Compare commits

...

17 Commits

Author SHA1 Message Date
d5a23eade1 Adds figures wrt T 2021-03-03 18:08:40 -06:00
851d8a3fca Adds figures to text 2021-02-26 09:10:22 -06:00
872b68abba Adds slices of 3d graphs with tau 2021-02-26 08:52:57 -06:00
2bfbcfab61 Adds new structure 2021-02-14 15:27:40 -06:00
cba6c7beac Adds new details 2021-02-14 14:05:52 -06:00
43a639e217 Adds additional figures including cliffedge and scripts for nam and lindhard noise calculations 2021-02-04 20:48:01 -06:00
3d74f301a1 Adds figures for the dielectric functions 2021-02-04 19:40:12 -06:00
bb642ae851 Merge branch 'master' of github.com:dmallubhotla/nam_paper
Gotta merge it
t.
2021-02-04 18:27:14 -06:00
71f01c9faf Adds figure calcs 2021-02-04 18:20:33 -06:00
3add53f772 Adds trailing newline 2021-02-03 17:38:15 -06:00
ca22ccbcdd Adds logarithm branch cut 2021-02-03 17:36:46 -06:00
4a90dfcd44 Discussion from Meeting. 2021-02-02 17:31:15 -06:00
56b332d21a Adds more text about the cutoff and lack of cutoff in Lindhard case 2021-01-28 19:15:53 -06:00
048a9d5354 Merge pull request #1 from dmallubhotla/detail
Detail
2021-01-28 18:18:55 -06:00
2537e4efeb Formatting change 2021-01-28 18:18:21 -06:00
59e9f4d9ad Additional description of the nonlocal case vs local 2021-01-25 19:39:47 -06:00
591c1feb27 adds title 2020-10-25 12:45:21 -05:00
51 changed files with 472 additions and 34 deletions

2
.gitignore vendored
View File

@@ -8,12 +8,10 @@ dist
*.toc
*.log
*.pdf
*.jpg
*.bbl
*.bcf
*.blg
*.run.xml
*.csv
*.out
*.nb

View File

@@ -7,6 +7,7 @@ WS := wolframscript -f
#
PDF_DIR := pdfs
FIG_DIR := figures
CALC_DIR := calc
### Here we go
#
@@ -26,10 +27,31 @@ $(PDF_DIR):
mkdir $(PDF_DIR)
$(FIG_DIR):
mkdir -p $(FIG_DIR)
$(CALC_DIR):
mkdir -p $(CALC_DIR)
## Figures
#
FIGURES := $(FIG_DIR)/Cond1Im.jpg
$(FIG_DIR)/Cond1Im.jpg: scripts/Cond1ImFigure.wls | $(FIG_DIR)
$(WS) scripts/Cond1ImFigure.wls
FIGURES += $(FIG_DIR)/Cond1Re.jpg
$(FIG_DIR)/Cond1Re.jpg: scripts/Cond1ReFigure.wls | $(FIG_DIR)
$(WS) scripts/Cond1ReFigure.wls
.SECONDARY: $(CALC_DIR)/HighTempNam1.csv
$(CALC_DIR)/HighTempNam1.csv: scripts/HighTempNam1Calc.wls | $(CALC_DIR)
$(WS) scripts/HighTempNam1Calc.wls
FIGURES += $(FIG_DIR)/HighTempNam1.jpg
$(FIG_DIR)/HighTempNam1.jpg: scripts/HighTempNam1Plot.wls | $(FIG_DIR) $(CALC_DIR)/HighTempNam1.csv
$(WS) scripts/HighTempNam1Plot.wls
## Making main.pdf and other pdfs
#
$(PDF_DIR)/paper.pdf: paper.tex $(MAIN_PDF_DEPS) | $(PDF_DIR)
$(PDF_DIR)/paper.pdf: paper.tex $(MAIN_PDF_DEPS) | $(PDF_DIR) $(FIGURES)
$(LATEXMK) $(<F)
cp $(@F) $@
@@ -46,4 +68,4 @@ tidy: declutter
.PHONY: clean
clean: declutter
rm -rf $(PDF_DIR)
@latexmk -C
@latexmk -C

View File

@@ -37,6 +37,20 @@
journal = {Applied Physics B}
}
@article{Henkel2006,
doi = {10.1007/s00340-006-2219-9},
url = {https://doi.org/10.1007/s00340-006-2219-9},
year = {2006},
month = apr,
publisher = {Springer Science and Business Media {LLC}},
volume = {84},
number = {1-2},
pages = {61--68},
author = {C. Henkel and K. Joulain},
title = {Electromagnetic field correlations near a surface with a nonlocal optical response},
journal = {Applied Physics B}
}
@article{QubitRelax,
doi = {10.1103/physreva.86.010301},
url = {https://doi.org/10.1103/physreva.86.010301},
@@ -219,3 +233,13 @@
year = {1954},
month = {1}
}
@book{LandauLifshitzElectrodynamics,
author = "Landau, Lev Davidovich and Lifshitz, Evgenii Mikhailovich and Pitaevskii, Lev Petrovich",
title = "{Electrodynamics of continuous media; 2nd ed.}",
publisher = "Butterworth",
address = "Oxford",
series = "Course of theoretical physics",
year = "1984",
url = "https://cds.cern.ch/record/712712",
}

