteria. Initialise with data as needed,
then filter out samples as needed.
"""
def filter_samples(self, samples: numpy.ndarray) -> numpy.ndarray:
raise NotImplementedError
class DirectMonteCarloRun:
"""
A single model Direct Monte Carlo run, currently implemented only using single threading.
An encapsulation of the steps needed for a Bayes run.
Parameters
----------
model_name_pair : Sequence[Tuple(str, pdme.model.DipoleModel)]
The model to evaluate, with name.
measurements: Sequence[pdme.measurement.DotRangeMeasurement]
The measurements as dot ranges to use as the bounds for the Monte Carlo calculation.
monte_carlo_count_per_cycle: int
The number of Monte Carlo iterations to use in a single cycle calculation.
monte_carlo_cycles: int
The number of cycles to use in each step.
Increasing monte_carlo_count_per_cycle increases memory usage (and runtime), while this increases runtime, allowing
control over memory use.
target_success: int
The number of successes to target before exiting early.
Should likely be ~100 but can go higher to.
max_monte_carlo_cycles_steps: int
The number of steps to use. Each step consists of monte_carlo_cycles cycles, each of which has monte_carlo_count_per_cycle iterations.
monte_carlo_seed: int
The seed to use for the RNG.
"""
def __init__(
self,
model_name_pair: Tuple[str, pdme.model.DipoleModel],
filter: DirectMonteCarloFilter,
config: DirectMonteCarloConfig,
):
self.model_name, self.model = model_name_pair
# self.measurements = measurements
# self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
# self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
# self.dot_inputs
# )
self.config = config
self.filter = filter
# (
# self.lows,
# self.highs,
# ) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
# self.measurements
# )
def _single_run(self, seed) -> numpy.ndarray:
rng = numpy.random.default_rng(seed)
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
self.config.monte_carlo_count_per_cycle, -1, rng
)
current_sample = sample_dipoles
return self.filter.filter_samples(current_sample)
# for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
# if len(current_sample) < 1:
# break
# vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
# numpy.array([di]), current_sample
# )
# current_sample = current_sample[
# numpy.all((vals > low) & (vals < high), axis=1)
# ]
# return current_sample
def execute(self) -> DirectMonteCarloResult:
step_count = 0
total_success = 0
total_count = 0
count_per_step = (
self.config.monte_carlo_count_per_cycle * self.config.monte_carlo_cycles
)
seed_sequence = numpy.random.SeedSequence(self.config.monte_carlo_seed)
while (step_count < self.config.max_monte_carlo_cycles_steps) and (
total_success < self.config.target_success
):
_logger.debug(f"Executing step {step_count}")
for cycle_i, seed in enumerate(
seed_sequence.spawn(self.config.monte_carlo_cycles)
):
cycle_success_configs = self._single_run(seed)
cycle_success_count = len(cycle_success_configs)
if cycle_success_count > 0:
_logger.debug(
f"For cycle {cycle_i} received {cycle_success_count} successes"
)
_logger.debug(cycle_success_configs)
if self.config.write_successes_to_file:
sorted_by_freq = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(
dipole_config
)
for dipole_config in cycle_success_configs
]
)
dipole_count = numpy.array(cycle_success_configs).shape[1]
for n in range(dipole_count):
numpy.savetxt(
f"{self.config.tag}_{step_count}_{cycle_i}_dipole_{n}.csv",
sorted_by_freq[:, n],
delimiter=",",
)
total_success += cycle_success_count
_logger.debug(f"At end of step {step_count} have {total_success} successes")
step_count += 1
total_count += count_per_step
return DirectMonteCarloResult(
successes=total_success,
monte_carlo_count=total_count,
likelihood=total_success / total_count,
)

View File

@@ -0,0 +1,143 @@
from numpy import ndarray
from deepdog.direct_monte_carlo.direct_mc import DirectMonteCarloFilter
from typing import Sequence
import pdme.measurement
import pdme.measurement.input_types
import pdme.util.fast_nonlocal_spectrum
import pdme.util.fast_v_calc
import numpy
class SingleDotPotentialFilter(DirectMonteCarloFilter):
def __init__(self, measurements: Sequence[pdme.measurement.DotRangeMeasurement]):
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
self.dot_inputs
)
(
self.lows,
self.highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.measurements
)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for di, low, high in zip(self.dot_inputs_array, self.lows, self.highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
numpy.array([di]), current_sample
)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
return current_sample
class DoubleDotSpinQubitFrequencyFilter(DirectMonteCarloFilter):
def __init__(
self,
pair_phase_measurements: Sequence[pdme.measurement.DotPairRangeMeasurement],
):
self.pair_phase_measurements = pair_phase_measurements
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_phase_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(self.dot_pair_inputs)
)
(
self.pair_phase_lows,
self.pair_phase_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.pair_phase_measurements
)
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
self, dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# Don't actually need this
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, :, 0, numpy.newaxis]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
def filter_samples(self, samples: ndarray) -> ndarray:
current_sample = samples
for pi, plow, phigh in zip(
self.dot_pair_inputs_array, self.pair_phase_lows, self.pair_phase_highs
):
if len(current_sample) < 1:
break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg(
self.fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return current_sample

View File

@@ -0,0 +1,58 @@
"""
Probably should just include a way to handle the indexify function I reuse so much.
All about breaking an integer into a tuple of values from lists, which is useful because of how we do CHTC runs.
"""
import itertools
import typing
import logging
import math
_logger = logging.getLogger(__name__)
# from https://stackoverflow.com/questions/5228158/cartesian-product-of-a-dictionary-of-lists
def _dict_product(dicts):
"""
>>> list(dict_product(dict(number=[1,2], character='ab')))
[{'character': 'a', 'number': 1},
{'character': 'a', 'number': 2},
{'character': 'b', 'number': 1},
{'character': 'b', 'number': 2}]
"""
return list(dict(zip(dicts.keys(), x)) for x in itertools.product(*dicts.values()))
class Indexifier:
"""
The order of keys is very important, but collections.OrderedDict is no longer needed in python 3.7.
I think it's okay to rely on that.
"""
def __init__(self, list_dict: typing.Dict[str, typing.Sequence]):
self.dict = list_dict
def indexify(self, n: int) -> typing.Dict[str, typing.Any]:
product_dict = _dict_product(self.dict)
return product_dict[n]
def _indexify_indices(self, n: int) -> typing.Sequence[int]:
"""
legacy indexify from old scripts, copypast.
could be used like
>>> ret = {}
>>> for k, i in zip(self.dict.keys(), self._indexify_indices):
>>> ret[k] = self.dict[k][i]
>>> return ret
"""
weights = [len(v) for v in self.dict.values()]
N = math.prod(weights)
curr_n = n
curr_N = N
out = []
for w in weights[:-1]:
# print(f"current: {curr_N}, {curr_n}, {curr_n // w}")
curr_N = curr_N // w # should be int division anyway
out.append(curr_n // curr_N)
curr_n = curr_n % curr_N
return out

View File

@@ -5,7 +5,7 @@ import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List, Dict, Union
from typing import Sequence, Tuple, List, Dict, Union, Optional
import datetime
import csv
import multiprocessing
@@ -20,7 +20,186 @@ CHUNKSIZE = 50
_logger = logging.getLogger(__name__)
def get_a_result(input) -> int:
def get_a_result_fast_filter_pairs(input) -> int:
(
model,
dot_inputs,
lows,
highs,
pair_inputs,
pair_lows,
pair_highs,
monte_carlo_count,
seed,
) = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for di, low, high in zip(dot_inputs, lows, highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
numpy.array([di]), current_sample
)
current_sample = current_sample[numpy.all((vals > low) & (vals < high), axis=1)]
for pi, plow, phigh in zip(pair_inputs, pair_lows, pair_highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return len(current_sample)
def get_a_result_fast_filter_potential_pair_phase_only(input) -> int:
(
model,
pair_inputs,
pair_phase_lows,
pair_phase_highs,
monte_carlo_count,
seed,
) = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for pi, plow, phigh in zip(pair_inputs, pair_phase_lows, pair_phase_highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_nonlocal_spectrum.signarg(
pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return len(current_sample)
def get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only(input) -> int:
(
model,
pair_inputs,
pair_phase_lows,
pair_phase_highs,
monte_carlo_count,
seed,
) = input
def fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
dot_pair_inputs: numpy.ndarray, dipoleses: numpy.ndarray
) -> numpy.ndarray:
"""
No error correction here baby.
"""
ps = dipoleses[:, :, 0:3]
ss = dipoleses[:, :, 3:6]
ws = dipoleses[:, :, 6]
r1s = dot_pair_inputs[:, 0, 0:3]
r2s = dot_pair_inputs[:, 1, 0:3]
f1s = dot_pair_inputs[:, 0, 3]
# don't actually need, because we're assuming they're the same frequencies across the pair
# f2s = dot_pair_inputs[:, 1, 3]
diffses1 = r1s[:, None] - ss[:, None, :]
diffses2 = r2s[:, None] - ss[:, None, :]
norms1 = numpy.linalg.norm(diffses1, axis=3)
norms2 = numpy.linalg.norm(diffses2, axis=3)
alphses1 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses1, ps) / (norms1**2)
)
* numpy.transpose(diffses1)
)[:, :, :, 0]
)
- ps[:, numpy.newaxis, :, 0]
) / (norms1**3)
alphses2 = (
(
3
* numpy.transpose(
numpy.transpose(
numpy.einsum("abcd,acd->abc", diffses2, ps) / (norms2**2)
)
* numpy.transpose(diffses2)
)[:, :, :, 0]
)
- ps[:, numpy.newaxis, :, 0]
) / (norms2**3)
bses = (1 / numpy.pi) * (
ws[:, None, :] / (f1s[:, None] ** 2 + ws[:, None, :] ** 2)
)
return numpy.einsum("...j->...", alphses1 * alphses2 * bses)
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for pi, plow, phigh in zip(pair_inputs, pair_phase_lows, pair_phase_highs):
if len(current_sample) < 1:
break
###
# This should be abstracted out, but we're going to dump it here for time pressure's sake
###
# vals = pdme.util.fast_nonlocal_spectrum.signarg(
# pdme.util.fast_nonlocal_spectrum.fast_s_nonlocal_dipoleses(
# numpy.array([pi]), current_sample
# )
#
vals = pdme.util.fast_nonlocal_spectrum.signarg(
fast_s_spin_qubit_tarucha_nonlocal_dipoleses(
numpy.array([pi]), current_sample
)
)
current_sample = current_sample[
numpy.all(
((vals > plow) & (vals < phigh)) | ((vals < plow) & (vals > phigh)),
axis=1,
)
]
return len(current_sample)
def get_a_result_fast_filter(input) -> int:
model, dot_inputs, lows, highs, monte_carlo_count, seed = input
rng = numpy.random.default_rng(seed)
@@ -28,8 +207,18 @@ def get_a_result(input) -> int:
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(dot_inputs, sample_dipoles)
return numpy.count_nonzero(pdme.util.fast_v_calc.between(vals, lows, highs))
current_sample = sample_dipoles
for di, low, high in zip(dot_inputs, lows, highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_dipoleses(
numpy.array([di]), current_sample
)
current_sample = current_sample[numpy.all((vals > low) & (vals < high), axis=1)]
return len(current_sample)
class RealSpectrumRun:
@@ -52,6 +241,11 @@ class RealSpectrumRun:
run_count: int
The number of runs to do.
If pair_measurements is not None, uses pair measurement method (and single measurements too).
If pair_phase_measurements is not None, ignores measurements and uses phase measurements _only_
This is lazy design on my part.
"""
def __init__(
@@ -65,6 +259,13 @@ class RealSpectrumRun:
max_monte_carlo_cycles_steps: int = 10,
chunksize: int = CHUNKSIZE,
initial_seed: int = 12345,
cap_core_count: int = 0,
pair_measurements: Optional[
Sequence[pdme.measurement.DotPairRangeMeasurement]
] = None,
pair_phase_measurements: Optional[
Sequence[pdme.measurement.DotPairRangeMeasurement]
] = None,
) -> None:
self.measurements = measurements
self.dot_inputs = [(measure.r, measure.f) for measure in self.measurements]
@@ -73,6 +274,37 @@ class RealSpectrumRun:
self.dot_inputs
)
if pair_measurements is not None:
self.pair_measurements = pair_measurements
self.use_pair_measurements = True
self.use_pair_phase_measurements = False
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(
self.dot_pair_inputs
)
)
elif pair_phase_measurements is not None:
self.use_pair_measurements = False
self.use_pair_phase_measurements = True
self.pair_phase_measurements = pair_phase_measurements
self.dot_pair_inputs = [
(measure.r1, measure.r2, measure.f)
for measure in self.pair_phase_measurements
]
self.dot_pair_inputs_array = (
pdme.measurement.input_types.dot_pair_inputs_to_array(
self.dot_pair_inputs
)
)
else:
self.use_pair_measurements = False
self.use_pair_phase_measurements = False
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.model_count = len(self.models)
@@ -93,9 +325,14 @@ class RealSpectrumRun:
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.filename = f"{timestamp}-{filename_slug}.realdata.bayesrun.csv"
ff_string = "fast_filter"
self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv"
self.initial_seed = initial_seed
self.cap_core_count = cap_core_count
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
@@ -108,14 +345,39 @@ class RealSpectrumRun:
self.measurements
)
pair_lows = None
pair_highs = None
if self.use_pair_measurements:
(
pair_lows,
pair_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.pair_measurements
)
pair_phase_lows = None
pair_phase_highs = None
if self.use_pair_phase_measurements:
(
pair_phase_lows,
pair_phase_highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
self.pair_phase_measurements
)
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
results = []
_logger.debug("Going to iterate over models now")
for model_count, model in enumerate(self.models):
_logger.debug(f"Doing model #{model_count}")
core_count = multiprocessing.cpu_count() - 1 or 1
core_count = multiprocessing.cpu_count() - 1 or 1
if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
core_count = self.cap_core_count
_logger.info(f"Using {core_count} cores")
for model_count, (model, model_name) in enumerate(
zip(self.models, self.model_names)
):
_logger.debug(f"Doing model #{model_count}: {model_name}")
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
@@ -133,23 +395,67 @@ class RealSpectrumRun:
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
current_success = sum(
pool.imap_unordered(
get_a_result,
[
(
model,
self.dot_inputs_array,
lows,
highs,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
if self.use_pair_measurements:
_logger.debug("using pair measurements")
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter_pairs,
[
(
model,
self.dot_inputs_array,
lows,
highs,
self.dot_pair_inputs_array,
pair_lows,
pair_highs,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
elif self.use_pair_phase_measurements:
_logger.debug("using pair phase measurements")
_logger.debug("specifically using tarucha")
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter_tarucha_spin_qubit_pair_phase_only,
[
(
model,
self.dot_pair_inputs_array,
pair_phase_lows,
pair_phase_highs,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
else:
current_success = sum(
pool.imap_unordered(
get_a_result_fast_filter,
[
(
model,
self.dot_inputs_array,
lows,
highs,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")