6
calc/HighTempNam1.csv Normal file
View File

@@ -0,0 +1,6 @@
"{1.*^-9, 0.0029766119189914985}","{1.2589254117941663*^-9, 0.0029793807590616454}","{1.584893192461111*^-9, 0.002982869965845295}","{1.9952623149688828*^-9, 0.0029872680803444433}","{2.511886431509582*^-9, 0.0029928136485246394}","{3.1622776601683795*^-9, 0.0029998088686416487}","{3.981071705534969*^-9, 0.00300863718705538}","{5.011872336272715*^-9, 0.0030197861131050583}","{6.309573444801917*^-9, 0.003033877003381471}","{7.943282347242822*^-9, 0.0030517042635695244}","{1.*^-8, 0.0030742874490812524}","{1.2589254117941687*^-8, 0.003102941302857492}","{1.5848931924611143*^-8, 0.0031393711597253395}","{1.9952623149688786*^-8, 0.0031858048884542403}","{2.511886431509582*^-8, 0.003245178514239504}","{3.162277660168379*^-8, 0.003321402391782212}","{3.981071705534969*^-8, 0.003419750991178549}","{5.011872336272725*^-8, 0.003547446941331106}","{6.30957344480193*^-8, 0.003714558143569173}","{7.943282347242805*^-8, 0.00393541317510348}","{1.*^-7, 0.004230899771789958}","{1.2589254117941662*^-7, 0.004632315223401958}","{1.584893192461111*^-7, 0.005188036520266379}","{1.995262314968883*^-7, 0.00597550049627118}","{2.5118864315095823*^-7, 0.007123570984746499}","{3.162277660168379*^-7, 0.008856044554465276}","{3.981071705534969*^-7, 0.01157991445461163}","{5.011872336272725*^-7, 0.016071955277239643}","{6.30957344480193*^-7, 0.023887577800977233}","{7.943282347242822*^-7, 0.03827807962465718}","{1.*^-6, 0.06624896155657994}"
"{1.*^-9, 2.9025774512182143*^-11}","{1.2589254117941663*^-9, 3.107498239051347*^-11}","{1.584893192461111*^-9, 3.3820867408258005*^-11}","{1.9952623149688828*^-9, 3.755364132212014*^-11}","{2.511886431509582*^-9, 4.2715759773114734*^-11}","{3.1622776601683795*^-9, 4.999947590214695*^-11}","{3.981071705534969*^-9, 6.049340842393903*^-11}","{5.011872336272715*^-9, 7.606455214312896*^-11}","{6.309573444801917*^-9, 9.979299022300026*^-11}","{7.943282347242822*^-9, 1.37047021353887*^-10}","{1.*^-8, 1.9738888641862263*^-10}","{1.2589254117941687*^-8, 2.983479300602126*^-10}","{1.5848931924611143*^-8, 4.73275222689975*^-10}","{1.9952623149688786*^-8, 7.881478584839792*^-10}","{2.511886431509582*^-8, 1.3786587102579984*^-9}","{3.162277660168379*^-8, 2.5338561936153248*^-9}","{3.981071705534969*^-8, 4.888943367638863*^-9}","{5.011872336272725*^-8, 9.878150297709281*^-9}","{6.30957344480193*^-8, 2.081198315570033*^-8}","{7.943282347242805*^-8, 4.545215165475602*^-8}","{1.*^-7, 1.0217202351529788*^-7}","{1.2589254117941662*^-7, 2.3459369204875573*^-7}","{1.584893192461111*^-7, 5.459573424731548*^-7}","{1.995262314968883*^-7, 1.2787887286797079*^-6}","{2.5118864315095823*^-7, 2.995650789575935*^-6}","{3.162277660168379*^-7, 6.980301536498338*^-6}","{3.981071705534969*^-7, 0.000016105230975025577}","{5.011872336272725*^-7, 0.00003665882406670998}","{6.30957344480193*^-7, 0.00008210139121636335}","{7.943282347242822*^-7, 0.00018064450271306737}","{1.*^-6, 0.000390369633614337}"
"{1.*^-9, 4.252735516359617*^-11}","{1.2589254117941663*^-9, 4.511151568609867*^-11}","{1.584893192461111*^-9, 4.856589165222477*^-11}","{1.9952623149688828*^-9, 5.325231094924246*^-11}","{2.511886431509582*^-9, 5.97267568860969*^-11}","{3.1622776601683795*^-9, 6.887179198996116*^-11}","{3.981071705534969*^-9, 8.213904703058702*^-11}","{5.011872336272715*^-9, 1.0200904246061269*^-10}","{6.309573444801917*^-9, 1.3289048343786182*^-10}","{7.943282347242822*^-9, 1.8295238540856624*^-10}","{1.*^-8, 2.679409820049754*^-10}","{1.2589254117941687*^-8, 4.193076945035417*^-10}","{1.5848931924611143*^-8, 7.01794827002855*^-10}","{1.9952623149688786*^-8, 1.2519357976848764*^-9}","{2.511886431509582*^-8, 2.3636578442406055*^-9}","{3.162277660168379*^-8, 4.683550750929704*^-9}","{3.981071705534969*^-8, 9.662875994519093*^-9}","{5.011872336272725*^-8, 2.0600404230714105*^-8}","{6.30957344480193*^-8, 4.502142799089351*^-8}","{7.943282347242805*^-8, 1.000940226141124*^-7}","{1.*^-7, 2.2512499825157352*^-7}","{1.2589254117941662*^-7, 5.10250491960123*^-7}","{1.584893192461111*^-7, 1.1612671395179925*^-6}","{1.995262314968883*^-7, 2.6428661190466505*^-6}","{2.5118864315095823*^-7, 5.987181022552113*^-6}","{3.162277660168379*^-7, 0.000013441921623881734}","{3.981071705534969*^-7, 0.0000298129311031674}","{5.011872336272725*^-7, 0.00006523703530356907}","{6.30957344480193*^-7, 0.00014090469892586395}","{7.943282347242822*^-7, 0.0003007642462754243}","{1.*^-6, 0.0006353221132128061}"
"{1.*^-9, 2.625937505007737*^-11}","{1.2589254117941663*^-9, 2.811327625123537*^-11}","{1.584893192461111*^-9, 3.0597455424303756*^-11}","{1.9952623149688828*^-9, 3.3974464714447306*^-11}","{2.511886431509582*^-9, 3.864459003360801*^-11}","{3.1622776601683795*^-9, 4.523410699930621*^-11}","{3.981071705534969*^-9, 5.472787984331036*^-11}","{5.011872336272715*^-9, 6.881496312542069*^-11}","{6.309573444801917*^-9, 9.028188228137173*^-11}","{7.943282347242822*^-9, 1.2398529216566727*^-10}","{1.*^-8, 1.785760720013964*^-10}","{1.2589254117941687*^-8, 2.6991287304244915*^-10}","{1.5848931924611143*^-8, 4.2816812930552234*^-10}","{1.9952623149688786*^-8, 7.130307651966315*^-10}","{2.511886431509582*^-8, 1.2472609860428159*^-9}","{3.162277660168379*^-8, 2.2923584720600802*^-9}","{3.981071705534969*^-8, 4.4229861096569795*^-9}","{5.011872336272725*^-8, 8.93667982433039*^-9}","{6.30957344480193*^-8, 1.8828426817415575*^-8}","{7.943282347242805*^-8, 4.1120180845968516*^-8}","{1.*^-7, 9.243417377157277*^-8}","{1.2589254117941662*^-7, 2.1223494798752584*^-7}","{1.584893192461111*^-7, 4.939230342097872*^-7}","{1.995262314968883*^-7, 1.1569094503272754*^-6}","{2.5118864315095823*^-7, 2.7101401745376194*^-6}","{3.162277660168379*^-7, 6.315020325559641*^-6}","{3.981071705534969*^-7, 0.000014570267548375766}","{5.011872336272725*^-7, 0.00003316493103942911}","{6.30957344480193*^-7, 0.00007427644086392136}","{7.943282347242822*^-7, 0.00016342756833194087}","{1.*^-6, 0.00035316413737514115}"
"{1.*^-9, 2.3344707796420816*^-11}","{1.2589254117941663*^-9, 2.4763241093967676*^-11}","{1.584893192461111*^-9, 2.66594651337558*^-11}","{1.9952623149688828*^-9, 2.923199949593143*^-11}","{2.511886431509582*^-9, 3.278604224097252*^-11}","{3.1622776601683795*^-9, 3.7806061807074305*^-11}","{3.981071705534969*^-9, 4.508890742458805*^-11}","{5.011872336272715*^-9, 5.5996220616511*^-11}","{6.309573444801917*^-9, 7.294808234422856*^-11}","{7.943282347242822*^-9, 1.0042874770548463*^-10}","{1.*^-8, 1.470818460792912*^-10}","{1.2589254117941687*^-8, 2.3017210398835908*^-10}","{1.5848931924611143*^-8, 3.852386868750364*^-10}","{1.9952623149688786*^-8, 6.872289833885462*^-10}","{2.511886431509582*^-8, 1.297488530132278*^-9}","{3.162277660168379*^-8, 2.5709474957398165*^-9}","{3.981071705534969*^-8, 5.304232524029338*^-9}","{5.011872336272725*^-8, 1.1308065586838538*^-8}","{6.30957344480193*^-8, 2.4713021757553847*^-8}","{7.943282347242805*^-8, 5.494174709692927*^-8}","{1.*^-7, 1.235650439962545*^-7}","{1.2589254117941662*^-7, 2.800375407100017*^-7}","{1.584893192461111*^-7, 6.37236880404157*^-7}","{1.995262314968883*^-7, 1.4499295370759564*^-6}","{2.5118864315095823*^-7, 3.283678512143746*^-6}","{3.162277660168379*^-7, 7.369450347615641*^-6}","{3.981071705534969*^-7, 0.0000163379409016583}","{5.011872336272725*^-7, 0.00003573598271603356}","{6.30957344480193*^-7, 0.00007715496625471615}","{7.943282347242822*^-7, 0.0001646301746526927}","{1.*^-6, 0.0003476428043213711}"
"{1.*^-9, 2.6141346205329713*^-11}","{1.2589254117941663*^-9, 2.7986914618040468*^-11}","{1.584893192461111*^-9, 3.045992807229855*^-11}","{1.9952623149688828*^-9, 3.3821758611826085*^-11}","{2.511886431509582*^-9, 3.8470892970798427*^-11}","{3.1622776601683795*^-9, 4.503079182588192*^-11}","{3.981071705534969*^-9, 5.448189270838899*^-11}","{5.011872336272715*^-9, 6.850565833109267*^-11}","{6.309573444801917*^-9, 8.98760894455943*^-11}","{7.943282347242822*^-9, 1.234280115459988*^-10}","{1.*^-8, 1.7777342047455296*^-10}","{1.2589254117941687*^-8, 2.686996871030668*^-10}","{1.5848931924611143*^-8, 4.2624362845341437*^-10}","{1.9952623149688786*^-8, 7.098258832325633*^-10}","{2.511886431509582*^-8, 1.2416548825844997*^-9}","{3.162277660168379*^-8, 2.282054935830113*^-9}","{3.981071705534969*^-8, 4.403105973901189*^-9}","{5.011872336272725*^-8, 8.896511846473571*^-9}","{6.30957344480193*^-8, 1.8743798091048803*^-8}","{7.943282347242805*^-8, 4.0935356666725523*^-8}","{1.*^-7, 9.201870696306504*^-8}","{1.2589254117941662*^-7, 2.1128100884471396*^-7}","{1.584893192461111*^-7, 4.917029827039587*^-7}","{1.995262314968883*^-7, 1.1517094527782332*^-6}","{2.5118864315095823*^-7, 2.6979588216571767*^-6}","{3.162277660168379*^-7, 6.286636003687457*^-6}","{3.981071705534969*^-7, 0.000014504778105343721}","{5.011872336272725*^-7, 0.00003301586357345725}","{6.30957344480193*^-7, 0.00007394258819262138}","{7.943282347242822*^-7, 0.0001626930052643373}","{1.*^-6, 0.0003515767593411552}"