169
deepdog/results/__init__.py Normal file
View File

@@ -0,0 +1,169 @@
import dataclasses
import re
import typing
import logging
import deepdog.indexify
import pathlib
import csv
_logger = logging.getLogger(__name__)
FILENAME_REGEX = r"(?P<timestamp>\d{8}-\d{6})-(?P<filename_slug>.*)\.realdata\.fast_filter\.bayesrun\.csv"
MODEL_REGEXES = [
r"geom_(?P<xmin>-?\d+)_(?P<xmax>-?\d+)_(?P<ymin>-?\d+)_(?P<ymax>-?\d+)_(?P<zmin>-?\d+)_(?P<zmax>-?\d+)-orientation_(?P<orientation>free|fixedxy|fixedz)-dipole_count_(?P<avg_filled>\d+)_(?P<field_name>\w*)"
]
FILE_SLUG_REGEXES = [
r"mock_tarucha-(?P<job_index>\d+)",
]
@dataclasses.dataclass
class BayesrunOutputFilename:
timestamp: str
filename_slug: str
path: pathlib.Path
@dataclasses.dataclass
class BayesrunColumnParsed:
"""
class for parsing a bayesrun while pulling certain special fields out
"""
def __init__(self, groupdict: typing.Dict[str, str]):
self.column_field = groupdict["field_name"]
self.model_field_dict = {
k: v for k, v in groupdict.items() if k != "field_name"
}
def __str__(self):
return f"BayesrunColumnParsed[{self.column_field}: {self.model_field_dict}]"
@dataclasses.dataclass
class BayesrunModelResult:
parsed_model_keys: typing.Dict[str, str]
success: int
count: int
@dataclasses.dataclass
class BayesrunOutput:
filename: BayesrunOutputFilename
data: typing.Dict["str", typing.Any]
results: typing.Sequence[BayesrunModelResult]
def _batch_iterable_into_chunks(iterable, n=1):
"""
utility for batching bayesrun files where columns appear in threes
"""
for ndx in range(0, len(iterable), n):
yield iterable[ndx : min(ndx + n, len(iterable))]
def _parse_bayesrun_column(
column: str,
) -> typing.Optional[BayesrunColumnParsed]:
"""
Tries one by one all of a predefined list of regexes that I might have used in the past.
Returns the groupdict for the first match, or None if no match found.
"""
for pattern in MODEL_REGEXES:
match = re.match(pattern, column)
if match:
return BayesrunColumnParsed(match.groupdict())
else:
return None
def _parse_bayesrun_row(
row: typing.Dict[str, str],
) -> typing.Sequence[BayesrunModelResult]:
results = []
batched_keys = _batch_iterable_into_chunks(list(row.keys()), 3)
for model_keys in batched_keys:
parsed = [_parse_bayesrun_column(column) for column in model_keys]
values = [row[column] for column in model_keys]
if parsed[0] is None:
raise ValueError(f"no viable success row found for keys {model_keys}")
if parsed[1] is None:
raise ValueError(f"no viable count row found for keys {model_keys}")
if parsed[0].column_field != "success":
raise ValueError(f"The column {model_keys[0]} is not a success field")
if parsed[1].column_field != "count":
raise ValueError(f"The column {model_keys[1]} is not a count field")
parsed_keys = parsed[0].model_field_dict
success = int(values[0])
count = int(values[1])
results.append(
BayesrunModelResult(
parsed_model_keys=parsed_keys,
success=success,
count=count,
)
)
return results
def _parse_output_filename(file: pathlib.Path) -> BayesrunOutputFilename:
filename = file.name
match = re.match(FILENAME_REGEX, filename)
if not match:
raise ValueError(f"{filename} was not a valid bayesrun output")
groups = match.groupdict()
return BayesrunOutputFilename(
timestamp=groups["timestamp"], filename_slug=groups["filename_slug"], path=file
)
def _parse_file_slug(slug: str) -> typing.Optional[typing.Dict[str, str]]:
for pattern in FILE_SLUG_REGEXES:
match = re.match(pattern, slug)
if match:
return match.groupdict()
else:
return None
def read_output_file(
file: pathlib.Path, indexifier: typing.Optional[deepdog.indexify.Indexifier]
) -> BayesrunOutput:
parsed_filename = tag = _parse_output_filename(file)
out = BayesrunOutput(filename=parsed_filename, data={}, results=[])
out.data.update(dataclasses.asdict(tag))
parsed_tag = _parse_file_slug(parsed_filename.filename_slug)
if parsed_tag is None:
_logger.warning(
f"Could not parse {tag} against any matching regexes. Going to skip tag parsing"
)
else:
out.data.update(parsed_tag)
if indexifier is not None:
try:
job_index = parsed_tag["job_index"]
indexified = indexifier.indexify(int(job_index))
out.data.update(indexified)
except KeyError:
# This isn't really that important of an error, apart from the warning
_logger.warning(
f"Parsed tag to {parsed_tag}, and attempted to indexify but no job_index key was found. skipping and moving on"
)
with file.open() as input_file:
reader = csv.DictReader(input_file)
rows = [r for r in reader]
if len(rows) == 1:
row = rows[0]
else:
raise ValueError(f"Confused about having multiple rows in {file.name}")
results = _parse_bayesrun_row(row)
out.results = results
return out

View File

@@ -0,0 +1,3 @@
from deepdog.subset_simulation.subset_simulation_impl import SubsetSimulation
__all__ = ["SubsetSimulation"]

View File

@@ -0,0 +1,388 @@
import logging
import numpy
import pdme.measurement
import pdme.measurement.input_types
import pdme.subspace_simulation
from typing import Sequence, Tuple, Optional
from dataclasses import dataclass
_logger = logging.getLogger(__name__)
@dataclass
class SubsetSimulationResult:
probs_list: Sequence[Tuple]
over_target_cost: Optional[float]
over_target_likelihood: Optional[float]
under_target_cost: Optional[float]
under_target_likelihood: Optional[float]
lowest_likelihood: Optional[float]
class SubsetSimulation:
def __init__(
self,
model_name_pair,
dot_inputs,
actual_measurements: Sequence[pdme.measurement.DotMeasurement],
n_c: int,
n_s: int,
m_max: int,
target_cost: Optional[float] = None,
level_0_seed: int = 200,
mcmc_seed: int = 20,
use_adaptive_steps=True,
default_phi_step=0.01,
default_theta_step=0.01,
default_r_step=0.01,
default_w_log_step=0.01,
default_upper_w_log_step=4,
keep_probs_list=True,
dump_last_generation_to_file=False,
initial_cost_chunk_size=100,
):
name, model = model_name_pair
self.model_name = name
self.model = model
_logger.info(f"got model {self.model_name}")
self.dot_inputs_array = pdme.measurement.input_types.dot_inputs_to_array(
dot_inputs
)
# _logger.debug(f"actual measurements: {actual_measurements}")
self.actual_measurement_array = numpy.array([m.v for m in actual_measurements])
def cost_function_to_use(dipoles_to_test):
return pdme.subspace_simulation.proportional_costs_vs_actual_measurement(
self.dot_inputs_array, self.actual_measurement_array, dipoles_to_test
)
self.cost_function_to_use = cost_function_to_use
self.n_c = n_c
self.n_s = n_s
self.m_max = m_max
self.level_0_seed = level_0_seed
self.mcmc_seed = mcmc_seed
self.use_adaptive_steps = use_adaptive_steps
self.default_phi_step = default_phi_step
self.default_theta_step = default_theta_step
self.default_r_step = default_r_step
self.default_w_log_step = default_w_log_step
self.default_upper_w_log_step = default_upper_w_log_step
_logger.info("using params:")
_logger.info(f"\tn_c: {self.n_c}")
_logger.info(f"\tn_s: {self.n_s}")
_logger.info(f"\tm: {self.m_max}")
_logger.info("let's do level 0...")
self.target_cost = target_cost
_logger.info(f"will stop at target cost {target_cost}")
self.keep_probs_list = keep_probs_list
self.dump_last_generations = dump_last_generation_to_file
self.initial_cost_chunk_size = initial_cost_chunk_size
def execute(self) -> SubsetSimulationResult:
probs_list = []
sample_dipoles = self.model.get_monte_carlo_dipole_inputs(
self.n_c * self.n_s,
-1,
rng_to_use=numpy.random.default_rng(self.level_0_seed),
)
# _logger.debug(sample_dipoles)
# _logger.debug(sample_dipoles.shape)
raw_costs = []
_logger.debug(
f"Using iterated cost function thing with chunk size {self.initial_cost_chunk_size}"
)
for x in range(0, len(sample_dipoles), self.initial_cost_chunk_size):
_logger.debug(f"doing chunk {x}")
raw_costs.extend(
self.cost_function_to_use(
sample_dipoles[x : x + self.initial_cost_chunk_size]
)
)
costs = numpy.array(raw_costs)
_logger.debug(f"costs: {costs}")
sorted_indexes = costs.argsort()[::-1]
_logger.debug(costs[sorted_indexes])
_logger.debug(sample_dipoles[sorted_indexes])
sorted_costs = costs[sorted_indexes]
sorted_dipoles = sample_dipoles[sorted_indexes]
threshold_cost = sorted_costs[-self.n_c]
all_dipoles = numpy.array(
[
pdme.subspace_simulation.sort_array_of_dipoles_by_frequency(samp)
for samp in sorted_dipoles
]
)
all_chains = list(zip(sorted_costs, all_dipoles))
mcmc_rng = numpy.random.default_rng(self.mcmc_seed)
for i in range(self.m_max):
next_seeds = all_chains[-self.n_c :]
if self.dump_last_generations:
_logger.info("writing out csv file")
next_dipoles_seed_dipoles = numpy.array([n[1] for n in next_seeds])
for n in range(self.model.n):
_logger.info(f"{next_dipoles_seed_dipoles[:, n].shape}")
numpy.savetxt(
f"generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
next_dipoles_seed_dipoles[:, n],
delimiter=",",
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
all_long_chains = []
for seed_index, (c, s) in enumerate(
next_seeds[:: len(next_seeds) // 20]
):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(f"\t{seed_index}: doing long chain on the next seed")
long_chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
1000,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
)
for _, chained in long_chain:
all_long_chains.append(chained)
all_long_chains_array = numpy.array(all_long_chains)
for n in range(self.model.n):
_logger.info(f"{all_long_chains_array[:, n].shape}")
numpy.savetxt(
f"long_chain_generation_{self.n_c}_{self.n_s}_{i}_dipole_{n}.csv",
all_long_chains_array[:, n],
delimiter=",",
)
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains[: -self.n_c]):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
)
next_seeds_as_array = numpy.array([s for _, s in next_seeds])
stdevs = self.get_stdevs_from_arrays(next_seeds_as_array)
_logger.info(f"got stdevs: {stdevs.stdevs}")
_logger.debug("Starting the MCMC")
all_chains = []
for seed_index, (c, s) in enumerate(next_seeds):
# chain = mcmc(s, threshold_cost, n_s, model, dot_inputs_array, actual_measurement_array, mcmc_rng, curr_cost=c, stdevs=stdevs)
# until new version gotta do
_logger.debug(
f"\t{seed_index}: getting another chain from the next seed"
)
chain = self.model.get_mcmc_chain(
s,
self.cost_function_to_use,
self.n_s,
threshold_cost,
stdevs,
initial_cost=c,
rng_arg=mcmc_rng,
)
for cost, chained in chain:
try:
filtered_cost = cost[0]
except (IndexError, TypeError):
filtered_cost = cost
all_chains.append((filtered_cost, chained))
_logger.debug("finished mcmc")
# _logger.debug(all_chains)
all_chains.sort(key=lambda c: c[0], reverse=True)
_logger.debug("finished sorting all_chains")
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
f"current threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{i + 1}"
)
if (self.target_cost is not None) and (threshold_cost < self.target_cost):
_logger.info(
f"got a threshold cost {threshold_cost}, less than {self.target_cost}. will leave early"
)
cost_list = [c[0] for c in all_chains]
over_index = reverse_bisect_right(cost_list, self.target_cost)
shorter_probs_list = []
for cost_index, cost_chain in enumerate(all_chains):
if self.keep_probs_list:
probs_list.append(
(
(
(self.n_c * self.n_s - cost_index)
/ (self.n_c * self.n_s)
)
/ (self.n_s ** (i)),
cost_chain[0],
i + 1,
)
)
shorter_probs_list.append(
(
cost_chain[0],
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (i)),
)
)
# _logger.info(shorter_probs_list)
result = SubsetSimulationResult(
probs_list=probs_list,
over_target_cost=shorter_probs_list[over_index - 1][0],
over_target_likelihood=shorter_probs_list[over_index - 1][1],
under_target_cost=shorter_probs_list[over_index][0],
under_target_likelihood=shorter_probs_list[over_index][1],
lowest_likelihood=shorter_probs_list[-1][1],
)
return result
# _logger.debug([c[0] for c in all_chains[-n_c:]])
_logger.info(f"doing level {i + 1}")
if self.keep_probs_list:
for cost_index, cost_chain in enumerate(all_chains):
probs_list.append(
(
((self.n_c * self.n_s - cost_index) / (self.n_c * self.n_s))
/ (self.n_s ** (self.m_max)),
cost_chain[0],
self.m_max + 1,
)
)
threshold_cost = all_chains[-self.n_c][0]
_logger.info(
f"final threshold cost: {threshold_cost}, at P = (1 / {self.n_s})^{self.m_max + 1}"
)
for a in all_chains[-10:]:
_logger.info(a)
# for prob, prob_cost in probs_list:
# _logger.info(f"\t{prob}: {prob_cost}")
probs_list.sort(key=lambda c: c[0], reverse=True)
min_likelihood = ((1) / (self.n_c * self.n_s)) / (self.n_s ** (self.m_max))
result = SubsetSimulationResult(
probs_list=probs_list,
over_target_cost=None,
over_target_likelihood=None,
under_target_cost=None,
under_target_likelihood=None,
lowest_likelihood=min_likelihood,
)
return result
def get_stdevs_from_arrays(
self, array
) -> pdme.subspace_simulation.MCMCStandardDeviation:
# stdevs = get_stdevs_from_arrays(next_seeds_as_array, model)
if self.use_adaptive_steps:
stdev_array = []
count = array.shape[1]
for dipole_index in range(count):
selected = array[:, dipole_index]
pxs = selected[:, 0]
pys = selected[:, 1]
pzs = selected[:, 2]
thetas = numpy.arccos(pzs / self.model.pfixed)
phis = numpy.arctan2(pys, pxs)
rstdevs = numpy.maximum(
numpy.std(selected, axis=0)[3:6],
self.default_r_step / (self.n_s * 10),
)
frequency_stdevs = numpy.minimum(
numpy.maximum(
numpy.std(numpy.log(selected[:, -1])),
self.default_w_log_step / (self.n_s * 10),
),
self.default_upper_w_log_step,
)
stdev_array.append(
pdme.subspace_simulation.DipoleStandardDeviation(
p_theta_step=max(
numpy.std(thetas), self.default_theta_step / (self.n_s * 10)
),
p_phi_step=max(
numpy.std(phis), self.default_phi_step / (self.n_s * 10)
),
rx_step=rstdevs[0],
ry_step=rstdevs[1],
rz_step=rstdevs[2],
w_log_step=frequency_stdevs,
)
)
else:
default_stdev = pdme.subspace_simulation.DipoleStandardDeviation(
self.default_phi_step,
self.default_theta_step,
self.default_r_step,
self.default_r_step,
self.default_r_step,
self.default_w_log_step,
)
stdev_array = [default_stdev]
stdevs = pdme.subspace_simulation.MCMCStandardDeviation(stdev_array)
return stdevs
def reverse_bisect_right(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted in descending order.
The return value i is such that all e in a[:i] have e >= x, and all e in
a[i:] have e < x. So if x already appears in the list, a.insert(x) will
insert just after the rightmost x already there.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
Essentially, the function returns number of elements in a which are >= than x.
>>> a = [8, 6, 5, 4, 2]
>>> reverse_bisect_right(a, 5)
3
>>> a[:reverse_bisect_right(a, 5)]
[8, 6, 5]
"""
if lo < 0:
raise ValueError("lo must be non-negative")
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo + hi) // 2
if x > a[mid]:
hi = mid
else:
lo = mid + 1
return lo