1 {1.*^-9, 0.0029766119189914985} {1.2589254117941663*^-9, 0.0029793807590616454} {1.584893192461111*^-9, 0.002982869965845295} {1.9952623149688828*^-9, 0.0029872680803444433} {2.511886431509582*^-9, 0.0029928136485246394} {3.1622776601683795*^-9, 0.0029998088686416487} {3.981071705534969*^-9, 0.00300863718705538} {5.011872336272715*^-9, 0.0030197861131050583} {6.309573444801917*^-9, 0.003033877003381471} {7.943282347242822*^-9, 0.0030517042635695244} {1.*^-8, 0.0030742874490812524} {1.2589254117941687*^-8, 0.003102941302857492} {1.5848931924611143*^-8, 0.0031393711597253395} {1.9952623149688786*^-8, 0.0031858048884542403} {2.511886431509582*^-8, 0.003245178514239504} {3.162277660168379*^-8, 0.003321402391782212} {3.981071705534969*^-8, 0.003419750991178549} {5.011872336272725*^-8, 0.003547446941331106} {6.30957344480193*^-8, 0.003714558143569173} {7.943282347242805*^-8, 0.00393541317510348} {1.*^-7, 0.004230899771789958} {1.2589254117941662*^-7, 0.004632315223401958} {1.584893192461111*^-7, 0.005188036520266379} {1.995262314968883*^-7, 0.00597550049627118} {2.5118864315095823*^-7, 0.007123570984746499} {3.162277660168379*^-7, 0.008856044554465276} {3.981071705534969*^-7, 0.01157991445461163} {5.011872336272725*^-7, 0.016071955277239643} {6.30957344480193*^-7, 0.023887577800977233} {7.943282347242822*^-7, 0.03827807962465718} {1.*^-6, 0.06624896155657994}
2 {1.*^-9, 2.9025774512182143*^-11} {1.2589254117941663*^-9, 3.107498239051347*^-11} {1.584893192461111*^-9, 3.3820867408258005*^-11} {1.9952623149688828*^-9, 3.755364132212014*^-11} {2.511886431509582*^-9, 4.2715759773114734*^-11} {3.1622776601683795*^-9, 4.999947590214695*^-11} {3.981071705534969*^-9, 6.049340842393903*^-11} {5.011872336272715*^-9, 7.606455214312896*^-11} {6.309573444801917*^-9, 9.979299022300026*^-11} {7.943282347242822*^-9, 1.37047021353887*^-10} {1.*^-8, 1.9738888641862263*^-10} {1.2589254117941687*^-8, 2.983479300602126*^-10} {1.5848931924611143*^-8, 4.73275222689975*^-10} {1.9952623149688786*^-8, 7.881478584839792*^-10} {2.511886431509582*^-8, 1.3786587102579984*^-9} {3.162277660168379*^-8, 2.5338561936153248*^-9} {3.981071705534969*^-8, 4.888943367638863*^-9} {5.011872336272725*^-8, 9.878150297709281*^-9} {6.30957344480193*^-8, 2.081198315570033*^-8} {7.943282347242805*^-8, 4.545215165475602*^-8} {1.*^-7, 1.0217202351529788*^-7} {1.2589254117941662*^-7, 2.3459369204875573*^-7} {1.584893192461111*^-7, 5.459573424731548*^-7} {1.995262314968883*^-7, 1.2787887286797079*^-6} {2.5118864315095823*^-7, 2.995650789575935*^-6} {3.162277660168379*^-7, 6.980301536498338*^-6} {3.981071705534969*^-7, 0.000016105230975025577} {5.011872336272725*^-7, 0.00003665882406670998} {6.30957344480193*^-7, 0.00008210139121636335} {7.943282347242822*^-7, 0.00018064450271306737} {1.*^-6, 0.000390369633614337}
3 {1.*^-9, 4.252735516359617*^-11} {1.2589254117941663*^-9, 4.511151568609867*^-11} {1.584893192461111*^-9, 4.856589165222477*^-11} {1.9952623149688828*^-9, 5.325231094924246*^-11} {2.511886431509582*^-9, 5.97267568860969*^-11} {3.1622776601683795*^-9, 6.887179198996116*^-11} {3.981071705534969*^-9, 8.213904703058702*^-11} {5.011872336272715*^-9, 1.0200904246061269*^-10} {6.309573444801917*^-9, 1.3289048343786182*^-10} {7.943282347242822*^-9, 1.8295238540856624*^-10} {1.*^-8, 2.679409820049754*^-10} {1.2589254117941687*^-8, 4.193076945035417*^-10} {1.5848931924611143*^-8, 7.01794827002855*^-10} {1.9952623149688786*^-8, 1.2519357976848764*^-9} {2.511886431509582*^-8, 2.3636578442406055*^-9} {3.162277660168379*^-8, 4.683550750929704*^-9} {3.981071705534969*^-8, 9.662875994519093*^-9} {5.011872336272725*^-8, 2.0600404230714105*^-8} {6.30957344480193*^-8, 4.502142799089351*^-8} {7.943282347242805*^-8, 1.000940226141124*^-7} {1.*^-7, 2.2512499825157352*^-7} {1.2589254117941662*^-7, 5.10250491960123*^-7} {1.584893192461111*^-7, 1.1612671395179925*^-6} {1.995262314968883*^-7, 2.6428661190466505*^-6} {2.5118864315095823*^-7, 5.987181022552113*^-6} {3.162277660168379*^-7, 0.000013441921623881734} {3.981071705534969*^-7, 0.0000298129311031674} {5.011872336272725*^-7, 0.00006523703530356907} {6.30957344480193*^-7, 0.00014090469892586395} {7.943282347242822*^-7, 0.0003007642462754243} {1.*^-6, 0.0006353221132128061}
4 {1.*^-9, 2.625937505007737*^-11} {1.2589254117941663*^-9, 2.811327625123537*^-11} {1.584893192461111*^-9, 3.0597455424303756*^-11} {1.9952623149688828*^-9, 3.3974464714447306*^-11} {2.511886431509582*^-9, 3.864459003360801*^-11} {3.1622776601683795*^-9, 4.523410699930621*^-11} {3.981071705534969*^-9, 5.472787984331036*^-11} {5.011872336272715*^-9, 6.881496312542069*^-11} {6.309573444801917*^-9, 9.028188228137173*^-11} {7.943282347242822*^-9, 1.2398529216566727*^-10} {1.*^-8, 1.785760720013964*^-10} {1.2589254117941687*^-8, 2.6991287304244915*^-10} {1.5848931924611143*^-8, 4.2816812930552234*^-10} {1.9952623149688786*^-8, 7.130307651966315*^-10} {2.511886431509582*^-8, 1.2472609860428159*^-9} {3.162277660168379*^-8, 2.2923584720600802*^-9} {3.981071705534969*^-8, 4.4229861096569795*^-9} {5.011872336272725*^-8, 8.93667982433039*^-9} {6.30957344480193*^-8, 1.8828426817415575*^-8} {7.943282347242805*^-8, 4.1120180845968516*^-8} {1.*^-7, 9.243417377157277*^-8} {1.2589254117941662*^-7, 2.1223494798752584*^-7} {1.584893192461111*^-7, 4.939230342097872*^-7} {1.995262314968883*^-7, 1.1569094503272754*^-6} {2.5118864315095823*^-7, 2.7101401745376194*^-6} {3.162277660168379*^-7, 6.315020325559641*^-6} {3.981071705534969*^-7, 0.000014570267548375766} {5.011872336272725*^-7, 0.00003316493103942911} {6.30957344480193*^-7, 0.00007427644086392136} {7.943282347242822*^-7, 0.00016342756833194087} {1.*^-6, 0.00035316413737514115}
5 {1.*^-9, 2.3344707796420816*^-11} {1.2589254117941663*^-9, 2.4763241093967676*^-11} {1.584893192461111*^-9, 2.66594651337558*^-11} {1.9952623149688828*^-9, 2.923199949593143*^-11} {2.511886431509582*^-9, 3.278604224097252*^-11} {3.1622776601683795*^-9, 3.7806061807074305*^-11} {3.981071705534969*^-9, 4.508890742458805*^-11} {5.011872336272715*^-9, 5.5996220616511*^-11} {6.309573444801917*^-9, 7.294808234422856*^-11} {7.943282347242822*^-9, 1.0042874770548463*^-10} {1.*^-8, 1.470818460792912*^-10} {1.2589254117941687*^-8, 2.3017210398835908*^-10} {1.5848931924611143*^-8, 3.852386868750364*^-10} {1.9952623149688786*^-8, 6.872289833885462*^-10} {2.511886431509582*^-8, 1.297488530132278*^-9} {3.162277660168379*^-8, 2.5709474957398165*^-9} {3.981071705534969*^-8, 5.304232524029338*^-9} {5.011872336272725*^-8, 1.1308065586838538*^-8} {6.30957344480193*^-8, 2.4713021757553847*^-8} {7.943282347242805*^-8, 5.494174709692927*^-8} {1.*^-7, 1.235650439962545*^-7} {1.2589254117941662*^-7, 2.800375407100017*^-7} {1.584893192461111*^-7, 6.37236880404157*^-7} {1.995262314968883*^-7, 1.4499295370759564*^-6} {2.5118864315095823*^-7, 3.283678512143746*^-6} {3.162277660168379*^-7, 7.369450347615641*^-6} {3.981071705534969*^-7, 0.0000163379409016583} {5.011872336272725*^-7, 0.00003573598271603356} {6.30957344480193*^-7, 0.00007715496625471615} {7.943282347242822*^-7, 0.0001646301746526927} {1.*^-6, 0.0003476428043213711}
6 {1.*^-9, 2.6141346205329713*^-11} {1.2589254117941663*^-9, 2.7986914618040468*^-11} {1.584893192461111*^-9, 3.045992807229855*^-11} {1.9952623149688828*^-9, 3.3821758611826085*^-11} {2.511886431509582*^-9, 3.8470892970798427*^-11} {3.1622776601683795*^-9, 4.503079182588192*^-11} {3.981071705534969*^-9, 5.448189270838899*^-11} {5.011872336272715*^-9, 6.850565833109267*^-11} {6.309573444801917*^-9, 8.98760894455943*^-11} {7.943282347242822*^-9, 1.234280115459988*^-10} {1.*^-8, 1.7777342047455296*^-10} {1.2589254117941687*^-8, 2.686996871030668*^-10} {1.5848931924611143*^-8, 4.2624362845341437*^-10} {1.9952623149688786*^-8, 7.098258832325633*^-10} {2.511886431509582*^-8, 1.2416548825844997*^-9} {3.162277660168379*^-8, 2.282054935830113*^-9} {3.981071705534969*^-8, 4.403105973901189*^-9} {5.011872336272725*^-8, 8.896511846473571*^-9} {6.30957344480193*^-8, 1.8743798091048803*^-8} {7.943282347242805*^-8, 4.0935356666725523*^-8} {1.*^-7, 9.201870696306504*^-8} {1.2589254117941662*^-7, 2.1128100884471396*^-7} {1.584893192461111*^-7, 4.917029827039587*^-7} {1.995262314968883*^-7, 1.1517094527782332*^-6} {2.5118864315095823*^-7, 2.6979588216571767*^-6} {3.162277660168379*^-7, 6.286636003687457*^-6} {3.981071705534969*^-7, 0.000014504778105343721} {5.011872336272725*^-7, 0.00003301586357345725} {6.30957344480193*^-7, 0.00007394258819262138} {7.943282347242822*^-7, 0.0001626930052643373} {1.*^-6, 0.0003515767593411552}