View File

@@ -0,0 +1,231 @@
import pdme.inputs
import pdme.model
import pdme.measurement
import pdme.measurement.input_types
import pdme.measurement.oscillating_dipole
import pdme.util.fast_v_calc
import pdme.util.fast_nonlocal_spectrum
from typing import Sequence, Tuple, List, Dict, Union, Mapping
import datetime
import csv
import multiprocessing
import logging
import numpy
# TODO: remove hardcode
CHUNKSIZE = 50
_logger = logging.getLogger(__name__)
def get_a_result_fast_filter(input) -> int:
# (
# model,
# self.dot_inputs_array_dict,
# low_high_dict,
# self.monte_carlo_count,
# seed,
# )
model, dot_inputs_dict, low_high_dict, monte_carlo_count, seed = input
rng = numpy.random.default_rng(seed)
# TODO: A long term refactor is to pull the frequency stuff out from here. The None stands for max_frequency, which is unneeded in the actually useful models.
sample_dipoles = model.get_monte_carlo_dipole_inputs(
monte_carlo_count, None, rng_to_use=rng
)
current_sample = sample_dipoles
for temp in dot_inputs_dict.keys():
dot_inputs = dot_inputs_dict[temp]
lows, highs = low_high_dict[temp]
for di, low, high in zip(dot_inputs, lows, highs):
if len(current_sample) < 1:
break
vals = pdme.util.fast_v_calc.fast_vs_for_asymmetric_dipoleses(
numpy.array([di]), current_sample, temp
)
current_sample = current_sample[
numpy.all((vals > low) & (vals < high), axis=1)
]
return len(current_sample)
class TempAwareRealSpectrumRun:
"""
A bayes run given some real data, with potentially variable temperature.
Parameters
----------
measurements_dict : Dict[float, Sequence[pdme.measurement.DotRangeMeasurement]]
The dot inputs for this bayes run, in a dictionary indexed by temperatures
models_with_names : models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
The models to evaluate.
actual_model : pdme.model.DipoleModel
The model which is actually correct.
filename_slug : str
The filename slug to include.
run_count: int
The number of runs to do.
"""
def __init__(
self,
measurements_dict: Mapping[
float, Sequence[pdme.measurement.DotRangeMeasurement]
],
models_with_names: Sequence[Tuple[str, pdme.model.DipoleModel]],
filename_slug: str,
monte_carlo_count: int = 10000,
monte_carlo_cycles: int = 10,
target_success: int = 100,
max_monte_carlo_cycles_steps: int = 10,
chunksize: int = CHUNKSIZE,
initial_seed: int = 12345,
cap_core_count: int = 0,
) -> None:
self.measurements_dict = measurements_dict
self.dot_inputs_dict = {
k: [(measure.r, measure.f) for measure in measurements]
for k, measurements in measurements_dict.items()
}
self.dot_inputs_array_dict = {
k: pdme.measurement.input_types.dot_inputs_to_array(dot_inputs)
for k, dot_inputs in self.dot_inputs_dict.items()
}
self.models = [model for (_, model) in models_with_names]
self.model_names = [name for (name, _) in models_with_names]
self.model_count = len(self.models)
self.monte_carlo_count = monte_carlo_count
self.monte_carlo_cycles = monte_carlo_cycles
self.target_success = target_success
self.max_monte_carlo_cycles_steps = max_monte_carlo_cycles_steps
self.csv_fields = []
self.compensate_zeros = True
self.chunksize = chunksize
for name in self.model_names:
self.csv_fields.extend([f"{name}_success", f"{name}_count", f"{name}_prob"])
# for now initialise priors as uniform.
self.probabilities = [1 / self.model_count] * self.model_count
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
ff_string = "fast_filter"
self.filename = f"{timestamp}-{filename_slug}.realdata.{ff_string}.bayesrun.csv"
self.initial_seed = initial_seed
self.cap_core_count = cap_core_count
def go(self) -> None:
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writeheader()
low_high_dict = {}
for temp, measurements in self.measurements_dict.items():
(
lows,
highs,
) = pdme.measurement.input_types.dot_range_measurements_low_high_arrays(
measurements
)
low_high_dict[temp] = (lows, highs)
# define a new seed sequence for each run
seed_sequence = numpy.random.SeedSequence(self.initial_seed)
results = []
_logger.debug("Going to iterate over models now")
core_count = multiprocessing.cpu_count() - 1 or 1
if (self.cap_core_count >= 1) and (self.cap_core_count < core_count):
core_count = self.cap_core_count
_logger.info(f"Using {core_count} cores")
for model_count, (model, model_name) in enumerate(
zip(self.models, self.model_names)
):
_logger.debug(f"Doing model #{model_count}: {model_name}")
with multiprocessing.Pool(core_count) as pool:
cycle_count = 0
cycle_success = 0
cycles = 0
while (cycles < self.max_monte_carlo_cycles_steps) and (
cycle_success <= self.target_success
):
_logger.debug(f"Starting cycle {cycles}")
cycles += 1
current_success = 0
cycle_count += self.monte_carlo_count * self.monte_carlo_cycles
# generate a seed from the sequence for each core.
# note this needs to be inside the loop for monte carlo cycle steps!
# that way we get more stuff.
seeds = seed_sequence.spawn(self.monte_carlo_cycles)
result_func = get_a_result_fast_filter
current_success = sum(
pool.imap_unordered(
result_func,
[
(
model,
self.dot_inputs_array_dict,
low_high_dict,
self.monte_carlo_count,
seed,
)
for seed in seeds
],
self.chunksize,
)
)
cycle_success += current_success
_logger.debug(f"current running successes: {cycle_success}")
results.append((cycle_count, cycle_success))
_logger.debug("Done, constructing output now")
row: Dict[str, Union[int, float, str]] = {}
successes: List[float] = []
counts: List[int] = []
for model_index, (name, (count, result)) in enumerate(
zip(self.model_names, results)
):
row[f"{name}_success"] = result
row[f"{name}_count"] = count
successes.append(max(result, 0.5))
counts.append(count)
success_weight = sum(
[
(succ / count) * prob
for succ, count, prob in zip(successes, counts, self.probabilities)
]
)
new_probabilities = [
(succ / count) * old_prob / success_weight
for succ, count, old_prob in zip(successes, counts, self.probabilities)
]
self.probabilities = new_probabilities
for name, probability in zip(self.model_names, self.probabilities):
row[f"{name}_prob"] = probability
_logger.info(row)
with open(self.filename, "a", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=self.csv_fields, dialect="unix")
writer.writerow(row)

38
do.sh
View File

@@ -1,38 +0,0 @@
#!/usr/bin/env bash
# Do - The Simplest Build Tool on Earth.
# Documentation and examples see https://github.com/8gears/do
set -Eeuo pipefail # -e "Automatic exit from bash shell script on error" -u "Treat unset variables and parameters as errors"
build() {
echo "I am ${FUNCNAME[0]}ing"
poetry build
}
test() {
echo "I am ${FUNCNAME[0]}ing"
poetry run flake8 deepdog tests
poetry run mypy deepdog
poetry run pytest
}
fmt() {
poetry run black .
find . -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
}
release() {
./scripts/release.sh
}
htmlcov() {
poetry run pytest --cov-report=html
}
all() {
build && test
}
"$@" # <- execute the task
[ "$#" -gt 0 ] || printf "Usage:\n\t./do.sh %s\n" "($(compgen -A function | grep '^[^_]' | paste -sd '|' -))"

174
flake.lock generated Normal file
View File

@@ -0,0 +1,174 @@
{
"nodes": {
"flake-utils": {
"inputs": {
"systems": "systems"
},
"locked": {
"lastModified": 1710146030,
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"flake-utils_2": {
"inputs": {
"systems": "systems_2"
},
"locked": {
"lastModified": 1705309234,
"narHash": "sha256-uNRRNRKmJyCRC/8y1RqBkqWBLM034y4qN7EprSdmgyA=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "1ef2e671c3b0c19053962c07dbda38332dcebf26",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"nix-github-actions": {
"inputs": {
"nixpkgs": [
"poetry2nixSrc",
"nixpkgs"
]
},
"locked": {
"lastModified": 1703863825,
"narHash": "sha256-rXwqjtwiGKJheXB43ybM8NwWB8rO2dSRrEqes0S7F5Y=",
"owner": "nix-community",
"repo": "nix-github-actions",
"rev": "5163432afc817cf8bd1f031418d1869e4c9d5547",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "nix-github-actions",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1710703777,
"narHash": "sha256-M4CNAgjrtvrxIWIAc98RTYcVFoAgwUhrYekeiMScj18=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "fc7885fbcea4b782142e06ce2d4d08cf92862004",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nixpkgs",
"type": "github"
}
},
"poetry2nixSrc": {
"inputs": {
"flake-utils": "flake-utils_2",
"nix-github-actions": "nix-github-actions",
"nixpkgs": [
"nixpkgs"
],
"systems": "systems_3",
"treefmt-nix": "treefmt-nix"
},
"locked": {
"lastModified": 1708589824,
"narHash": "sha256-2GOiFTkvs5MtVF65sC78KNVxQSmsxtk0WmV1wJ9V2ck=",
"owner": "nix-community",
"repo": "poetry2nix",
"rev": "3c92540611f42d3fb2d0d084a6c694cd6544b609",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "poetry2nix",
"type": "github"
}
},
"root": {
"inputs": {
"flake-utils": "flake-utils",
"nixpkgs": "nixpkgs",
"poetry2nixSrc": "poetry2nixSrc"
}
},
"systems": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_2": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
},
"systems_3": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"id": "systems",
"type": "indirect"
}
},
"treefmt-nix": {
"inputs": {
"nixpkgs": [
"poetry2nixSrc",
"nixpkgs"
]
},
"locked": {
"lastModified": 1708335038,
"narHash": "sha256-ETLZNFBVCabo7lJrpjD6cAbnE11eDOjaQnznmg/6hAE=",
"owner": "numtide",
"repo": "treefmt-nix",
"rev": "e504621290a1fd896631ddbc5e9c16f4366c9f65",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "treefmt-nix",
"type": "github"
}
}
},
"root": "root",
"version": 7
}

46
flake.nix Normal file
View File

@@ -0,0 +1,46 @@
{
description = "Application packaged using poetry2nix";
inputs.flake-utils.url = "github:numtide/flake-utils";
inputs.nixpkgs.url = "github:NixOS/nixpkgs";
inputs.poetry2nixSrc = {
url = "github:nix-community/poetry2nix";
inputs.nixpkgs.follows = "nixpkgs";
};
outputs = { self, nixpkgs, flake-utils, poetry2nixSrc }:
flake-utils.lib.eachDefaultSystem (system:
let
pkgs = nixpkgs.legacyPackages.${system};
poetry2nix = poetry2nixSrc.lib.mkPoetry2Nix { inherit pkgs; };
in {
packages = {
deepdogApp = poetry2nix.mkPoetryApplication {
projectDir = self;
python = pkgs.python39;
preferWheels = true;
};
deepdogEnv = poetry2nix.mkPoetryEnv {
projectDir = self;
python = pkgs.python39;
preferWheels = true;
overrides = poetry2nix.overrides.withDefaults (self: super: {
});
};
default = self.packages.${system}.deepdogEnv;
};
devShells.default = pkgs.mkShell {
inputsFrom = [ self.packages.${system}.deepdogEnv ];
buildInputs = [
pkgs.poetry
self.packages.${system}.deepdogEnv
self.packages.${system}.deepdogApp
pkgs.just
];
shellHook = ''
export DO_NIX_CUSTOM=1
'';
};
}
);
}