BIN
figures/Cond1Im.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

BIN
figures/Cond1Re.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

BIN
figures/HighTempNam1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

BIN
figures/constOmega/10.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
figures/constOmega/15.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
figures/constOmega/20.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
figures/constOmega/25.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
figures/constOmega/30.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
figures/constOmega/35.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
figures/constOmega/40.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
figures/constOmega/45.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
figures/constOmega/5.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
figures/constOmega/50.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
figures/constOmega/55.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
figures/constOmega/60.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
figures/constOmega/65.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
figures/constOmega/70.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
figures/constOmega/75.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
figures/constOmega/80.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
figures/constOmega/85.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
figures/constOmega/90.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
figures/constT/10.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/12.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
figures/constT/14.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/16.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/18.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
figures/constT/20.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/22.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/24.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/26.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/28.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/30.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/32.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/34.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/36.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/38.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
figures/constT/4.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
figures/constT/40.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

BIN
figures/constT/6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
figures/constT/8.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
figures/namNoiseCliff.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

239
paper.tex
View File

@@ -13,13 +13,16 @@
\usepackage{todonotes}
\usepackage{siunitx}
\title{Title}
\usepackage{cleveref}
\title{EWJN from a BCS Superconductor}
\addbibresource{./bibliography.bib}
\graphicspath{{./figures/}}
\newcommand{\vf}{v_{\mathrm{F}}}
\newcommand{\qf}{q_{\mathrm{F}}}
\begin{document}
@@ -34,25 +37,63 @@
\end{itemize}
\section{Methods \label{sec:methods}}
The electromagnetic field fluctuations that contribute to qubit relaxation haven described in~\cite{QubitRelax} and~\cite{Henkel1999}.
Both use Fermi's golden rule and the fluctuation-dissipation theorem to relate the relaxation rate to the spectral density of the field fluctations:
\begin{equation}
\frac{1}{T_1} = \frac{d_{(E,B)}^2}{\epsilon_0} \frac{\omega^3}{c^3} \chi_{i}^{(E,B)}(r, \omega) \coth\frac{\omega}{2 T}.
\end{equation}
Here, $\vec{d}_{(E,B)}$ is the dipole moment of a point qubit at position $\vec{r}$, with $i$ the direction of the qubit's dipole moment, with $(E,B)$ represents an electric or magnetic qubit (and correspondingly, an electric or magnetic spectral field density).
The frequency $\omega$ corresponds to the separation between energy levels of the qubit, and here and elsewhere we take $\hbar = k_{\mathrm{B}} = 1$.
\subsection{Qubit Relaxation Time Theory} \label{subsec:relaxtime}
Physically, we are interested in the relaxation time of a qubit near the surface of the metal.
Sufficiently close to the metal, such that the separation between qubit and metal is much smaller than the shortest dimension of the metallic body, we can approximate the metal as a half space.
This defines a natural coordinate system, and we can allow the metal to take up all points with $z$-coordinate less than zero, extending to infinity in the $x$ and $y$ directions.
For a half space, these spectral densities can be written in terms of the surface's reflection coefficients, as derived by\cite{Henkel1999}.
For a charge qubit with level separation $\omega$ and dipole moment $\vec{d}$, the relaxation rate $\frac{1}{T_1}$ depends on the qubit's distance from the surface $z$, as well as its orientation $i$.
The vacuum wavelength $\lambda = \frac{c}{\omega}$ is a natural unit for this distance $z$, so we wil measure $z$ in units of $\lambda$.
The electromagnetic field fluctuations that contribute to qubit relaxation have been described in~\cite{QubitRelax} and~\cite{Henkel1999}.
Both use Fermi's golden rule and the fluctuation-dissipation theorem to relate the relaxation rate to the spectral density of the field fluctuations, and obtain the following expression:
\begin{equation}
\frac{1}{T_1} = \frac{d^2}{\epsilon_0} \frac{\omega^3}{c^3} \chi_{i}^{(E)}(z, \omega) \coth\frac{\omega}{2 T}.
\end{equation}
%\todo{All the Nam stuff is in Gaussian units, so should pick one unit system and stick with it. Doesn't %affect results so far, as $\chi$ is unitless and only depends on quantities that are the same in SI / %Gaussian. Still bad though.}
%Here and elsewhere we take $\hbar = k_{\mathrm{B}} = 1$.
Similarly, for spin qubits with dipole moment $\vec{\mu}$, both~\cite{QubitRelax} and~\cite{Henkel1999} have a similar expression with a different spectral density expression:
\begin{equation}
\frac{1}{T_1} = \frac{\mu^2}{\epsilon_0} \frac{\omega^3}{c^3} \chi_{i}^{(B)}(z, \omega) \coth\frac{\omega}{2 T}.
\end{equation}
\subsubsection{Spectral Field Densities} \label{subsec:spectraldensities}
The spectral densities are in general functions of the geometry and electrodynamic response of the metal object.
A standard limiting case for the response is that of local, linear electrodynamics, where the relationship between the electric displacement $\vec{D}$ and electric field $\vec{E}$ is a proportionality:
\begin{equation}
\vec{D}(\vec{r}) = \epsilon \vec{E}(\vec{r})
\end{equation}
For a metal with conductivity $\sigma$, this dielectric function will typically have a large imaginary value as determined by the Drude expression in Gaussian units:
\begin{equation}
\epsilon = 1 + i\frac{4 \pi \sigma}{\omega}
\end{equation}
For a half space, these spectral densities can be written in terms of the surface's reflection coefficients, as derived by\cite{Henkel1999} for local electrodynamics.
Considering for now a qubit pointing in the direction perpendicular to the half-space, we can write
\begin{align}
\chi_\perp^E(z, \omega) &= \Re \int_0^{+\infty} \dd{u} \frac{u^3}{v} e^{2 i z v} r_p(u), \label{eq:chi}
\chi_\perp^E(z, \omega) &= \Re \int_0^{+\infty} \dd{u} \frac{u^3}{v} e^{2 i z v} r_p(u). \label{eq:chi}
\end{align}
with $z$ the distance to the qubit from the half-space measured in terms of the vacuum wavelength $\lambda = \flatfrac{c}{\omega}$.
The integration variable $u$ effectively represents a momentum in units of $\flatfrac{1}{\lambda}$, with $v = \sqrt{1 - u^2}$.
If $v \geq 1$, we take the positive square root $v = i \sqrt{u^2 - 1}$.
The magnetic spectral density is the same, except with an additional factor of $\flatfrac{1}{c^2}$ and with $r_s$ instead of $r_p$.
In the local limit, for dielectric constant $\epsilon$, the reflection coefficients will be the Fresnel $r_p$ and $r_s$:
\begin{align}
r_p &= \frac{\epsilon v - \sqrt{\epsilon - u^2}}{\epsilon v + \sqrt{\epsilon - u^2}} \\
r_s &= \frac{v - \sqrt{\epsilon - u^2}}{ v + \sqrt{\epsilon - u^2}}
\end{align}
For the description of the behaviour of~\eqref{eq:chi} to remain accurate for small $z$, we use the reflection coefficients in Ford and Weber~\cite{Ford1984}:
\subsubsection{Nonlocal Electrodynamics} \label{subsubsec:nonlocalelectrodynamics}
However, as discussed in~\cite{QubitRelax} and~\cite{Henkel2006}, this expression no longer remains accurate for arbitrarily small distances, with \eqref{eq:chi} diverging as $\frac{1}{z^3}$ as $z \rightarrow 0$.
The divergence here stems from the unphysicality of local electrodynamics at very small scales;
for $z$ smaller than the electromagnetic coherence length of the metal the full response function defined by
\begin{equation}
\vec{D}(\vec{r, t}) = \int \dd{r'} \dd{t'} \epsilon(r, r', t, t') \vec{E}(\vec{r', t'})
\end{equation}
becomes necessary.
The experiment described by Kolkowitz et al.\cite{Kolkowitz2015} gives an example of a physical situation where the local description is insufficient, with a qubit probe at a distance from a silver film less than the film's mean free path.
Given that the coherence lengths of typical BCS superconductors can be larger than the distances used in that experiment, we should expect that the purely local description will not work for the superconducting case.
To keep~\eqref{eq:chi} accurate for sufficiently small $z$, appropriate changes to the reflection coefficients can be made\cite{QubitRelax,Henkel2006} through the reflection coefficients in Ford and Weber~\cite{Ford1984}:
\begin{align}
r_p(u) &= \frac{\pi v - \zeta_p(u)}{\pi v + \zeta_p(u)} \\
r_s(u) &= \frac{\zeta_s(u) - \frac{\pi}{v}}{\zeta_s(u) + \frac{\pi}{v}} \\
@@ -60,9 +101,10 @@ For the description of the behaviour of~\eqref{eq:chi} to remain accurate for sm
\zeta_s(u) &= 2i \int_0^\infty \dd{y} \frac{1}{\epsilon(\frac{\omega}{c}\kappa, \omega) - \kappa^2} \label{eq:zs} \\
\kappa^2 &= u^2 + y^2
\end{align}
The quantities $\zeta_p$ and $\zeta_s$ are proportional to the surface impedances of the metal, derived for this case by Ford and Weber\cite{Ford1984}, and with more thorough discussion in~\cite{LandauLifshitzElectrodynamics}.
The treatment in~\cite{QubitRelax} compares the difference between these expressions and the simpler Fresnel reflection coefficients.
In effect, using the Fresnel reflection coefficients for a metal for some constant conductivity corresponds to a local limit $u \rightarrow 0$.
\subsubsection{Normal state dielectric function} \label{subsubsec:lindharddielectric}
The dielectric function $\epsilon(q, \omega)$, then, contains the information needed to describe the electromagnetic properties of the surface near the qubit.
For the normal state, the dielectric function derived by Lindhard~\cite{Lindhard} used in~\cite{QubitRelax} describes the non-local electromagnetic response of a metal.
Using the form described by Solyom\cite{SolyomV3},
@@ -70,8 +112,16 @@ Using the form described by Solyom\cite{SolyomV3},
\epsilon_{\mathrm{Lindhard}}(\vec{q}, \omega) = 1 + \frac{q_{TF}^2}{q^2}\frac{\displaystyle 1 + \frac{\omega + \flatfrac{i}{\tau}}{2 \vf q} \ln(\frac{\omega - \vf q + \flatfrac{i}{\tau}}{\omega + \vf q + \flatfrac{i}{\tau}})}{\displaystyle 1 + \frac{\flatfrac{i}{\tau}}{2 \vf q} \ln(\frac{\omega - \vf q + \flatfrac{i}{\tau}}{\omega + \vf q + \flatfrac{i}{\tau}})}. \label{eq:lindhardsolyom}
\end{equation}
Here, $q_{TF}$ is the Thomas-Fermi wavevector $q_{TF}^2 = 3 \flatfrac{\omega_p^2}{\vf^2}$, $\omega_p$ is the plasma frequency $\sqrt{\flatfrac{4 \pi n e^2}{m}}$, $\tau$ is the collision time and $\vf$ is the Fermi velocity.
The branch cut for the logarithm is chosen here such that their imaginary parts lie between $\pm i \pi$.
This can be shown to reduce to the Drude dielectric function in the $q \rightarrow 0$ limit.
The Lindhard dielectric function reflects the important property of having an imaginary part that vanishes for $q$ such that $\abs{\varepsilon_q - \omega} > q\vf$.
This is a very generic feature of these types of response functions, and occurs because there are no points on the assumed spherical Fermi surface further than $2 q_{\mathrm{F}}$ apart.
Thus, there are no available quasiparticle-hole excitations available for energy dissipation (cf discussion in \cite{AGD}, \cite{FetterWalecka} or \cite{SolyomV3}).
This is a general argument, and it should be expected that a superconducting dielectric function should also have zero imaginary part above some momentum on the order of the Fermi momentum.
Because the Lindhard dielectric function's imaginary part vanishes above a cutoff $q_c\left(\omega\right)$ and has real part that goes as $\Re \epsilon_{\mathrm{Lindhard}} - 1 \sim \frac{1}{q^2}$, all of the integrals in $\eqref{eq:chi}, \eqref{eq:zp} and \eqref{eq:zs}$ converge.
\subsubsection{Superconducting dielectric function} \label{subsubsec:namdielectric}
We use the expressions from Nam in~\cite{Nam1967} to represent the superconducting response function.
This extends the previous models by Mattis and Bardeen~\cite{Mattis} and Abrikosov, Dzyaloshinskii and Gorkov\cite{AGD} to give expressions that allow for broader ranges of impurity values.\todo{Including the full expressions from Nam here is a bit space-prohibitive, but it may be important to show exactly what our assumptions encode to in his notation? ex: by assuming no magnetic impurities, our renormalisation factor becomes simpler.}
@@ -91,17 +141,36 @@ with
\end{align}
The assumption of isotropy suppresses the $q$ dependence for $\Delta$, which then is just a function of temperature, and can be described using the well-known BCS expression $\Delta \approx 3.06 \sqrt{T_c(T_c - T)}$ (see for example \cite{Tinkham}).
\section{Numerical Techniques \label{sec:technical}}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{Cond1Re}
\caption{$\Re[\epsilon(q)]$ for $\omega = 1$, $\tau = 0.5$, $\omega_p = 10$, $\vf = 1$, $T = .9999 T_c$, $T_c = 3$} \label{fig:cond1Re}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{Cond1Im}
\caption{$\Im[\epsilon(q)]$ for $\omega = 1$, $\tau = 0.5$, $\omega_p = 10$, $\vf = 1$, $T = .9999 T_c$, $T_c = 3$} \label{fig:cond1Im}
\end{figure}
The Lindhard and Nam dielectric constants are compared in \cref{fig:cond1Re} and \cref{fig:cond1Im}, plotting the real and imaginary part for small representative values.
In this regime, $\omega_p > T_c > \omega$, as is typical for the frequency regime of interest, while $\tau$ is chosen to be smaller than $\omega$.
For a typical metal in this description, the Fermi wavevector $\qf$ is around the same order as $\sqrt{3}\frac{\omega_p}{\vf}$ (see discussion on this point in Solyom\cite{SolyomV3}).
We can see in \cref{fig:cond1Im} that the Lindhard dielectric function goes to zero for $q < \qf \approx 10 \sqrt{3}$.
\subsection{Numerical Techniques \label{subsec:technical}}
\subsubsection{Small momentum limit} \label{subsubsec:smallq}
The noise integral \eqref{eq:chi} can be calculated numerically, with proper care taken to handle the integrand's behaviour across the entire range.
For small momenta, where $\vf q \ll \omega$, both \eqref{eq:lindhardsolyom} and \eqref{eq:eps} can be series expanded to give explicit expressions.
The Lindhard dielectric function, up to $\mathcal{O}(q^2)$, becomes
Additionally, this small momentum limit is important in general as it tends towards the purely local limit.
The Lindhard dielectric function, up to order $q^2$, becomes
\begin{gather}
\epsilon_{\mathrm{Lindhard}}(\vec{q}, \omega) = 1 - \frac{\omega_p^2}{\omega^2} \left(\frac{\omega}{(\omega + \frac{i}{\tau})} + (\vf q)^2 \frac{9 \omega + 5 \frac{i}{\tau}}{15 (\omega + \frac{i}{\tau})^3} \right). \label{eq:lindhardsmallkseries}
\end{gather}
As expected for a description of the normal state, for $q \rightarrow 0$ this reduces to the Drude expression.
All of the momentum dependence in the Nam expression is contained within the $F(q, E)$ function in \eqref{eq:NamF}.
For the superconducting case, all of the momentum dependence in the Nam expression is contained within the $F(q, E)$ function in \eqref{eq:NamF}.
Expanding this out to second order in the momentum gives
\begin{align}
F = \frac43 \frac{1}{\eta} + (\vf q)^2\frac{4}{15} \frac{1}{\eta^3},
@@ -113,32 +182,37 @@ where
This, and other limiting forms, were stated by Nam as well~\cite{Nam1967}.
Inserting this in $\eqref{eq:NamF}$ suffices to obtain the small $q$ values in a more numerically stable way.