View File

@@ -1,9 +1,11 @@
apiVersion: v1
kind: Pod
spec:
imagePullSecrets:
- name: regcreds
containers: # list of containers that you want present for your build, you can define a default container in the Jenkinsfile
- name: python
image: python:3.8
- name: poetry
image: ghcr.io/dmallubhotla/poetry-image:1
command: ["tail", "-f", "/dev/null"] # this or any command that is bascially a noop is required, this is so that you don't overwrite the entrypoint of the base container
imagePullPolicy: Always # use cache or pull image for agent
resources: # limits the resources your build contaienr

54
justfile Normal file
View File

@@ -0,0 +1,54 @@
# execute default build
default: build
# builds the python module using poetry
build:
echo "building..."
poetry build
# print a message displaying whether nix is being used
checknix:
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
echo "In an interactive nix env."
else
echo "Using poetry as runner, no nix detected."
fi
# run all tests
test: fmt
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
echo "testing, using nix..."
flake8 deepdog tests
mypy deepdog
pytest
else
echo "testing..."
poetry run flake8 deepdog tests
poetry run mypy deepdog
poetry run pytest
fi
# format code
fmt:
#!/usr/bin/env bash
set -euxo pipefail
if [[ "${DO_NIX_CUSTOM:=0}" -eq 1 ]]; then
black .
else
poetry run black .
fi
find deepdog -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
find tests -type f -name "*.py" -exec sed -i -e 's/ /\t/g' {} \;
# release the app, checking that our working tree is clean and ready for release
release:
./scripts/release.sh
htmlcov:
poetry run pytest --cov-report=html

1886
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,20 +1,27 @@
[tool.poetry]
name = "deepdog"
version = "0.6.2"
version = "0.8.1"
description = ""
authors = ["Deepak Mallubhotla <dmallubhotla+github@gmail.com>"]
[tool.poetry.dependencies]
python = "^3.8,<3.10"
pdme = "^0.8.4"
python = ">=3.8.1,<3.10"
pdme = "^0.9.3"
numpy = "1.22.3"
scipy = "1.10"
tqdm = "^4.66.2"
[tool.poetry.dev-dependencies]
pytest = ">=6"
flake8 = "^4.0.1"
pytest-cov = "^3.0.0"
mypy = "^0.960"
pytest-cov = "^4.1.0"
mypy = "^0.991"
python-semantic-release = "^7.24.0"
black = "^22.3.0"
syrupy = "^4.0.8"
[tool.poetry.scripts]
probs = "deepdog.cli.probs:wrapped_main"
[build-system]
requires = ["poetry-core>=1.0.0"]
@@ -35,6 +42,13 @@ module = [
]
ignore_missing_imports = true
[[tool.mypy.overrides]]
module = [
"tqdm",
"tqdm.*"
]
ignore_missing_imports = true
[tool.semantic_release]
version_toml = "pyproject.toml:tool.poetry.version"
tag_format = "{version}"

View File

@@ -1,4 +1,4 @@
const pattern = /(\[tool\.poetry\]\nname = "deepdog"\nversion = ")(?<vers>\d+\.\d+\.\d)(")/mg;
const pattern = /(\[tool\.poetry\]\nname = "deepdog"\nversion = ")(?<vers>\d+\.\d+\.\d+)(")/mg;
module.exports.readVersion = function (contents) {
const result = pattern.exec(contents);