By comparison to the $q \rightarrow 0$ case, the large momentum dependence is more involved to correctly handle.
\subsubsection{Large momentum limit} \label{subsubsec:bigq}
By comparison, the large momentum dependence is more involved to correctly handle.
If we look at the portion of the integral in \eqref{eq:chi} for $u > u_l \gg 1$,
\begin{align}
\chi_{\perp\ \mathrm{upper}}^E(z, \omega) &= \Re \int_{u_l}^{+\infty} \dd{u} \frac{u^3}{v} e^{2 i z v} r_p(u) \\
\chi_{\perp\ \mathrm{upper}}^E(z, \omega) &= \Re \int_{u_l}^{+\infty} \dd{u} \frac{u^3}{i u} e^{-2 z u} r_p(u)
\end{align}
which means that for $z = 0$
\begin{align}
\chi_\perp^E(z, \omega) &= \int^{+\infty} \dd{u} u^2 \Im r_p(u).
\end{align}
In order for this to converge, $\Im r_p(u)$ must decrease faster than $\frac{1}{u^3}$
This divergence is discussed for the normal state in Langsjoen et al.~\cite{QubitRelax}, where it only occurs in local electrodynamics.
This is related to the point earlier that the imaginary part of $\epsilon$ should go to zero for $\abs{\varepsilon_q - \omega} > q \vf$, as such a condition is sufficient to ensure that $\Im r_p(u)$ decays quickly enough.
\subsubsection{Superconducting large momentum limit} \label{subsubsec:scbigq}
The superconducting case in the large momentum limit is not automatically corrected by using nonlocal expressions, however.
For sufficiently large $q$, the logarithm in $\eqref{eq:NamF}$ goes to $i \pi$, and $F \rightarrow \frac{i \pi}{q \vf}$.
This behaviour leads to an unphysical divergence in \eqref{eq:chi} as $z \rightarrow 0$.
Tinkham~\cite{Tinkham} and Abrikosov, Dzyaloshinskii and Gorkov~\cite{AGD} both describe expressions with this same $\frac{1}{q}$ dependence.
The root cause of inaccuracies above $q \gg 2 q_{\mathrm{F}}$ is that the Green's function method used to derive the superconducting response function makes the assumption that $q$ is sufficiently close to the Fermi surface.
However, it is insufficient to only account for the $\frac{1}{q}$ dependence, as a stronger condition is necessary to ensure convergence for arbitrarily small $z$.
In the large $q$ regime, \eqref{eq:chi} can be reduced to
\begin{align}
\chi_\perp^E(z, \omega) &= \Re \int_0^{+\infty} \dd{u} \frac{u^3}{i u} e^{-2 z u} r_p(u),
\end{align}
which means that for $z = 0$
\begin{align}
\chi_\perp^E(z, \omega) &= \int_0^{+\infty} \dd{u} u^2 \Im r_p(u).
\end{align}
For a dielectric function that asymptotically scales as $\frac{A + i B}{q}$, for real $A$ and $B$, it can be shown that
\begin{equation}
\Im r_p(u) \sim \frac{B}{u},
\end{equation}
which clearly leads to a divergent $\chi_\perp^E$.
This is the same divergence discussed in Langsjoen et al.~\cite{QubitRelax}, where for the normal state this problem does not arise if the Lindhard dielectric function is used.
Ultimately, this is because for $q > 2 q_{\mathrm{F}}$ the imaginary part of the Lindhard function goes to zero.
Physically, this happens because there are no points on the assumed spherical Fermi surface further than $2 q_{\mathrm{F}}$ apart, which means there are no available quasiparticle-hole excitations available for energy dissipation (cf discussion in \cite{AGD}, \cite{FetterWalecka} or \cite{SolyomV3}).
This is a general argument, and it should be expected that a superconducting dielectric function should also have zero imaginary part above some momentum on the order of the Fermi momentum.
This can be handled in two coarse approximations.
The key is that the integral in \eqref{eq:chi} picks out values around $u = \frac{c}{\omega} \sim \frac{1}{z}$ over most of its range, because of the $u^2 e^{-2 z u}$ factor for $u \gg 1$.
If we cut off the imaginary part of the Nam response function above some momentum $q_{\mathrm{cutoff}}$, then if $\frac{1}{z} \ll \frac{\omega}{c} q_{\mathrm{cutoff}}$, the imprecision of such a low order approximation will not greatly affect the final noise integral.
@@ -156,6 +230,24 @@ where the right hand side should be interpreted to choose the argument with the
This effectively forces the reflection coefficient to choose the Lindhard result above some crossover $q_{\mathrm{crossover}}$.
Once again, unless $\frac{1}{z} \sim q_{\mathrm{crossover}}$, the inaccuracies this causes should be exponentially damped in $\chi_\perp^E$.
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{HighTempNam1}
\caption{$T_1(z)$ at various temperatures, with $T_1$ in nanoseconds and $z$ in micrometers for parameters described in the text.} \label{fig:HighTempNam1}
\end{figure}
\Cref{fig:HighTempNam1} shows the result of these approximations, plotting the relaxation time $T_1$ at increasing distances away from the qubit.
In that figure, $\omega = \SI{1e9}{\per\second}$, $\omega_p = \SI{3.5e15}{\per\second}$, $\tau = \SI{1e-14}{\second}$, $\vf = \SI{1e6}{\m\per\s}$, $T_c = \SI{1e11}{\per\s}$, $d = \SI{8.4e-30}{\coulomb\m}$, and the temperatures are given in the legend in units of $T_c$.
Of note is how the noise calculated for the superconducting case goes to the normal state as $T \rightarrow T_c$, as well as how little the normal state depends on the temperature.
Also of note is the very large increase in the relaxation time for $T = .9 T_c$.
This reflects the situation where $\Delta$ is high enough that fluctuations with frequency $\omega$ can no longer excite states in the superconductor.
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{namNoiseCliff}
\caption{$\chi = \frac{1}{T_1(z)}$ for fixed $z$, but varying $\omega$ and $\Delta$} \label{fig:Cliff}
\end{figure}
This is plotted in \cref{fig:Cliff}, which shows the cliff-edge along which $\omega$ is sufficiently smaller than $\Delta$.
In this regime, Johnson noise no longer becomes an issue for these qubits.
\section{Experiments \label{sec:experiments}}
\begin{itemize}
\item Show that expression is of right order of magnitude to describe~\cite{Tenberg2019}.
@@ -168,6 +260,93 @@ Once again, unless $\frac{1}{z} \sim q_{\mathrm{crossover}}$, the inaccuracies t
\end{itemize}
\section{Conclusions \label{sec:conclusions}}
\section{Additional Figures}
Slices of \cref{fig:Cliff} are plotted for different frequencies in \crefrange{fig:omega:5}{fig:omega:85}, to better show the behaviour of the cliff-edge.
Additionally, we have plotted different values of the impurity collision frequency $\tau$, to show how dirtier superconductors, with smaller $\tau$, have much higher values for the noise.
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/5.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:5}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/15.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:15}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/25.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:25}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/35.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:35}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/45.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:45}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/55.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:55}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/65.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:65}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/75.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:75}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constOmega/85.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $\omega$.} \label{fig:omega:85}
\end{figure}
Similarly, we can make slices of \cref{fig:Cliff} for constant temperature, and show how the noise drops off for a different frequency.
These slices are plotted in \crefrange{fig:T:10}{fig:T:40}.
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constT/10.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $T$.} \label{fig:T:10}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constT/20.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $T$.} \label{fig:T:20}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constT/30.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $T$.} \label{fig:T:30}
\end{figure}
\begin{figure}[htp]
\centering
\includegraphics[width=12cm]{constT/40.jpg}
\caption{A slice of \cref{fig:Cliff} for constant $T$.} \label{fig:T:40}
\end{figure}
\printbibliography
\end{document}

67
scripts/Cond1ImFigure.wls Normal file
View File

@@ -0,0 +1,67 @@
Needs["namConductivity`"];
Needs["namAsymptoticLowKConductivity`"];
(* Defines lindhard functions *)
epsL[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ, omegapP_?NumericQ,
tauP_?NumericQ] :=
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
prefactor = 3*(omegapP^2)/(omegaP^2)},
1 + ((prefactor)/(u^2))*(1 + ((1 + I*s)/(2*u))*
Log[(1 - u + I*s)/(1 + u + I*s)])/(1 + ((I*s)/(2*u))*
Log[(1 - u + I*s)/(1 + u + I*s)])];
epsSeries[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ,
omegapP_?NumericQ, tauP_?NumericQ] :=
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
prefactor = 3*(omegapP^2)/(omegaP^2)},
1 + ((prefactor)) ((I/(3*(s - I))) +
u^2*(-9*I + 5*s)/(45*(-I + s)^3))];
epsEf[q_?NumericQ, omega_?NumericQ, vf_?NumericQ, omegap_?NumericQ,
tau_?NumericQ] :=
epsEf[q, omega, vf, omegap, tau] =
Piecewise[{{epsSeries[q, omega, vf, omegap, tau],
q < .01 * omega / vf}, {epsL[q, omega, vf, omegap, tau],
q >= .01 * omega / vf}}];
(* Nam stuff *)
makeDimensionlessParams[\[Omega]_, \[Sigma]n_, \[Tau]_, vf_, T_, Tc_] :=
With[{\[CapitalDelta] =
3.06*Sqrt[
Tc*(Tc - T)]}, <|\[Xi] -> \[Omega]/\[CapitalDelta], \[Nu] ->
1/(\[CapitalDelta]*\[Tau]), A -> \[Omega]*vf/(1*\[CapitalDelta]),
t -> T/\[CapitalDelta], B -> \[Sigma]n/\[Omega],
C -> vf/\[CapitalDelta]|>];
omega = 1;
tau := .5;
omegaPlasma := 10;
sigmaN := omegaPlasma^2 * tau / (4 * Pi);
vf := 1
tempCritical := 3
temp := .9999 * tempCritical
params := makeDimensionlessParams[omega, sigmaN, tau, vf, temp, tempCritical]
Print[params];
epsNam2[q_, ps_] := With[
{k = ps[C] * q},
1 + 4 * Pi * I *
ps[B] * \[CapitalSigma][ps[\[Xi]], k, ps[\[Nu]], ps[t]]
];
(* Populates the figures directory as ../figures *)
figuresDirectory = FileNameJoin[{
ParentDirectory[
DirectoryName[
FileNameJoin[{
Directory[],
$ScriptCommandLine[[1]]
}]
]
], "figures"
}];
figure[filename_] := FileNameJoin[{figuresDirectory, filename}];
plot1 = LogLinearPlot[ {Im@epsEf[q, omega, vf, omegaPlasma, tau], Im@epsNam2[q, params]} , {q, 0, 10^2}, ImageSize -> Large, AxesLabel -> {"q", StringForm["Re[\[Epsilon](q, \[Omega] = 1)]"]}, PlotRange -> All, PlotLegends -> {Lindhard, Nam}, ImagePadding -> {{50, Automatic}, {Automatic, Automatic}}];
Export[figure["Cond1Im.jpg"], plot1, ImageResolution -> 1200];