View File

@@ -0,0 +1,177 @@
# serializer version: 1
# name: test_basic_analysis
list([
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.3333333333333333,
'dipole_frequency_1': 0.006029931414230269,
'dipole_frequency_2': 85436.78758379082,
'dipole_location_1': array([-4.76615152, -6.33160296, 5.29522808]),
'dipole_location_2': array([-4.72700391, -2.06478573, 6.52467702]),
'dipole_moment_1': array([ 860.14181416, -450.27082062, -239.60852996]),
'dipole_moment_2': array([ 908.18325588, -208.52681777, -362.93214244]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.45,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.3103448275862069,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.9,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.6206896551724138,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.06896551724137932,
'dipole_frequency_1': 102275.63477261562,
'dipole_frequency_2': 1755280.9783485082,
'dipole_location_1': array([ 4.71515397, -9.70362197, 5.43016546]),
'dipole_location_2': array([3.42476038, 3.88562934, 5.15034328]),
'dipole_moment_1': array([-502.60742674, -790.60222587, 349.7626267 ]),
'dipole_moment_2': array([-192.42708465, -434.81009148, -879.7226844 ]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.7,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.6631578947368421,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.18947368421052635,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.7,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.1473684210526316,
'dipole_frequency_1': 2896.799464036654,
'dipole_frequency_2': 9.980565189326681e-05,
'dipole_location_1': array([-4.97465789, 12.54716531, 6.06324588]),
'dipole_location_2': array([ 9.84518459, -11.1183876 , 7.35028226]),
'dipole_moment_1': array([997.67961917, 19.6376112 , 65.19004305]),
'dipole_moment_2': array([305.63093655, 440.57669389, 844.08643362]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.663157894736842,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.18947368421052635,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.1473684210526316,
'dipole_frequency_1': 1.4522667818288244,
'dipole_frequency_2': 2704.9795645301197,
'dipole_location_1': array([ 7.38183022, 16.6745801 , 7.10428414]),
'dipole_location_2': array([-8.15636906, -9.56609132, 6.34141559]),
'dipole_moment_1': array([-145.9924693 , 738.74936496, 657.97839986]),
'dipole_moment_2': array([-960.16113239, 104.96824669, -258.98314046]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.9,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.9465776293823038,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.030050083472454105,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.1,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.02337228714524208,
'dipole_frequency_1': 3827.2315421318913,
'dipole_frequency_2': 1.9301094166184413e-05,
'dipole_location_1': array([ 5.02067673, -0.9783039 , 6.1431897 ]),
'dipole_location_2': array([ 4.66628999, 10.80907459, 7.21771744]),
'dipole_moment_1': array([ 871.30659253, -299.17389491, -388.99846068]),
'dipole_moment_2': array([-189.87268624, 677.28285845, 710.79975568]),
}),
])
# ---
# name: test_bayesss_with_tighter_cost
list([
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.33333333333333337,
'dipole_frequency_1': 0.006029931414230269,
'dipole_frequency_2': 85436.78758379082,
'dipole_location_1': array([-4.76615152, -6.33160296, 5.29522808]),
'dipole_location_2': array([-4.72700391, -2.06478573, 6.52467702]),
'dipole_moment_1': array([ 860.14181416, -450.27082062, -239.60852996]),
'dipole_moment_2': array([ 908.18325588, -208.52681777, -362.93214244]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.0109375,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.1044776119402985,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.03125,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.2985074626865672,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.0625,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5970149253731344,
'dipole_frequency_1': 102275.63477261562,
'dipole_frequency_2': 1755280.9783485082,
'dipole_location_1': array([ 4.71515397, -9.70362197, 5.43016546]),
'dipole_location_2': array([3.42476038, 3.88562934, 5.15034328]),
'dipole_moment_1': array([-502.60742674, -790.60222587, 349.7626267 ]),
'dipole_moment_2': array([-192.42708465, -434.81009148, -879.7226844 ]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 7.291135021404688e-05,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.021875,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.4666326413699001,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.0125,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5332944472798858,
'dipole_frequency_1': 2896.799464036654,
'dipole_frequency_2': 9.980565189326681e-05,
'dipole_location_1': array([-4.97465789, 12.54716531, 6.06324588]),
'dipole_location_2': array([ 9.84518459, -11.1183876 , 7.35028226]),
'dipole_moment_1': array([997.67961917, 19.6376112 , 65.19004305]),
'dipole_moment_2': array([305.63093655, 440.57669389, 844.08643362]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 7.291135021404688e-05,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.4666326413699001,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.5332944472798858,
'dipole_frequency_1': 1.4522667818288244,
'dipole_frequency_2': 2704.9795645301197,
'dipole_location_1': array([ 7.38183022, 16.6745801 , 7.10428414]),
'dipole_location_2': array([-8.15636906, -9.56609132, 6.34141559]),
'dipole_moment_1': array([-145.9924693 , 738.74936496, 657.97839986]),
'dipole_moment_2': array([-960.16113239, 104.96824669, -258.98314046]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 0.175,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 0.00012008361740869356,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.05625,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.24702915581216964,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.15,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.7528507605704217,
'dipole_frequency_1': 3827.2315421318913,
'dipole_frequency_2': 1.9301094166184413e-05,
'dipole_location_1': array([ 5.02067673, -0.9783039 , 6.1431897 ]),
'dipole_location_2': array([ 4.66628999, 10.80907459, 7.21771744]),
'dipole_moment_1': array([ 871.30659253, -299.17389491, -388.99846068]),
'dipole_moment_2': array([-189.87268624, 677.28285845, 710.79975568]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 4.9116305003549454e-08,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 0.0109375,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.11316396672817797,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.028125,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.886835984155517,
'dipole_frequency_1': 1.1715179359592061e-05,
'dipole_frequency_2': 0.0019103783276337497,
'dipole_location_1': array([-0.95736547, 1.09273812, 7.47158641]),
'dipole_location_2': array([ -3.18510322, -15.64493131, 5.81623624]),
'dipole_moment_1': array([-184.64961369, 956.56786553, 225.57136075]),
'dipole_moment_2': array([ -34.63395137, 801.17771816, -597.42342885]),
}),
dict({
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedxy-pfixexp_3-dipole_count_2_prob': 1.977090156727901e-10,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_likelihood': 9.765625e-06,
'connors_geom-5height-orientation_fixedz-pfixexp_3-dipole_count_2_prob': 0.00045552157211010855,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_likelihood': 0.002734375,
'connors_geom-5height-orientation_free-pfixexp_3-dipole_count_2_prob': 0.9995444782301809,
'dipole_frequency_1': 999786.9069039805,
'dipole_frequency_2': 186034.67996840767,
'dipole_location_1': array([-5.59679125, 6.3411602 , 5.33602522]),
'dipole_location_2': array([-0.03412955, -6.83522954, 5.58551513]),
'dipole_moment_1': array([826.38270589, 491.81526944, 274.24325726]),
'dipole_moment_2': array([ 202.74745884, -656.07483714, -726.95204519]),
}),
])
# ---

View File

View File

@@ -0,0 +1,12 @@
import deepdog.indexify
import logging
_logger = logging.getLogger(__name__)
def test_indexifier():
weight_dict = {"key_1": [1, 2, 3], "key_2": ["a", "b", "c"]}
indexifier = deepdog.indexify.Indexifier(weight_dict)
_logger.debug(f"setting up indexifier {indexifier}")
assert indexifier.indexify(0) == {"key_1": 1, "key_2": "a"}
assert indexifier.indexify(5) == {"key_1": 2, "key_2": "c"}

View File

View File

@@ -0,0 +1,28 @@
import deepdog.results
def test_parse_groupdict():
example_column_name = (
"geom_-20_20_-10_10_0_5-orientation_free-dipole_count_100_success"
)
parsed = deepdog.results._parse_bayesrun_column(example_column_name)
expected = deepdog.results.BayesrunColumnParsed(
{
"xmin": "-20",
"xmax": "20",
"ymin": "-10",
"ymax": "10",
"zmin": "0",
"zmax": "5",
"orientation": "free",
"avg_filled": "100",
"field_name": "success",
}
)
assert parsed == expected
# def test_parse_no_match_column_name():
# parsed = deepdog.results.parse_bayesrun_column("There's nothing here")
# assert parsed is None

View File

@@ -0,0 +1,158 @@
import deepdog
import logging
import logging.config
import numpy.random
from pdme.model import (
LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel,
)
_logger = logging.getLogger(__name__)
def fixed_z_model_func(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
n_max,
prob_occupancy,
):
return LogSpacedRandomCountMultipleDipoleFixedMagnitudeFixedOrientationModel(
xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
wexp_min,
wexp_max,
pfixed,
0,
0,
n_max,
prob_occupancy,
)
def get_model(orientation):
model_funcs = {
"fixedz": fixed_z_model_func,
"free": LogSpacedRandomCountMultipleDipoleFixedMagnitudeModel,
"fixedxy": LogSpacedRandomCountMultipleDipoleFixedMagnitudeXYModel,
}
model = model_funcs[orientation](
-10,
10,
-17.5,
17.5,
5,
7.5,
-5,
6.5,
10**3,
2,
0.99999999,
)
model.n = 2
model.rng = numpy.random.default_rng(1234)
return (
f"connors_geom-5height-orientation_{orientation}-pfixexp_{3}-dipole_count_{2}",
model,
)
def test_basic_analysis(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=150,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1000,
)
result = square_run.go()
assert result == snapshot
def test_bayesss_with_tighter_cost(snapshot):
dot_positions = [[0, 0, 0], [0, 1, 0]]
freqs = [1, 10, 100]
models = []
orientations = ["free", "fixedxy", "fixedz"]
for orientation in orientations:
models.append(get_model(orientation))
_logger.info(f"have {len(models)} models to look at")
if len(models) == 1:
_logger.info(f"only one model, name: {models[0][0]}")
square_run = deepdog.BayesRunWithSubspaceSimulation(
dot_positions,
freqs,
models,
models[0][1],
filename_slug="test",
end_threshold=0.9,
ss_n_c=5,
ss_n_s=2,
ss_m_max=10,
ss_target_cost=1.5,
ss_level_0_seed=200,
ss_mcmc_seed=20,
ss_use_adaptive_steps=True,
ss_default_phi_step=0.01,
ss_default_theta_step=0.01,
ss_default_r_step=0.01,
ss_default_w_log_step=0.01,
ss_default_upper_w_log_step=4,
ss_dump_last_generation=False,
write_output_to_bayesruncsv=False,
ss_initial_costs_chunk_size=1,
)
result = square_run.go()
assert result == snapshot