67
scripts/Cond1ReFigure.wls Normal file
View File

@@ -0,0 +1,67 @@
Needs["namConductivity`"];
Needs["namAsymptoticLowKConductivity`"];
(* Defines lindhard functions *)
epsL[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ, omegapP_?NumericQ,
tauP_?NumericQ] :=
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
prefactor = 3*(omegapP^2)/(omegaP^2)},
1 + ((prefactor)/(u^2))*(1 + ((1 + I*s)/(2*u))*
Log[(1 - u + I*s)/(1 + u + I*s)])/(1 + ((I*s)/(2*u))*
Log[(1 - u + I*s)/(1 + u + I*s)])];
epsSeries[qP_?NumericQ, omegaP_?NumericQ, vfP_?NumericQ,
omegapP_?NumericQ, tauP_?NumericQ] :=
With[{u = (vfP*qP)/omegaP, s = 1/(tauP*omegaP),
prefactor = 3*(omegapP^2)/(omegaP^2)},
1 + ((prefactor)) ((I/(3*(s - I))) +
u^2*(-9*I + 5*s)/(45*(-I + s)^3))];
epsEf[q_?NumericQ, omega_?NumericQ, vf_?NumericQ, omegap_?NumericQ,
tau_?NumericQ] :=
epsEf[q, omega, vf, omegap, tau] =
Piecewise[{{epsSeries[q, omega, vf, omegap, tau],
q < .01 * omega / vf}, {epsL[q, omega, vf, omegap, tau],
q >= .01 * omega / vf}}];
(* Nam stuff *)
makeDimensionlessParams[\[Omega]_, \[Sigma]n_, \[Tau]_, vf_, T_, Tc_] :=
With[{\[CapitalDelta] =
3.06*Sqrt[
Tc*(Tc - T)]}, <|\[Xi] -> \[Omega]/\[CapitalDelta], \[Nu] ->
1/(\[CapitalDelta]*\[Tau]), A -> \[Omega]*vf/(1*\[CapitalDelta]),
t -> T/\[CapitalDelta], B -> \[Sigma]n/\[Omega],
C -> vf/\[CapitalDelta]|>];
omega = 1;
tau := .5;
omegaPlasma := 10;
sigmaN := omegaPlasma^2 * tau / (4 * Pi);
vf := 1
tempCritical := 3
temp := .9999 * tempCritical
params := makeDimensionlessParams[omega, sigmaN, tau, vf, temp, tempCritical]
Print[params];
epsNam2[q_, ps_] := With[
{k = ps[C] * q},
1 + 4 * Pi * I *
ps[B] * \[CapitalSigma][ps[\[Xi]], k, ps[\[Nu]], ps[t]]
];
(* Populates the figures directory as ../figures *)
figuresDirectory = FileNameJoin[{
ParentDirectory[
DirectoryName[
FileNameJoin[{
Directory[],
$ScriptCommandLine[[1]]
}]
]
], "figures"
}];
figure[filename_] := FileNameJoin[{figuresDirectory, filename}];
plot1 = LogLinearPlot[ {Re@epsEf[q, omega, vf, omegaPlasma, tau], Re@epsNam2[q, params]} , {q, 0, 10^2}, ImageSize -> Large, AxesLabel -> {"q", StringForm["Re[\[Epsilon](q, \[Omega] = 1)]"]}, PlotRange -> All, PlotLegends -> {Lindhard, Nam}, ImagePadding -> {{50, Automatic}, {Automatic, Automatic}}];
Export[figure["Cond1Re.jpg"], plot1, ImageResolution -> 1200];

View File

@@ -0,0 +1,40 @@
Needs["ewjnNoise`"];
calcDirectory = FileNameJoin[{
ParentDirectory[
DirectoryName[
FileNameJoin[{
Directory[],
$ScriptCommandLine[[1]]
}]
]
], "calc"
}];
calc[filename_] := FileNameJoin[{calcDirectory, filename}];
Print[calc["HighTempNam1.csv"]]
rangespec = {zi, -9, -6, .1};
constants = namEwjnConstants;
(* Derived this in NB file, testing code *)
cutoff = 5.7860963238968725`*^9;
params1 = AssociateTo[namEwjnPbBasicParameters, {"TRel" -> .9, "omegaSI" -> 10^10}];
dataNam1 = ParallelTable[{10^zi, T1EzzNam[10^zi, cutoff, params1, constants]}, rangespec, DistributedContexts -> All];
dataLindhard1 = ParallelTable[{10^zi, T1EzzLin[10^zi, params1, constants]}, rangespec, DistributedContexts -> All];
params2 = AssociateTo[params1, "TRel" -> .995];
dataNam2 = ParallelTable[{10^zi, T1EzzNam[10^zi, cutoff, params2, constants]}, rangespec, DistributedContexts -> All];
dataLindhard2 = ParallelTable[{10^zi, T1EzzLin[10^zi, params2, constants]}, rangespec, DistributedContexts -> All];
params3 = AssociateTo[params2, "TRel" -> .9995];
dataNam3 = ParallelTable[{10^zi, T1EzzNam[10^zi, cutoff, params3, constants]}, rangespec, DistributedContexts -> All];
dataLindhard3 = ParallelTable[{10^zi, T1EzzLin[10^zi, params3, constants]}, rangespec, DistributedContexts -> All];
data = {dataNam1, dataLindhard1, dataNam2, dataLindhard2, dataNam3, dataLindhard3};
Print[data];
Export[calc["HighTempNam1.csv"], data];

View File

@@ -0,0 +1,35 @@
(* Populates the figures directory as ../calc *)
calculatedDirectory = FileNameJoin[{
ParentDirectory[
DirectoryName[
FileNameJoin[{
Directory[],
$ScriptCommandLine[[1]]
}]
]
], "calc"
}];
calc[filename_] := FileNameJoin[{calculatedDirectory, filename}];
(* Populates the figures directory as ../figures *)
figuresDirectory = FileNameJoin[{
ParentDirectory[
DirectoryName[
FileNameJoin[{
Directory[],
$ScriptCommandLine[[1]]
}]
]
], "figures"
}];
figure[filename_] := FileNameJoin[{figuresDirectory, filename}];
(* 0.299792458 meters = 1 wavelength, and z is in units of wavelengths*)
label = AxesLabel -> {"z (\[Mu]m)", "T (nanosecond)"};
data = ToExpression[Import[calc["HighTempNam1.csv"]]];
scaledData = Map[{0.299792458 * 10^6 * #[[1]], 10^9 * #[[2]]} &, data, {2}];
plot1 = ListLogLogPlot[scaledData, ImageSize->Large, label, PlotLegends -> {"SC, T =.9 Tc", "N, T = .9 Tc", "SC, T = .995 Tc", "N, T = .995", "SC, T = .9995 Tc", "N, T = .9995 Tc"}, Joined -> True, ImagePadding -> {{50, Automatic}, {Automatic, Automatic}}];
Export[figure["HighTempNam1.jpg"], plot1, ImageResolution -> 1200];